
Anais da Academia Brasileira de Ciências (2003) 75(3): 279–284
(Annals of the Brazilian Academy of Sciences)
ISSN 0001-3765
www.scielo.br/aabc

On Properness of Minimal Surfaces with Bounded Curvature

GREGÓRIO P. BESSA and LUQUÉSIO P. M. JORGE

Departamento de Matemática, Universidade Federal do Ceará

60455-760 Fortaleza, CE, Brasil

Manuscript received on February 27, 2003; accepted for publication on June 8, 2003;

presented by Manfredo do Carmo

ABSTRACT

We show that immersed minimal surfaces in the euclidean 3-space with bounded curvature and

proper self intersections are proper. We also show that restricted to wide components the immersing

map is always proper, regardless the map being proper or not. Prior to these results it was only

known that injectively immersed minimal surfaces with bounded curvature were proper.
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1. INTRODUCTION

Most of the results about the structure of complete minimal surfaces ofR
3 requires the hypothesis

that the surfaces are proper. It would be an interesting problem to determinewhat geometries imply

that a complete minimal surface of R
3 is proper. The first result, (to the best of our knowledge),

toward this problem is due to Rosenberg (Rosenberg 2000). He proved that an injectively immersed

complete minimal surface ofR3 with bounded sectional curvature is proper. On the other extreme,

there are examples of complete non proper minimal surfaces ofR
3 with bounded sectional curvature,

whose closures are dense in large subsets ofR
3, (Andrade 2000). These examples show that

bounded sectional curvature alone is not enough to make a minimal immersion proper but the

failure happens in what can be considered as “pathological” examples.

The key to understand these phenomena are the self intersections. In Andrade’s examples they

have accumulation points, in contrast to injectively immersed surfaces that are not self intersecting.

In the middle of these two cases there are many known examples of proper complete minimal

surfaces with bounded sectional curvature self intersecting “properly”. Our first result, Theorem
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1.2, explains the (non)properness of these examples above in terms of their self intersections. To

give its precise statement we need the following definition.

Definition 1.1. An isometric immersion ϕ : M → R
3 is said to have proper self intersections if

the restriction of ϕ to � = ϕ−1(�) is a proper map, where � = {x ∈ R
3; # (ϕ−1(x)) ≥ 2} .

Theorem 1.2. An isometric minimal immersion ϕ : M → R
3 of a complete surface with bounded

sectional curvature and with proper self intersections is proper.

There is another way that one can extend Rosenberg’s result. Among the connected components

of M \ �, one type is called wide component, and it is possible to show that restricted to a wide

component the immersing map is proper. Moreover, when the immersing map is injective the

whole surface is a wide component.

Definition 1.3. A connected component M ′ of M \ � is wide if for divergent sequence of points

xk ∈ M ′ with ϕ(xk) converging in R
3 there is a sequence of positive real numbers rk → ∞ such that

the geodesic balls BM(xk, rk) of M centered at xk with radius rk are contained in M ′. Otherwise

we say that the connected component is narrow.

Theorem 1.4. Let ϕ : M → R
3 be an isometric minimal immersion of a complete surface with

bounded sectional curvature. Then the restriction of ϕ to any wide component M ′ of M \ � is

proper.

Theorem 1.4 has a slight more general version which shows the role that the set� plays in the

properness problem.

Theorem 1.5. Let ϕ : M → R
3 be an isometric minimal immersion of a complete surface

with bounded sectional curvature. There is no divergent sequence of points xk ∈ M with ϕ(xk)

converging in R
3 and distM(xk, �) → ∞.

We shall finish this introduction presenting some questions related to this work that we think

are of importance.

Question 1.6. Let ϕ : M → R
3 be an isometric minimal immersion of a complete surface with

bounded curvature. Let S ⊂ Lim ϕ be a limit leaf. Can S be injectively immersed? Or can S have

an injectively immersed end?

The definitions of Limϕ and limit leaf are given below in the preliminaries. The negative

answer would be an indicative that Limϕ is generated by accumulation points ofϕ|� . Related to

Question 1.6 one can ask, when Limϕ is generated by Limϕϕ|� and when it is not?

Question 1.7. Let ϕ : M → R
3 be a non proper isometric minimal immersion of a complete

surface with bounded curvature. Does M \ � have wide connected components?

The non existence of wide components inM \ � would suggest thatM is included in the

Lim ϕ. Unfortunately there are not enough examples to understand what happens.
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Finally, it is important to know when a minimal immersion ofM is an O-minimal set or not. O-

minimal structures have been studied in algebraic geometry by many people such as L. Bröker, M.

Coste, L. Van Den Dries and others (see Van Den Dries 1980). The following question, if answered

positively, would imply that a minimal immersion with bounded curvature is an O-minimal set.

Question 1.8. Let ϕ : M → R
3 be a non proper isometric minimal immersion of a complete

surface with bounded curvature. Does the intersection of M with one line of R
3 have only finite

connected components?

2. PRELIMINARIES

One of the reasons of the properness requirement in most structure results in minimal surface theory

is the absence of tools applicable for non proper minimal immersions. To remedy this situation

we introduced in (Bessa and Jorge 2001) the notion oflimit sets of an isometric immersion. The

limit sets of non proper isometric minimal immersions intoR
3 with bounded curvature have a rich

structure that can be used to better understand those type of immersions. Here in this section, we

recall its definition and state the results needed in the the sequel.

Definition 2.1. Let ϕ : M → N , be an isometric immersion where M and N are complete

Riemannian manifolds. The set of all points p ∈ N such that there exists a divergent sequence

{pl} ⊂ M so that ϕ(pl) → p in N is called the limit set of ϕ, denoted by Lim ϕ, i.e.

Lim ϕ = {p ∈ N; ∃ {pl} ⊂ M, distM(p0, pl) → ∞ and distN(p, ϕ(pl)) → 0}

The following theorem about limit set was proved in (Bessa and Jorge 2001) in a more general

situation than this version here presented.

Theorem 2.2. Let ϕ : M → R
3 be a non proper isometric minimal immersion of a complete

surface with bounded sectional curvature. Then for each point p ∈ Lim ϕ there is a family of

complete immersed minimal surfaces Sλ ⊂ Lim ϕ, with bounded sectional curvature, containing

p, (p ∈ Sλ). Each of these surfaces Sλ is called a limit leaf passing through p.

Remark 2.3. The idea of a proof for this theorem is the following: Since the immersing mapϕ is

non proper, there is a divergent sequence of pointsxk in M with ϕ(xk) converging to a pointp in

R
3. By the fact that the immersion is minimal, the surface has bounded sectional curvature and the

ambient space1 is R
3, there is a sequence of disjoint disksDk ⊂ M with radius uniformly bounded

from below containingxk such thatϕ(Dk) are minimal graphs over their tangent spaces atϕ(xk),

also with radius uniformly bounded from below. These graphs converge, up to subsequences, to a

minimal graphD with bounded curvature, containingp. Each pointq of D is limit of a sequence

of pointsϕ(qk) ∈ ϕ(Dk). This limit graph extends to a complete minimal surface with bounded

1 The ambient space need to have bounded geometry, meaning sectional curvature bounded from above and injectivity

radius bounded from below.

An Acad Bras Cienc (2003)75 (3)



282 GREGÓRIO P. BESSA and LUQUÉSIO P. M. JORGE

curvatureS ⊂ Lim ϕ called limit leaf. One can see that given a compactK ⊂ S, there are a

sequence of compactsKk ⊂ ϕ(M) converging (locally as graphs) toK.

In (Bessa et al. 2001) was proved the following theorem.

Theorem 2.5. Let ϕ : Mn ↪→ Nn+1 be a complete minimal immersed hypersurface with scalar

curvature bounded from below in a complete n + 1 dimensional Riemannian manifold N with

bounded geometry. Suppose in addition that N has non negative Ricci curvature RicN ≥ 0. Then

ϕ is proper or every orientable leaf S ⊂ Lim ϕ such that S ∩ ϕ(M) = ∅ is stable. Moreover, if S

is compact then S is totally geodesic and the Ricci curvature of N is identically zero in the normal

directions to S.

In this note, we observe that one can have a slight improvement in Theorem 2.5. It is possible to

allow certain kind of intersections betweenS andϕ(M) keeping the same conclusions. To explain

better what kind of intersections we can allow, let us define proper intersections.

Definition 2.4. Let ϕi : Mi ↪→ N be isometric immersions, i = 1, 2. We say that the intersection

� = ϕ1(M1) ∩ ϕ2(M2) is proper if the restrictions of ϕi to �i = ϕ−1
i (�)) is a proper map.

Remark 2.6. Theorem 2.5 is still true if the intersectionS ∩ ϕ(M) is proper. The proof of

Theorem 2.5 needs the hypothesisS ∩ ϕ(M) = ∅ only to guarantee thatS has no self intersections

(see Theorem 1.5 and its proof in (Bessa et al. 2001)). This is also obtained if the intersection

S ∩ ϕ(M) is proper. Otherwise, ifS has self intersection in a pointp ∈ S then there are two disks

Di ⊂ S, i = 1, 2, both containingp and intersecting themselves transversally. Each diskDi is

limit of disksD
j

i ⊂ ϕ(M). For large indexesj , these disksDj

i intersectS at pointspj

i ∈ D
j

i ∩ S.

These intersection pointspj

i converge top and their inverse image are going to infinity inM,

showing that the intersection ofS andϕ(M) is non proper.

Remark 2.7. In Theorem 2.5, whenN ≡ R
3 then the stability ofS implies thatS is a plane,

(Do Carmo and Peng 1979), (Fisher-Colbrie and Schoen 1980). More generally, whenn = 2 the

stability ofS implies thatS is totally geodesic also in the non compact case, (Schoen 1983).

3. PROOF OF THEOREMS 1.2, 1.4 and 1.5

Proof of Theorem 1.5.

Suppose we have a divergent sequence of pointsxk ∈ M withϕ(xk)converging to a pointp ∈ R
3 and

distM(xk, �) → ∞. For eachxk, consider an open diskDk centered atxk with radius distM(xk, �).

The sequenceϕ(Dk) converges to a complete limit leafS of Lim ϕ passing byp. Suppose (by

contradiction) that there isq ∈ S ∩ ϕ(M). By Remark 2.3 there is a sequence of pointsyk ∈ Dk,

with dist(xk, yk) < dist(p, q)+1 such thatϕ(yk) → q. For large indices, the disksD(yk, 1) ⊂ Dk

centered atyk with radius 1 are such thatϕ(D(yk, 1)) converges in aC2 topology to a disc inS

centered atq with a radius near 1, thus they intersectϕ(M) transversally, showing thatDk ∩� �= ∅,

contradiction. ThereforeS ∩ ϕ(M) = ∅. This leads to another contradiction, because by Theorem

2.5 or the Strong Half Space Theorem,S andϕ(M) are parallel planes and proper.
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Proof of Theorem 1.2.

If the statement of Theorem 1.2 is not true then by Theorem 1.5, there is a divergent sequence

xk ∈ M such thatϕ(xk) converges to a pointp ∈ R
3 and

r = lim inf
k→∞ dist(xk, �) < ∞.

Let yk ∈ � a sequence of points realizing the distance dist(xk, �). Passing to a subsequence

if necessary we may say that dist(xk, yk) ≤ r + 1. Thenyk ∈ � is a divergent sequence and

ϕ(yk) ∈ BR3(p, r + 1). This contradicts the properness ofϕ|� .

Proof of Theorem 1.4.

Suppose thatϕ restricted to a wide componentM ′ ⊂ M \ � is not proper. Letxk ∈ M ′ be a

divergent sequence such thatϕ(xk) converges to a pointp ∈ R
3. By Theorem 1.5, we have that

lim inf
k→∞ dist(xk, ∂M ′) < ∞

but by the definition of wide component this can not be.

ACKNOWLEDGMENTS

G.P.B’s work was partially supported by CAPES-PROCAD GRANT # 0188/00-0 and L.P.M.J’s

work was partially supported by CAPES GRANT # BEX2067/00-5.

RESUMO

Mostramos que as superfícies mínimas imersas no espaço euclideano de dimensão três, com curvatura

limitada e autointersecções próprias, são próprias. Mostramos também que restrita às componentes amplas,

a imersão é própria, independentemente do fato de ser a imersão inicial própria ou não. Antes destes

resultados, era apenas conhecido que as imersões injetivas, mínimas, completas, com curvatura limitada,

eram próprias.

Palavras-chave: imersão própria, curvatura limitada, autointersecções próprias.

REFERENCES

Andrade FP. 2000. A wild minimal plane inR3. Proc Amer Math Soc 128: 1451-1457.

Bessa GP and Jorge LP. 2001. Limit set structure of isometric immersions. Preprint.

Bessa GP, Jorge LP and Oliveira-Filho G. 2001. Half-Space Theorems for Minimal Surfaces with

Bounded Curvature. J Differential Geom 57: 493-508.

Do Carmo M and Peng CK. 1979. Stable complete minimal surfaces inR
3 are planes. Bull Amer Math

Soc 1: 903-905.

An Acad Bras Cienc (2003)75 (3)



284 GREGÓRIO P. BESSA and LUQUÉSIO P. M. JORGE

Fisher-Colbrie and Schoen R. 1980. The Structure of complete stable minimal surfaces in 3-manifolds

of non-negative scalar curvature. Comm Pure Appl Math 33: 199-211.

Rosenberg H. 2000. A complete embedded minimal surface inR
3 of bounded curvature is proper. Un-

published.

Schoen R. 1983. Estimates for stable minimal surfaces in three dimensional manifolds. Ann of Math Stud

103: 111-126.

Van Den Dries L. 1980. O-minimal structures and real analytic geometry. Current Developments in

Mathematics, International Press, 105-152.

An Acad Bras Cienc (2003)75 (3)


