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ABSTRACT
The essential oils from leaves and inflorescences of Lippia origanoides Kunth present aromatic and 
medicinal potential and have been used to treat several diseases, including melanoma. In Brazil, L. 
origanoides is commonly found in campo cerrado and cerrado stricto sensu, physiognomies featured 
mainly by the differential light conditions to which short and medium-sized plants are subjected. Our aim 
was to investigate the glandular trichome density and the yield and chemical composition of the essential 
oils in leaves and inflorescences of L. origanoides from campo cerrado and cerrado stricto sensu. For 
glandular density analysis, leaves and inflorescences were processed according to conventional techniques 
for scanning electron microscopy. The essential oils of leaves and inflorescences were obtained by 
hydrodistillation and identified with gas chromatography. Bracts and sepals showed the highest glandular 
density, followed by petals and leaves. The glandular density in the abaxial leaf surface was higher in 
individuals from the campo cerrado. In both populations the essential oil yield was higher in inflorescences 
than in leaves. The chemical composition of the essential oils varied among individuals from different 
areas and inside a same population. Our results demonstrated the chemical plasticity of L. origanoides 
suggesting the importance of monitoring its popular use.
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INTRODUCTION

Species of Verbenaceae are known for the presence 
of glandular trichomes that secrete essential oils. 
Many of these species are widely exploited by drug 
manufacturers and used in popular medicine (Judd 
et al. 2009, Pascual et al. 2001, Souza and Lorenzi 

2008). Lippia origanoides Kunth, a native shrub 
of the Brazilian Cerrado, is widely distributed in 
South America from Guiana to northern Argentina, 
and also occurs in Central America (O’Leary et 
al. 2012). The essential oil extracted from leaves 
of L. origanoides shows antimicrobial, antiviral, 
acaricidal, antioxidant, antibacterial and anti-
inflammatory activities (Cavalcanti et al. 2010, 
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Gomes et al. 2012, Oliveira et al. 2007, Rocha-
Guzmán et al. 2007, Stashenko et al. 2010, 2013, 
Veras et al. 2013). Different chemotypes of L. 
origanoides were reported in literature and p-cimene, 
thymol and carvacrol are the major components most 
commonly found (Cavalcanti et al. 2010, Oliveira et 
al. 2007, Stashenko et al. 2010, 2013).

In the Brazilian Cerrado, L. origanoides is 
commonly found in areas of campo cerrado and 
cerrado stricto sensu. These Cerrado physiognomies 
are featured mainly by the differential light intensity 
that reaches the short and medium-sized plants. 
The cerrado stricto sensu is characterized by the 
occurrence of medium-sized trees, scattered shrubs 
and some grasses. In this area the individuals of 
L. origanoides are shaded by nearby trees in the 
early hours of the morning and in late afternoon. 
In the campo cerrado, grasses and small shrubs 
are predominant, with some sparse trees (Maroni 
et al. 2006), and individuals of L. origanoides are 
exposed to full sunlight throughout the day.

Studies indicate that both yield and chemical 
composition of the essential oils and the glan
dular trichome density, can be influenced by 
environmental factors, including herbivory, 
temperature, water availability, altitude, circadian 
cycle, seasonality, and light intensity, among 
others (Argyropoulou et al. 2007, Gianfagna et 
al. 1992, Gobbo-Neto and Lopes 2007, Gonzáles 
et al. 2008, Juliani Jr et al. 2002, Martínez-
Natarén et al. 2011, Pérez-Estrada et al. 2000, 
Viljoen et al. 2005, Werker 2000). Whether the 
different organs in a same plant respond similarly 
to the environmental fluctuations concerning the 
essential oil composition is still unknown.

Since leaves and inflorescences of L. 
origanoides are exhaustively exploited by people 
living in Cerrado areas in Brazil for medicinal 
purposes, knowledge on the occurrence of variation 
in the essential oil composition in plants living in 
different environmental conditions can be important 
in order to avoid it being misused.

We investigated the density of the glandular 
trichomes and the yield and chemical composition 
of essential oils in leaves and inflorescences of 
L. origanoides from campo cerrado and cerrado 
stricto sensu.

MATERIALS AND METHODS

STUDY AREA AND PLANT MATERIAL

Two wild populations of L. origanoides were 
located in two different Cerrado physiognomies, 
cerrado stricto sensu (S 22°49’11.39” and W 
48°44’51.18”) and campo cerrado (S 22°53’29.82” 
and W 48°29’25.81”), both in midwestern state 
of São Paulo, Brazil. The climate of both areas is 
Cwa, according to Köppen. 

Data on the temperature and relative humidity 
from November 2012 through March 2013 were 
obtained from meteorological stations in the 
cerrado stricto sensu and campo cerrado areas. The 
photosynthetic photon flux density (PPFD) was 
measured with a PAM fluorometer on successive 
days. The altitude data were recorded with a GPS.

Table I shows the data for temperature, relative 
humidity, PPFD and altitude in both areas. 

cerrado stricto 
sensu 

campo 
cerrado

Temperature (°C) 22.5 21.7
Air relative humidity (%) 82.0 79.5
PPFD (µmol.m-2.s-1)
Altitude (m)

1837
719

2045
833

TABLE I 
Environmental data from areas of cerrado sensu stricto 

and campo cerrado in São Paulo State, Brazil.

Twelve adult plants of L. origanoides 
were sampled in each population. Leaves and 
inflorescences were collected during the summer, 
in February 2013. All individuals were in the same 
phenological stage.

Vouchers were deposited in the Herbarium Irina 
Delanova Gemtchújnicov (BOTU), Department of 
Botany, Universidade Estadual Paulista (UNESP), 
Botucatu, state of São Paulo.
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DENSITY OF GLANDULAR TRICHOMES

To evaluate the density of glandular trichomes, two 
fully expanded leaves were collected from each 
plant in both populations. To estimate the density 
of glandular trichomes in reproductive organs, two 
inflorescences were collected from each individual 
in the campo cerrado.

Samples of flowers and the middle part of leaf 
blades were fixed in glutaraldehyde (2.5% with 0.1 
M phosphate buffer, pH 7.3, overnight at 4 °C), 
dehydrated in a graduated acetone series, critical-
point dried, mounted on aluminum stubs, gold-
coated (Robards 1978), and examined with a Fei 
Quanta scanning electron microscope. 

The glandular density in leaves and flowers 
was calculated in 1 mm2 using the Scandium 
software with an image-capture system coupled to 
the scanning electron microscope. We compared 
the glandular density between a) the adaxial and 
abaxial leaf surfaces in individuals from the same 
population; b) leaves from different populations; 
and c) leaves and floral parts (bracts, sepals, 
petals) from the same population. The data were 
submitted to ANOVA followed by Tukey test, at a 
5% probability level.

YIELD AND CHEMICAL COMPOSITION OF THE ESSENTIAL OILS

For the essential oil analyses, leaves and in
florescences were collected from four individuals 
growing in the cerrado stricto sensu (numbered 1 to 
4) and from three individuals growing in the campo 
cerrado (numbered 1 to 3). Individual number 3 in 
the campo cerrado was located on an ant colony. 

The samples were dried at 40 °C and were 
subjected to hydrodistillation in a Clevenger-type 
apparatus (Craveiro et al. 1981) for 2 h. 

The qualitative analysis of the essential oil 
was performed on a gas chromatograph coupled 
to a mass spectrometer (CG-MS, Shimadzu, QP-
5000), with an OV-5 fused silica capillary column 
(30 m x 0.25 mm x 0.25 μm, Ohio Valley Specialty 
Chemical, Inc.), operating at an MS ionization 

voltage of 70 eV, with helium as the carrier gas 
(1.0 mL/min.). The following chromatography 
conditions were used: injector at 240 °C, detector at 
230 °C, injection volume: 1 µL of solution (1 mg 
of essential oil/1 mL of ethyl acetate), split 1/20, 
and the temperature program: 60 °C – 240 °C, 3 °C/
min. The compounds were identified by comparison 
of the acquired mass spectra with those stored in 
the GC/MS database of the system (NIST 62 lib.) 
and retention indices (Adams 2007). The retention 
indices (RI) were obtained from the injection of 
a mixture of n-alcanes (Sigma-Aldrich, C9-C24), 
employing the same temperature program conditions 
described above for GC/MS, applying the equation 
of Van den Dool and Kratz (1963).

The separation and quantification (area norma­
lization method) of the substances were carried out 
by gas chromatography (GC-FID, Shimadzu, GC-
2010/AOC-20i), equipped with a flame ionizer, 
using a DB-5 capillary column (J and W Scientific; 
30 m x 0.25 mm x 0.25 μm), with helium as the 
carrier gas (1.0 mL/min), temperature injector at 240 
°C, detector at 230 °C, split 1/20, injection volume 
1 µL of solution (1 mg essential oil/1 mL ethyl 
acetate). The following chromatography conditions 
were used: 60 °C – 160 °C, 5 °C/min; 160 °C – 230 
°C, 3 °C/min; 230 °C – 280 °C, 10 °C/min.

The yield of essential oil was analyzed using 
factorial analysis, and compared among the plant 
organs and populations by ANOVA, followed by 
Tukey test at a 5% probability level.

RESULTS

DISTRIBUTION AND DENSITY OF GLANDULAR TRICHOME

Glandular trichomes were observed in both leaf 
(Fig. 1A, B) and bract (Fig. 1C) surfaces, as well as 
the abaxial side of sepals (Fig. 1D) and petals (Fig. 
1E) of L. origanoides. In the petals, these glands 
occurred exclusively in the distal region.

In the individuals from the campo cerrado, the 
glandular density was higher in the inflorescences 
than in the leaves (F(4,55)=144.3919; P<0.00001) 
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(Table II). Bracts and sepals were the organs with 
the highest glandular density (Table II). The density 
of glandular trichomes was three to four times 
higher on the abaxial surface of the leaf (Fig. 1A) 
than on the adaxial (Fig. 1B) for individuals from 
both the campo cerrado and the cerrado stricto 
sensu (Table II).

The abaxial leaf surface of individuals from 
the campo cerrado showed a higher density of 
glandular trichomes in comparison to individuals 
from the cerrado stricto sensu (F(1,22)=15.6354; 
P=0.0009). Differences in the glandular density 
were not observed for the adaxial leaf surfaces 
of individuals from the different populations 
(F(1,22)=1.1297; P=0.2998) (Table II).

YIELD AND CHEMICAL COMPOSITION OF THE ESSENTIAL OIL

The yield of the essential oil of L. origanoides was 
higher in inflorescences than in the leaves (Fig. 2) 
in individuals from both cerrado physiognomies 
(F(3,8)=22.7906; P<0.0001) (Fig. 2). No significant 
differences were observed in the oil yield between 
individuals from the cerrado stricto sensu and the 
campo cerrado, for both leaves (P=0.390) and 
inflorescences (P=0.233).

During the analysis of the essential oil yield, the 
samples from individual 3 (the one that was located 
on an ant colony in the field) from the campo cerrado 
were not used, due to the discrepant values obtained 
for its inflorescences (1.98) and leaves (3.97). 

Figure 1 - Scanning electron micrographs of leaves and floral parts of Lippia origanoides Kunth showing glandular and non-
glandular trichomes. A. Abaxial leaf surface. B. Adaxial leaf surface. C. Abaxial bract surface. D. Abaxial sepal surface. E. Abaxial 
petal surface. Scale bars: A-E = 100 μm; B = 200 μm.
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Organ Glandular density
campo cerrado cerrado stricto sensu 

Bract (abaxial surface) 624.00 A -
Sepal (abaxial surface) 544.42 A -
Petal (abaxial surface) 271.85 B -
Leaf (abaxial surface) 97.62 Ca 69.52 Ab
Leaf (adaxial surface) 21.43 Da 19.16 Ba

TABLE II
Glandular density (mm2) in leaf blades and inflorescences of Lippia 

origanoides Kunth from two physiognomies of the Brazilian Cerrado.

Means followed by different capital letters indicate statistical differences in the glandular density 
among organs and different lowercase letters indicate statistical differences in the glandular 
density between populations (Tukey test p < 0.05).

Figure 2 - Yield of essential oil of leaves and inflorescences 
of Lippia origanoides Kunth from two populations in the 
Cerrado (Means followed by different letters indicate statistical 
differences in the essential oil yield between organs inside a 
same population and between different populations by Tukey 
test at 5% significance level).

We identified 49 substances in the essential 
oil extracted from leaves and inflorescences of L. 
origanoides. The amount of substances found in 
the inflorescences was higher than in the leaves, 
in both populations. The major compounds varied 
between the populations, among the individuals 
from the same population, and between the organs 
of the same individual (Table III).

In the cerrado stricto sensu, trans-caryophyllene 
was the major compound in the inflorescences of 
individual 1 (63.4%), 2 (34.2%) and 4 (39.3%), 
whereas α-humulene was the major compound in 

individual 3 (58.7%). Concerning the leaves, trans-
caryophyllene (33.7%) and δ-cadinene (10.3%) were 
the major compounds in individual 2; individuals 
3 and 4 showed α-humulene (66.3% and 40.0%, 
respectively) and trans-caryophyllene (9.5% and 
24.9%, respectively) as their major compounds.

In the campo cerrado, α-pinene (27.2%) and 
trans-caryophyllene (38.6%) were the major 
compounds in the inflorescences, and trans-
caryophyllene (60.6%) in the leaves of individual 
1. β-elemene was the major compound in the 
inflorescences (10.2%), and α-humulene in the 
leaves (10.3%) of individual 2; trans-caryophyllene, 
γ-selinene and 7-epi-α-selinene were the majority 
compounds in both the inflorescences (11.2%, 
14.9% and 10.5%) and the leaves (9.5%, 16.7% and 
13.5%) in this individual. 1,8 cineole was the major 
compound in both the inflorescences (52.2%) and 
the leaves (58.2%) of individual 3; differently from 
the other individuals, oxygenated monoterpenes 
were predominant in the inflorescences (61.8%) 
and leaves (71.3%) of this individual (Table III).

DISCUSSION

We have found a higher density of glandular 
trichomes on the abaxial leaf surface of L. 
origanoides plants growing in the campo cerrado; 
in this area the relative humidity was lower and 
the altitude and PPFD were higher. Little is known 
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Compound

Inflorescences Leaves

RI* RI**cerrado stricto sensu campo cerrado cerrado stricto 
sensu campo cerrado

1.0 2.0 3.0 4.0 1.0 2.0 3.0 2.0 3.0 4.0 1.0 2.0 3.0
Hydrocarbon Monoterpenes

α-thujenew nd nd nd nd nd nd 0.6 nd nd nd nd nd 0.8 927 930
α-pinene 3.7 0.8 8.4 nd 27.2 nd 4.6 0.5 0.7 nd 2.4 nd 4.2 934 939
camphene 1.2 3.0 1.3 0.4 2.4 0.2 0.2 1.5 0.1 0.1 0.2 nd tr 948 954
sabinene nd nd nd nd nd nd 5.8 nd nd nd nd 0.7 4.2 975 975
β-pinene nd nd nd nd 1.3 nd 2.3 nd nd nd nd nd 2.3 977 979
myrcene nd 0.6 0.5 nd 0.7 tr 1.5 tr tr nd nd nd 1.5 991 990
α-phellandrene nd nd 0.4 nd tr nd 0.3 nd nd nd nd nd 0.4 1006 1002
α-terpinene nd 0.6 tr nd nd nd nd nd nd nd nd nd 0.6 1017 1017
p-cymene 1.0 1.9 0.3 tr 2.1 0.2 1.6 0.9 nd nd nd nd 1.0 1024 1024
limonene 0.4 1.9 3.0 nd nd nd nd nd nd nd 0.4 0.2 1.8 1029 1029
Z-β-ocymene nd nd nd nd nd nd nd 1.4 nd 0.3 nd nd nd 1037 1037
E-β-ocymene nd 7.9 1.8 nd nd 1.7 tr 4.5 0.2 tr nd 0.8 tr 1047 1050
γ-terpinene tr 5.1 1.2 nd nd nd 1.9 0.3 nd nd nd nd 1.3 1058 1059
terpinolene nd 0.2 tr nd tr nd 0.3 tr nd nd nd nd 0.2 1089 1088

Oxygenated Monoterpenes
1-octen-3-ol 0.2 0.3 0.5 nd nd nd nd 0.9 tr 0.4 nd nd nd 977 979
1,8 cineole 0.4 8.7 0.4 0.3 0.2 0.3 52.2 4.3 1.3 nd nd nd 58.2 1031 1031
linalool 1.2 5.2 0.8 3.7 1.9 5.7 0.6 1.1 tr 2.8 0.7 4.1 1.6 1100 1096
borneol nd 1.2 tr nd tr nd 0.5 0.3 tr nd nd nd 0.6 1165 1169
terpinen-4-ol nd 0.6 nd nd nd nd 1.8 tr nd nd nd nd 2.4 1177 1177
α-terpineol nd 1.0 nd nd nd nd 6.7 tr nd nd nd nd 8.6 1190 1188

Hydrogenated Sesquiterpenes
α-copaene 5.3 5.1 3.4 5.4 3.7 1.0 tr 8.5 4.2 4.6 8.5 1.4 nd 1378 1376
β-elemene 4.2 1.6 1.4 1.7 3.3 10.2 0.5 nd nd nd tr 0.5 nd 1394 1390
α-gurjunene nd 0.3 tr 0.2 nd nd nd 0.6 nd 0.2 nd nd nd 1411 1409
trans-caryophyllene 63.4 34.2 12.7 39.3 38.6 11.2 3.9 33.7 9.5 24.9 60.6 9.5 2.5 1422 1419
α-guaiene nd 0.9 nd nd nd nd 0.3 1.8 nd nd nd tr 0.2 1440 1439
aromadendrene nd nd nd nd nd 0.6 nd nd nd nd nd 0.6 nd 1446 1441
α-humulene 3.7 2.3 58.7 35.0 2.2 8.3 0.3 2.7 66.3 40.0 3.7 10.3 tr 1455 1554
allo-aromadendrene 0.6 nd tr 0.8 0.2 tr tr 0.3 0.3 0.7 0.5 tr tr 1462 1460
γ-muurolene 1.0 0.4 0.5 1.0 nd 1.3 nd 0.9 nd nd nd 1.2 nd 1475 1479
germacrene D 1.6 0.6 0.3 0.9 0.7 0.7 0.6 1.0 0.6 0.9 1.2 nd nd 1478 1485
γ-selinene nd nd nd nd nd 14.9 nd tr nd nd nd 16.7 nd 1481 1498
β-selinene 0.9 0.7 1.3 0.5 1.1 3.7 nd tr nd nd tr 3.1 nd 1487 1492
valencene nd nd nd nd nd 3.0 nd nd nd nd nd 3.6 nd 1490 1496
α-selinene nd nd nd nd nd 6.6 nd 0.9 0.3 nd tr 6.0 nd 1496 1498
bicyclogermacrene 0.2 0.5 tr tr 4.1 nd 5.3 nd nd nd nd nd 2.2 1497 1500
α-muurolene nd nd nd 1.7 nd nd nd 1.6 0.7 0.9 1.4 nd nd 1501 1500
germacrene A 1.8 2.4 tr nd nd 1.0 nd 0.4 nd nd nd nd nd 1506 1509
7-epi-α-selinene nd nd nd nd nd 10.5 nd nd nd nd nd 13.5 nd 1514 1522
δ-cadinene 2.2 5.4 1.0 2.2 0.8 0.2 tr 10.3 1.5 2.5 2.9 0.4 nd 1525 1513
trans-cadina-1,4-diene nd tr nd nd nd nd nd 0.3 nd nd nd nd nd 1534 1534
germacrene B tr nd tr nd nd 0.5 nd nd nd nd nd 0.5 nd 1553 1561

TABLE III
Chemical composition of the essential oils (%) from inflorescences and leaves of Lippia 

origanoides Kunth from cerrado stricto sensu and campo cerrado in São Paulo state, Brazil.



An Acad Bras Cienc (2015) 87 (2)

949TRICHOMES AND ESSENTIAL OIL IN L. origanoides

Oxygenated Sesquiterpenes
spathulenol nd tr nd 0.3 1.0 nd 3.4 nd nd 0.3 nd nd 2.0 1578 1578
caryophyllene oxide 2.1 3.6 0.5 2.3 5.8 1.4 2.3 6.0 0.7 3.9 6.2 1.0 2.5 1583 1583
humulene epoxide II tr nd nd nd tr 1.1 nd tr 5.0 4.6 2.8 1.2 nd 1610 1608
1-epi-cubenol 0.3 nd 1.2 1.5 nd 0.8 nd 4.5 1.7 2.2 nd 1.7 nd 1629 1628
cubenol 0.6 1.4 tr 0.5 0.6 nd 0.7 0.3 0.3 2.4 1.1 2.0 tr 1643 1646
α-muurolol tr 0.8 tr 0.5 nd 0.7 nd 5.5 0.2 1.0 0.7 0.6 nd 1646 1646
selin-11-en-4-α-ol nd nd nd nd nd 5.8 nd tr nd nd nd 8.1 nd 1654 1652***
α-cadinol 2.6 0.5 0.6 1.6 2.0 5.9 nd 1.1 1.3 2.8 nd 8.6 tr 1655 1654
Hydrocarbon 
Monoterpenes 6.3 21.9 16.9 0.4 33.7 2.0 18.9 9.1 1.0 0.4 3.0 1.8 18.2

 

Oxygenated 
Monoterpenes 1.8 16.9 1.7 4.1 2.1 6.0 61.8 6.6 1.3 3.2 0.7 4.1 71.3

Hydrogenated 
Sesquiterpenes 84.8 54.2 79.1 88.5 54.6 73.6 10.9 62.9 83.3 74.7 78.8 67.1 4.9

Oxygenated 
Sesquiterpenes 5.5 6.2 2.3 6.5 9.4 15.6 6.3 17.4 9.2 16.9 10.7 23.2 4.5

Total identified 98.4 99.2 100.0 99.5 99.7 97.2 97.9 95.9 94.9 95.2 93.3 96.0 98.9  

RI*= Retention index calculated; IR**= Retention index (Adams 2007); nd = not detected; tr = trace (tr ≤0.13). *** Retention 
index obtained on the website: www.pherobase.com

about the influence of exogenous factors on the 
origin of secretory structures in plants. Studies 
have reported on the effects of light, temperature, 
altitude, and availability of nutrients, among others, 
on the glandular density in different plant species 
(Gianfagna et al. 1992, Horgan et al. 2009, Pérez-
Estrada et al. 2000). In drier environments, the 
density of trichomes on leaves can be higher than 
in plants of the same species growing in wetter 
situations (Pérez-Estrada et al. 2000). Similarly, 
light intensity can positively influence the glandular 
trichomes (Pérez-Estrada et al. 2000, Yamaura et 
al. 1989). According to Pérez-Estrada et al. (2000), 
in addition to playing a defensive role against biotic 
agents, glandular trichomes can help to reflect 
sunlight and minimize water loss. 

Although the PPFD was similar between the 
areas, plant density in the cerrado stricto sensu 
is higher, and at certain periods of the day the 
individuals can be shaded. This does not occur in the 
campo cerrado, where shorter herbaceous species 
predominate. The shading of L. origanoides plants in 
the cerrado stricto sensu may be related to the lower 
glandular density of their leaves, since plants under 
more intense radiation tend to have higher glandular 

density as a protective mechanism (Gianfagna et al. 
1992, Pérez-Estrada et al. 2000). In addition, the 
higher density of glandular trichomes on leaves of 
L. origanoides plants in the campo cerrado may be 
related to the higher altitude of this area. 

The influence of altitude on the abundance 
of glandular structures was evaluated by Sheue et 
al. (2003), who found a higher density of internal 
glands in individuals of Pinus taiwanensis in 
middle altitudes (1000 to 2500 m), in comparison 
with plants at lower (700 m) or higher (3000 m) 
altitudes. According to the authors, variation in 
the number of glands can result from genetic and 
environmental interactions. This suggests that 
variations in the glandular density in individuals 
of L. origanoides growing in the campo cerrado 
and the cerrado stricto sensu may result from 
interactions between environmental or micro-
environmental factors and genetic factors. 

Although the glandular density differed in 
leaves from individuals of L. origanoides living 
in the campo cerrado and in the cerrado stricto 
sensu, the yields of essential oil from plants living 
in the two environments were similar. This may 
be related to the mixed chemical nature of the 
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secretion produced by the glandular trichomes of L. 
origanoides. Besides lipid substances, Tozin et al. 
(2015), using histochemical methods, detected the 
presence of polysaccharides, phenolic compounds, 
proteins, and alkaloids, among others, in the glandular 
trichomes of this species. The mixed nature of the 
secretion produced by the trichomes is an aspect 
common to other Lippia species (Argyropoulou et 
al. 2010, Combrinck et al. 2007). Tozin et al. (2015)
demonstrated that not all morphotypes of glandular 
trichomes of L. origanoides produce essential oils. 
Therefore, the more-abundant glandular trichomes 
in leaves in individuals from the campo cerrado are 
probably not secretors of essential oils. We can still 
suggest that under the environmental conditions 
of the campo cerrado there is a higher investment 
in the production of other types of substances by 
the glandular trichomes, and this provides greater 
protection against high light intensity and lower 
relative humidity. Hydrophilic substances can act 
as a lubricant in dry environments and facilitate leaf 
expansion (Ascensão et al. 1999). In Lippia species, 
phenolic compounds are abundant and variable in 
constitution (Pascual et al. 2001), and may help to 
protect against intense UV-B radiation resulting from 
greater exposure to sunlight (Liakoura et al. 1997).

Our results also showed that L. origanoides 
inflorescences had a higher density of glandular 
trichomes and produced a higher yield of essential 
oils in comparison to the leaf blades of individuals 
in the same environment. These data contrast 
with studies on other species, which reported 
a low yield of essential oils in flowers and 
inflorescences in comparison to leaves (Bassole 
et al. 2005, Parra-Gárces et al. 2010), and can 
be related to the different roles of these glands 
in reproductive organs (Ascensão et al. 1999, 
Paiva and Martins 2011). We suggest that in L. 
origanoides, the trichomes in the inflorescences 
are mainly involved in the production of large 
amounts of essential oils that play an important 
role in protecting the reproductive organs against 

herbivores and pathogens (Stökl et al. 2010). In 
addition, several terpenes can be reused in the 
plant metabolism (Harborne 1988), acting as 
precursors in the synthesis of hormones such as 
flowering hormones (Danilova and Kashina 1987, 
Roshchina and Roshchina 1993).

Chemical analysis of the essential oils in leaves 
and inflorescences of L. origanoides revealed a 
wide variation in the chemical composition of 
the essential oil among the individuals in each 
area. This may be related to genetic variability 
among individuals from these populations. Catalan 
and Lampasona (2002) found that intraspecific 
variations in the chemical composition of essential 
oils are common in species of Lippia. 

Studies with L. origanoides (sensu lato) 
individuals have presented widely divergent 
chemical profiles. Thymol, carvacrol and p-cymene 
have been reported as the majority compounds 
(Cavalcanti et al. 2010, Oliveira et al. 2007, 
Stashenko et al. 2010, 2013). However, in this 
study, thymol and carvacrol were not found, while 
p-cymene was detected in small quantities. These 
findings are in accordance with the information 
reported by Rodrigues et al. (2011) and Stashenko 
et al. (2010), who demonstrated very divergent 
chemical profiles in this species. The wide variety of 
chemotypes found in L. origanoides may be a factor 
of the synonymization proposed by O’Leary et al. 
(2012); in a revision of the Goniostachyum section 
of Lippia, the authors synonymized 41 species into 
only four. The taxon that is presently known as L. 
origanoides results from the synonymization of 28 
taxa that were formerly considered to be separate 
species (O’Leary et al. 2012). 

In some individuals of L. origanoides, α-pinene 
was found in large quantities in the inflorescences. 
This may be associated with the known role of 
this substance in attracting pollinators (Stökl et 
al. 2010). However, the inflorescences of some 
L. origanoides individuals did not contain this 
compound in large quantities, perhaps because of 
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phenological differences among the individuals. 
Studies indicate that some compounds, such as 
carvone, limonene and ß-pinene (Bicas et al. 2008) 
can volatilize or be utilized as precursors in the 
formation of other substances after the anthesis 
(Parra-Garcés et al. 2010, Stökl et al. 2010).

Trans-caryophyllene and α-humulene were 
among the major compounds in leaves and 
inflorescences from several individuals. These 
substances show several important biological 
activities, including anti-inflammatory, analgesic, 
and others (Fernandes et al. 2007, Sabulal et al. 
2006), and they are used to manufacture soaps, 
detergents and food products (Standen et al. 2006). 

Individual number 3 from the campo cerrado, 
situated on an ant colony, diverged most widely from 
the others in oil yield and chemical composition; 
only this individual contained 1,8-cineole as the 
major compound, in both the inflorescences (52.2%) 
and the leaves (58.2%). The abundant production of 
this substance can be related to ant attacks on this 
individual, since 1,8-cineole is toxic to herbivorous 
insects (Prates et al. 1998, Sukontason et al. 2004). 
This toxic substance penetrates the insect body via 
the respiratory or digestive system, and is lethal to 
several animal species (Sukontason et al. 2004). 

These findings evidenced the occurrence of 
variability in the glandular density in leaves of L. 
origanoides plants living in different areas. Our data 
demonstrated the chemical plasticity of this species, 
which can produce essential oils with differential 
chemical composition in distinct environments and 
evidenced the differential answers between leaves 
and inflorescences in a same individual. In view 
of this plasticity, the use of this species should be 
better monitored, particularly in popular medicine.
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RESUMO

Os óleos essenciais de folhas e inflorescências de Lippia 
origanoides Kunth apresentam potencial aromático e 
medicinal e têm sido utilizados no tratamento de diversas 
doenças, incluindo melanoma. No Brasil, L. origanoides 
é comumente encontrada no campo cerrado e no cerrado 
stricto sensu, fisionomias caracterizadas principalmente 
pelas diferentes condições de luminosidade às quais 
as plantas de médio e pequeno porte estão sujeitas. 
Nosso objetivo foi investigar a densidade de tricomas 
glandulares e o rendimento e a composição química 
do óleo essencial em folhas e inflorescências de L. 
origanoides do campo cerrado e do cerrado stricto 
sensu. Para análise de densidade glandular, folhas e 
inflorescências foram processadas segundo técnicas 
convencionais em microscopia eletrônica de varredura. 
Os óleos essenciais de folhas e inflorescências foram 
obtidos por hidrodestilação e identificados com 
cromatografia gasosa. Brácteas e sépalas mostraram a 
maior densidade glandular, seguidas por pétalas e folhas. 
A densidade glandular na face abaxial do limbo foliar 
foi maior em indivíduos do campo cerrado. Em ambas 
as fisionomias, o rendimento de óleos essenciais foi 
maior nas inflorescências em comparação com folhas. 
A composição química dos óleos essenciais variou entre 
os indivíduos de diferentes áreas e entre indivíduos da 
mesma população. Nossos resultados demonstraram 
a plasticidade química de L. origanoides sugerindo a 
importância do monitoramento de seu uso popular.

Palavras-chave: campo cerrado, cerrado stricto sensu, 
glândulas externas, terpenos.
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