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ABSTRACT

We present an accurate description the limiting behavior of delayed sums under a non-identically distribution
setup, and deduce Chover-type laws of the iterated logarithm for them. These complement and extend the
results of Vasudeva and Divanji (Theory of Probability and its Applications, 37 (1992), 534–542).
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1 INTRODUCTION AND MAIN RESULTS

The distribution function F of a real valued random variable X is called stable law with exponent

α(0 < α < 2), if for some σ > 0, −1 ≤ β ≤ 1, its characteristic function is of the form

E exp(i t X) = exp
{
−σ |t |α(1 + iβ

t

|t |
ω(t, α))

}
, t ∈ IR (1.1)

where

ω(t, α) =






tan
πα

2
, if α 6= 1,

2

π
ln |t |, if α = 1.

If β = 0, X is a symmetric random variable. It is well-known, if F is a stable law with exponent

α(0 < α < 2), we have the following tail behavior:

lim
t→∞

tα(1 − F(t) + F(−t)) = c(α, σ ), (1.2)

where c(α, σ ) > 0 only depends on α and σ (cf. e.g. Feller 1971). This property will play an important

role in this paper.

Let {Xn, n ≥ 1} be a sequence of independent random variables with its partial sums Sn =
∑n

i=1 Xi .

Let {an, n ≥ 1} be a positive integer subsequence. Set Tn = Sn+an − Sn and γn = log(n/an) + log log n.
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The sum Tn is called a forward delayed sum (see Lai 1974). Suppose Xn’s involve of two distributions

F1 and F2 which are stable laws with exponents α1 and α2(0 < α1 ≤ α2 < 2). For each n ≥ 1,

let τ1(n) denote the number of random variables in the set {X1, X2, ∙ ∙ ∙ , Xn} with distribution function

F1, then τ2(n) = n − τ1(n) is the number of random variables with distribution function F2 in the set

{X1, X2, ∙ ∙ ∙ , Xn}. Then (τ1(n), τ2(n)) is called the sample scheme of the sequence {Xn, n ≥ 1}. Assume

that τ1(n) = [nα1/α2] and Bn = n1/α2 , where [x] is the integer part of x . By Sreehari (1970), Sn/Bn

converges weakly to a composition of the two stable laws.

Let Uτ1(n) be the sum of those {X1, X2, ∙ ∙ ∙ , Xn} with distribution function F1 and Vτ2(n) be the sum

of those {X1, X2, ∙ ∙ ∙ , Xn} with distribution function F2. Then Sn = Uτ1(n) + Vτ2(n). One can note that in

Tn there are [(n + an)
α1/α2] − [nα1/α2] random variables with distribution function F1 and n + an − [(n +

an)
α1/α2] − (n − [nα1/α2]) random variables with distribution function F2.

The motivation of this paper is to extend and complement the results of Vasudeva and Divanji (1992).

They obtained the following theorem in the special case that F1 and F2 are positive stable laws with

exponents 0 < α1 ≤ α2 < 1.

THEOREM A. Let {an, n ≥ 1} be a nondecreasing sequence with 0 < an ≤ n and an/n non-increasing.

Let F1 and F2 are positive stable law and 0 < α1 ≤ α2 < 1.

(i) If limn→∞ log(n/an)/ log log n = +∞, then

lim sup
n→∞

(
Tn

Ban

)1/γn

= e1/α2 a.s.

(ii) If limn→∞ log(n/an)/ log log n = 0, then

lim sup
n→∞

(
Tn

Ban

)1/γn

= e1/α1 a.s.

(iii) If limn→∞ log(n/an)/ log log n = s ∈ (0, +∞), then

lim sup
n→∞

(
Tn

Ban

)1/γn

= exp
{

α1s + α2

(s + 1)α1α2

}
a.s.

They only discuss the case that F1 and F2 are positive stable law with exponents 0 < α1 ≤ α2 < 1.

But by their method, it is impossible to discuss the rest case. In this paper, by a new method, we will

complement and extend Theorem A in three directions, namely:

(i) We will obtain more exact results.

(ii) We will discuss not only that the distributions is the positive stable laws, but also that the distributions

is not necessary positive stable laws and the exponents of the stable laws in (0, 2), not only in (0, 1).

(iii) We will replace the restrictions 0 < an ≤ n and an/n non-increasing of the sequence {an, n ≥ 1} by a

more general assumption lim supn→∞ an/n < +∞.
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Recall that the kind of type law of the iterated logarithm (LIL) was first obtained by Chover (1966) for

symmetric stable law, and is called Chover-type LIL. By far, some papers concern with the Chover-type

LIL, for example, Chen (2002) for the weighted sums of symmetric stable law, Chen and Yu (2003) for the

weighted sums of stable law without symmetric assumption, Peng and Qi (2003) for the weighted sums of

law in the domain of attraction of stable law, and Chen (2004) for geometric weighted sums and Cesàro

weighted sums of stable law, etc.

First we give an accurate description of the limiting behavior of Sn .

THEOREM 1.1. Let f > 0 be a nondecreasing function. Then with probability one

lim sup
n→∞

|Sn|

Bn( f (n))1/α1
=

{
0,

+∞,
⇔

∫ +∞

1

d x

x f (x)

{
< +∞,

= +∞.
(1.3)

By Theorem 1.1, we have the following Corollary at once.

COROLLARY 1.1. For every δ > 0, we have

lim sup
n→∞

|Sn|

Bn(log n)(1+δ)/α1
= 0 a.s.

and

lim sup
n→∞

|Sn|

Bn(log n)1/α1
= +∞ a.s.

In particular

lim sup
n→∞

∣
∣
∣
∣

Sn

Bn

∣
∣
∣
∣

1/ log log n

= e1/α1 a.s. (1.4)

REMARK 1.1. If α1 = α2, Corollary 1.1 extends the result of Chover (1966).

THEOREM 1.2. Let {an, n ≥ 1} be a subsequence of positive integers with lim supn→∞ an/n < +∞.

Let f > 0 be a nondecreasing function. Then with probability one

lim sup
n→∞

|Tn|

Bn( f (n))1/α1
=

{
0,

+∞,
⇔

∫ +∞

1

d x

x f (x)

{
< +∞,

= +∞.
(1.5)

COROLLARY 1.2. Let {an, n ≥ 1} as Theorem 1.2. Then for every δ > 0, we have

lim sup
n→∞

|Tn|

Bn(log n)(1+δ)/α1
= 0 a.s.

and

lim sup
n→∞

|Tn|

Bn(log n)1/α1
= +∞ a.s.

In particular

lim sup
n→∞

∣
∣
∣
∣

Tn

Bn

∣
∣
∣
∣

1/ log log n

= e1/α1 a.s. (1.6)

COROLLARY 1.3. Let {an, n ≥ 1} as Theorem 1.2.
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(i) If limn→∞ log(n/an)/ log log n = +∞, then

lim sup
n→∞

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣

1/γn

= e1/α2 a.s. (1.7)

(ii) If limn→∞ log(n/an)/ log log n = 0, then

lim sup
n→∞

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣

1/γn

= e1/α1 a.s. (1.8)

(iii) If limn→∞ log(n/an)/ log log n = s ∈ (0, +∞), then

lim sup
n→∞

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣

1/γn

= exp
{

α1s + α2

(s + 1)α1α2

}
a.s. (1.9)

COROLLARY 1.4. Let {an, n ≥ 1} as Theorem 1.2. If α1 = α2 = α, then

lim sup
n→∞

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣

1/γn

= e1/α a.s. (1.10)

REMARK 1.2. Corollary 1.4 extends the result of Zinchenko (1994).

2 PROOFS OF THE MAIN RESULTS

We need the following lemmas.

LEMMA 2.1 (see Lemma 2.1 of Chen 2004). Let f > 0 be a non-decreasing function with
∫ ∞

1

d x

x f (x)
< +∞,

then there exists a non-decreasing function g > 0 such that

g(x) ≤ f (x), lim sup
x→+∞

g(2x)/g(x) < +∞ and
∫ ∞

1

d x

xg(x)
< +∞.

LEMMA 2.2 (see Lemma 2.2 of Chen 2002). Let f > 0 be a non-decreasing function satisfying
∫ ∞

1

d x

x f (x)
= +∞.

Then there exists a non-decreasing function h > 0 such that

h(x) → +∞ as x → +∞ and
∫ ∞

1

d x

x f (x)h(x)
= +∞.

LEMMA 2.3 (see Lemma 3 of Chow and Lai 1973). Let {Wn, n ≥ 1} and {Zn, n ≥ 1} be two sequences

of random variables such that {Wi , 1 ≤ i ≤ n} and Zn are independent for each n ≥ 1. Suppose

Wn + Zn → 0 a.s. and Zn → 0 in probability, then Wn → 0 a.s. and Zn → 0 a.s.
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In the rest of this paper, we denote C as a generic positive number which may be different at different

places, and a(n) ∼ b(n) means limn→∞ a(n)/b(n) = 1. For the sake of simplicity, we denote random

variable Y1 with distribution function F1 and random variable Y2 with distribution function F2.

PROOF OF THEOREM 1.1. Assume that
∫ ∞

1
d x

x f (x)
< ∞. First of all, we show that

Sn

Bn( f (n))1/α1
→ 0 in probability. (2.1)

Note that by (1.1), (τ1(n))−1/α1(Uτ1(n) − bτ1(n)) has the same distribution as Y1 and (τ2(n))−1/α2(Vτ2(n)

− dτ2(n)) has the same distribution as Y2, where bn = 0 if α1 6= 1 and bn = bn log n for some b ∈

(−∞, +∞) if α1 = 1, and dn = 0 if α1 6= 1 and dn = dn log n for some d ∈ (−∞, +∞) if α2 = 1.
∫ ∞

1
d x

x f (x)
< ∞ implies that f (n) → ∞ and log n/ f (n) → 0 as n → ∞. Hence for all ε > 0

P
(
|Uτ1(n) − bτ1(n)| ≥ εBn( f (n))1/α1

)
= P

(
|Y1| ≥ εBn( f (n))1/α1/(τ1(n))1/α1

)

∼ Cn−α1/α2( f (n))−1τ1(n)

∼ C( f (n))−1 → 0, n → ∞

and

P
(
|Vτ2(n) − dτ2(n)| ≥ εBn( f (n))1/α1

)
= P

(
|Y2| ≥ εBn( f (n))1/α1/(τ2(n))1/α2

)

∼ Cn−1( f (n))−α2/α1τ2(n)

∼ C( f (n))−α2/α1 → 0, n → ∞.

Hence (2.1) holds. So by standard symmetric argument (see Lemma 3.2.1 of Stout 1974), we need only to

prove the result for {Xn, n ≥ 1} symmetric.

By Lemma 2.1 of Chen (2002),

Uτ1(n)

(τ1(n) f (τ1(n)))1/α1
→ 0 a.s. and

Vτ2(n)

(τ2(n) f (τ2(n)))1/α2
→ 0 a.s.

Note that

lim sup
n→∞

(τ1(n) f (τ1(n)))1/α1

Bn( f (n))1/α1
< ∞ and lim sup

n→∞

(τ2(n) f (τ2(n)))1/α2

Bn( f (n))1/α1
< ∞.

Hence

lim sup
n→∞

|Sn|

Bn( f (n))1/α1
≤ lim sup

n→∞

|Uτ1(n)|

Bn( f (n))1/α1
+ lim sup

n→∞

|Vτ2(n)|

Bn( f (n))1/α1

≤ lim sup
n→∞

(τ1(n) f (τ1(n)))1/α1

Bn( f (n))1/α1
×

|Uτ1(n)|

(τ1(n) f (τ1(n)))1/α1

+ lim sup
n→∞

(τ2(n) f (τ2(n)))1/α2

Bn( f (n))1/α1
×

|Vτ2(n)|

(τ2(n) f (τ2(n)))1/α2

= 0 a.s.
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So we complete the proof of the convergent part.

Now we assume that
∫ ∞

1
d x

x f (x)
= +∞. If

∞∑

n=1

P
(
|Xn| ≥ M Bn( f (n))1/α1

)
= +∞, ∀M > 0 (2.2)

holds, then by the Borel-Cantelli lemma, we have

lim sup
n→∞

|Xn|

Bn( f (n))1/α1
= +∞ a.s.

and note that

lim sup
n→∞

|Xn|

Bn( f (n))1/α1
≤ lim sup

n→∞

|Sn|

Bn( f (n))1/α1
+ lim sup

n→∞

Bn−1( f (n − 1))1/α1

Bn( f (n))1/α1
×

|Sn−1|

Bn−1( f (n − 1))1/α1

≤ 2 lim sup
n→∞

|Sn|

Bn( f (n))1/α1
,

hence we have

lim sup
n→∞

|Sn|

Bn( f (n))1/α1
= +∞ a.s.

Now we prove (2.2). Note that

∞∑

n=1

P
(
|Xn| ≥ M Bn( f (n))1/α1

)
=

∞∑

k=0

2k+1−1∑

n=2k

P
(
|Xn| ≥ M Bn( f (n))1/α1

)

≥
∞∑

k=0

2k+1−1∑

n=2k

P
(
|Xn| ≥ M B2k+1( f (2k+1))1/α1

)

≥
∞∑

k=0

(τ1(2
k+1 − 1) − τ1(2

k − 1))P
(
|Y1| ≥ M B2k+1( f (2k+1))1/α1

)

≥ C
∞∑

k=0

(τ1(2
k+1 − 1) − τ1(2

k − 1))(2k+1)−α1/α2( f (2k+1))−1

≥ C
∞∑

k=0

( f (2k+1))−1

and
∫ ∞

1
d x

x f (x)
= +∞ implies

∑∞
k=0( f (2k+1))−1 = +∞, so (2.2) holds.

PROOF OF THEOREM 1.2. Assume that
∫ ∞

1
d x

x f (x)
< ∞, by Lemma 2.1, without loss of generality, we

can assume that lim supx→∞ f (2x)/ f (x) < ∞. By Theorem 1.1, we have

lim sup
n→∞

|Sn|

Bn( f (n))1/α1
= 0 a.s. and lim sup

n→∞

|Sn+an |

Bn+an ( f (n + an))1/α1
= 0 a.s.
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Note that lim supn→∞
Bn+an ( f (n+an))1/α1

Bn( f (n))1/α1
< ∞, hence

lim sup
n→∞

|Tn|

Bn( f (n))1/α1
≤ lim sup

n→∞

|Sn+an |

Bn( f (n))1/α1
+ lim sup

n→∞

|Sn|

Bn( f (n))1/α1

= lim sup
n→∞

Bn+an ( f (n + an))
1/α1

Bn( f (n))1/α1
×

|Sn+an |

Bn+an ( f (n + an))1/α1

= 0 a.s.

Now we assume that
∫ ∞

1
d x

x f (x)
= +∞. Suppose

lim sup
n→∞

|Tn|

Bn( f (n))1/α1
= +∞ a.s.

does not hold, then by Kolmogorov 0-1 law, there exists a constant c0 ∈ [0, ∞) such that

lim sup
n→∞

|Tn|

Bn( f (n))1/α1
= c0 a.s.

Hence

lim
n→∞

Tn

Bn( f (n)h(n))1/α1
= 0 a.s.

where h(x) is given by Lemma 2.2. It is easy to show that

Xn+1

Bn( f (n)h(n))1/α1
→ 0 in probability,

i.e.
Tn − Xn+1

Bn( f (n)h(n))1/α1
→ 0 in probability.

By Lemma 2.3, we have
Xn+1

Bn( f (n)h(n))1/α1
→ 0 a.s.

By the Borel-Cantelli lemma

∞∑

n=1

P
(
|Xn| ≥ Bn( f (n)h(n))1/α1

)
< ∞.

But by the same argument in the proof of Theorem 1.1, we have

∞∑

n=1

P
(
|Xn| ≥ Bn( f (n)h(n))1/α1

)
= ∞.

This leads to a contradiction, so we complete the proof.

PROOF OF COROLLARY 1.3. By Theorem 1.2, we have

lim sup
n→∞

|Tn|

Bn(log n)(1+δ)/α1
= 0 a.s. ∀δ > 0 and lim sup

n→∞

|Tn|

Bn(log n)1/α1
= +∞ a.s.
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Hence we have

P
(
|Tn| ≥ Bn(log n)(1+δ)/α1, i.o.

)
= 0, ∀δ > 0 and P

(
|Tn| ≥ Bn(log n)1/α1, i.o.

)
= 1,

where P(An, i.o.) = P(lim supn→∞ An) and An is a sequence of events. So we have

P
(

log

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣ ≥ (1/α2) log(n/an) + ((1 + δ)/α1) log log n, i.o.

)
= 0, ∀δ > 0,

and

P
(

log

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣ ≥ (1/α2) log(n/an) + (1/α1) log log n, i.o.

)
= 1.

(i) If limn→∞ log(n/an)/ log log n = ∞, then

P
(

log

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣ ≥ (1 + δ1)γn/α2, i.o.

)
= 0, ∀δ1 > 0

and

P
(

log

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣ ≥ (1 − δ2)γn/α2, i.o.

)
= 1, ∀δ2 > 0,

hence we have

lim sup
n→∞

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣

1/γn

= e1/α2 a.s.

(ii) If limn→∞ log(n/an)/ log log n = 0, then

P
(

log

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣ ≥ (1 + δ3)γn/α1, i.o.

)
= 0, ∀δ3 > 0

and

P
(

log

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣ ≥ (1 − δ4)γn/α1, i.o.

)
= 1, ∀δ4 > 0,

hence we have

lim sup
n→∞

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣

1/γn

= e1/α1 a.s.

(iii) If limn→∞ log(n/an)/ log log n = s ∈ (0, ∞), then

P
(

log

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣ ≥

(
α1s + α2

α1α2(s + 1)
+ δ5

)
γn, i.o.

)
= 0, ∀δ5 > 0

and

P
(

log

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣ ≥

(
α1s + α2

α1α2(s + 1)
− δ6

)
γn, i.o.

)
= 1, ∀δ6 > 0,

hence we have

lim sup
n→∞

∣
∣
∣
∣

Tn

Ban

∣
∣
∣
∣

1/γn

= exp
(

α1s + α2

α1α2(s + 1)

)
a.s.
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RESUMO

Apresentamos uma descrição precisa do comportamento limite de somas retardadas, e deduzimos leis do tipo Chover

de logaritmo iterado para as mesmas. Isso completa e estende os resultados de Vasudeva e Divanji (Theory of

Probability and its Aplications, 37 (1992), 534–542).

Palavras-chave: distribuição estável, leis do logaritmo iterado, somas retardadas.
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