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ABSTRACT
We show that immersed minimal surfaces in the euclidean 3-space with bounded curvature and
proper self intersections are proper. We also show that restricted to wide components the immersing
map is always proper, regardless the map being proper or not. Prior to these results it was only
known that injectively immersed minimal surfaces with bounded curvature were proper.
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1. INTRODUCTION

Most of the results about the structure of complete minimal surfac®$ afquires the hypothesis

that the surfaces are proper. It would be an interesting problem to detestmhgeometriesimply

that a complete minimal surface of R is proper. The first result, (to the best of our knowledge),
toward this problem is due to Rosenberg (Rosenberg 2000). He proved that an injectively immersed
complete minimal surface &2 with bounded sectional curvature is proper. On the other extreme,
there are examples of complete non proper minimal surfad@bwith bounded sectional curvature,
whose closures are dense in large subsef®3f(Andrade 2000). These examples show that
bounded sectional curvature alone is not enough to make a minimal immersion proper but the
failure happens in what can be considered as “pathological” examples.

The key to understand these phenomena are the self intersections. In Andrade’s examples they
have accumulation points, in contrast to injectively immersed surfaces that are not self intersecting.
In the middle of these two cases there are many known examples of proper complete minimal
surfaces with bounded sectional curvature self intersecting “properly”. Our first result, Theorem
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1.2, explains the (non)properness of these examples above in terms of their self intersections. To
give its precise statement we need the following definition.

DEFINITION 1.1. Anisometricimmersion ¢ : M — R3 issaid to have proper self intersections if
therestriction of o toI" = ¢ 1(A) isa proper map, where A = {x € R #(p~1(x)) > 2} .

THEOREM 1.2. Anisometric minimal immersion ¢ : M — R® of a complete surface with bounded
sectional curvature and with proper self intersectionsis proper.

There is another way that one can extend Rosenberg’s result. Among the connected components
of M \ T, one type is called wide component, and it is possible to show that restricted to a wide
component the immersing map is proper. Moreover, when the immersing map is injective the
whole surface is a wide component.

DEerFINITION 1.3. A connected component M’ of M \ T iswide if for divergent sequence of points
X € M’ withe(x;) converginginR® thereisa sequence of positivereal numbersr; — oo suchthat
the geodesic balls By, (x, r) of M centered at x; with radius r, are contained in M’. Otherwise
we say that the connected component is narrow.

THEOREM 1.4. Let ¢ : M — RR® be an isometric minimal immersion of a complete surface with
bounded sectional curvature. Then the restriction of ¢ to any wide component M’ of M \ T is
proper.

Theorem 1.4 has a slight more general version which shows the role that thelags in the
properness problem.

THEOREM 1.5. Let ¢ : M — R3 be an isometric minimal immersion of a complete surface
with bounded sectional curvature. There is no divergent sequence of points x, € M with ¢ (x;)
converging in R® and disty, (x;, I') — oo.

We shall finish this introduction presenting some questions related to this work that we think
are of importance.

QUESTION 1.6. Let ¢ : M — RR® be an isometric minimal immersion of a complete surface with
bounded curvature. Let S C Lim ¢ bealimitleaf. Can S beinjectively immersed? Or can S have
an injectively immersed end?

The definitions of Limg and limit leaf are given below in the preliminaries. The negative
answer would be an indicative that Lignis generated by accumulation pointsggf. Related to
Question 1.6 one can ask, when Linis generated by Linpg,. and when it is not?

QuesTioN 1.7. Let ¢ : M — R be a non proper isometric minimal immersion of a complete
surface with bounded curvature. Does M \ T" have wide connected components?

The non existence of wide componentsph\ I" would suggest thaM is included in the
Lim ¢. Unfortunately there are not enough examples to understand what happens.
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Finally, it is important to know when a minimal immersionMfis an O-minimal set or not. O-
minimal structures have been studied in algebraic geometry by many people such as L. Broker, M.
Coste, L. Van Den Dries and others (see Van Den Dries 1980). The following question, if answered
positively, would imply that a minimal immersion with bounded curvature is an O-minimal set.

QuESTION 1.8. Let ¢ : M — R be a non proper isometric minimal immersion of a complete
surface with bounded curvature. Does the intersection of M with one line of R® have only finite
connected components?

2. PRELIMINARIES

One of the reasons of the properness requirement in most structure results in minimal surface theory
is the absence of tools applicable for non proper minimal immersions. To remedy this situation
we introduced in (Bessa and Jorge 2001) the notidinat sets of an isometric immersion. The

limit sets of non proper isometric minimal immersions if®with bounded curvature have a rich
structure that can be used to better understand those type of immersions. Here in this section, we
recall its definition and state the results needed in the the sequel.

DEFINITION 2.1. Let ¢ : M — N, be an isometric immersion where M and N are complete
Riemannian manifolds. The set of all points p € N such that there exists a divergent sequence
{p1} € M sothat ¢(p;) — pin N iscalled thelimit set of ¢, denoted by Lim ¢, i.e.

Lim ¢ = {p e N; 3{p;} C M, disty(po, p1) — oc and disk (p, ¢(p;)) — 0}

The following theorem about limit set was proved in (Bessa and Jorge 2001) in a more general
situation than this version here presented.

THEOREM 2.2. Let ¢ : M — R3 be a non proper isometric minimal immersion of a complete
surface with bounded sectional curvature. Then for each point p € Lim ¢ there is a family of
complete immersed minimal surfaces S; C Lim ¢, with bounded sectional curvature, containing
p, (p € S,). Each of these surfaces S, is called a limit leaf passing through p.

REMARK 2.3. The idea of a proof for this theorem is the following: Since the immersinggmsp

non proper, there is a divergent sequence of paipta M with ¢(x;) converging to a poinp in

R3. By the fact that the immersion is minimal, the surface has bounded sectional curvature and the
ambient spaceis R?, there is a sequence of disjoint diskg ¢ M with radius uniformly bounded

from below containing, such thatp(D;) are minimal graphs over their tangent spaceg(at),

also with radius uniformly bounded from below. These graphs converge, up to subsequences, to a
minimal graphD with bounded curvature, containing Each pointy of D is limit of a sequence

of pointsg(gx) € ¢(Dy). This limit graph extends to a complete minimal surface with bounded

1 The ambient space need to have bounded geometry, meaning sectional curvature bounded from above and injectivity
radius bounded from below.
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curvatureS C Lim ¢ called limit leaf. One can see that given a compkctc S, there are a
sequence of compacts, C ¢(M) converging (locally as graphs) 1.
In (Bessa et al. 2001) was proved the following theorem.

THEOREM 2.5. Let ¢ : M" — N"*! be a complete minimal immersed hypersurface with scalar
curvature bounded from below in a complete n 4+ 1 dimensional Riemannian manifold N with
bounded geometry. Suppose in addition that N has non negative Ricci curvature Ricy > 0. Then
@ isproper or every orientableleaf S € Lim ¢ suchthat S N (M) = ¢ isstable. Moreover, if S
is compact then S istotally geodesic and the Ricci curvature of N isidentically zero in the normal
directionsto S.

In this note, we observe that one can have a slightimprovementin Theorem 2.5. Itis possible to
allow certain kind of intersections betwe&mndg (M) keeping the same conclusions. To explain
better what kind of intersections we can allow, let us define proper intersections.

DEFINITION 2.4. Let ¢; : M; — N beisometricimmersions, i = 1, 2. We say that theintersection
A = p1(M1) N @(M>) isproper if therestrictionsof ¢; toI'; = <pi_1(A)) isa proper map.

REMARK 2.6. Theorem 2.5 is still true if the intersectiohnN ¢(M) is proper. The proof of
Theorem 2.5 needs the hypothe$is ¢ (M) = @ only to guarantee that has no self intersections

(see Theorem 1.5 and its proof in (Bessa et al. 2001)). This is also obtained if the intersection
S Ne(M) is proper. Otherwise, if has self intersection in a poipte S then there are two disks

D; C S,i = 1,2, both containingy and intersecting themselves transversally. Each Bisls

limit of disks D/ c ¢(M). For large indexeg, these disksD/ intersects at pointsp! € D/ N S.

These intersection poimpij converge top and their inverse image are going to infinity i,
showing that the intersection 8fandg (M) is non proper.

REMARK 2.7. In Theorem 2.5, wheV = R3 then the stability ofS implies thatS is a plane,
(Do Carmo and Peng 1979), (Fisher-Colbrie and Schoen 1980). More generallypwh@rihe
stability of S implies thats is totally geodesic also in the non compact case, (Schoen 1983).

3. PROOF OF THEOREMS1.2,1.4and 1.5
Proor oF THEOREM 1.5.

Suppose we have a divergent sequence of pejnésM with ¢ (x;) converging to apoing € R3and
disty, (xx, I') — oo. For eachxy, consider an open disR; centered at; with radius disf; (x;, I').

The sequence(D;) converges to a complete limit le&fof Lim ¢ passing byp. Suppose (by
contradiction) that there i € S N ¢(M). By Remark 2.3 there is a sequence of powts Dy,

with dist(x, yi) < dist(p, ¢) + 1 such thap(y,) — ¢. For large indices, the disk3(y,, 1) C Dy
centered aw; with radius 1 are such that(D(y, 1)) converges in &2 topology to a disc inS
centered af with aradius near 1, thus they interse¢t) transversally, showing th@, NT" #= @,
contradiction. Therefor8 N (M) = @. This leads to another contradiction, because by Theorem
2.5 or the Strong Half Space Theorefrandg (M) are parallel planes and proper.
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PrOOF OF THEOREM 1.2.
If the statement of Theorem 1.2 is not true then by Theorem 1.5, there is a divergent sequence
x; € M such thatp(x;) converges to a point € R3 and

r = liminf dist(x;, I') < oo.
k— 00

Let y, € T' a sequence of points realizing the distance(dist"). Passing to a subsequence
if necessary we may say that dist, ;) < r + 1. Theny, € I' is a divergent sequence and
@) € Brs(p, r + 1). This contradicts the propernessgf.

PrOOF OF THEOREM 1.4.
Suppose thap restricted to a wide componeM’ c M \ I' is not proper. Lety, € M’ be a
divergent sequence such thaty;) converges to a point € R3. By Theorem 1.5, we have that

liminf dist(x;, M) < 0o
k—o00

but by the definition of wide component this can not be.
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RESUMO

Mostramos que as superficies minimas imersas no espaco euclideano de dimenséo trés, com curvatura
limitada e autointerseccdes proprias, sao proprias. Mostramos também que restrita as componentes amplas.
a imersao é prépria, independentemente do fato de ser a imerséao inicial prépria ou ndo. Antes destes

resultados, era apenas conhecido que as imersdes injetivas, minimas, completas, com curvatura limitada,
eram proprias.

Palavras-chave: imersao propria, curvatura limitada, autointerseccdes proprias.
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