Acessibilidade / Reportar erro

Sex chromosomes in the Vizcacheras’ White-lipped frog, Leptodactylus bufonius (Anura, Leptodactylidae)

Abstract

Cytogenetic analyses were performed on specimens of Leptodactylus bufonius from different localities in Argentina. Mitotic chromosomes were studied with Giemsa and differential staining techniques (Ag-NOR, C-banding, and CMA3/DAPI) and fluorescence in situ hybridization with the 18S DNAr probe. All specimens showed karyotypes with 2n = 2x = 22 and FN = 44. Secondary constrictions were present in the long arm of chromosome pair 8, coincident with Ag-NOR and hybridization signals of the 18S DNAr probe. The C-banding technique evidenced an important amount of heterochromatin with a sex-linked pericentromeric band in the short arm of chromosome pair 4. This heterochromatic band was heteromorphic in males but present in both homologues of females, and it was CMA3 positive (DAPI negative) at fluorescence staining. The occurrence of heteromorphic XY sex chromosomes in L. bufonius is the second known case in Leptodactylus and the fifth within the speciose family Leptodactylidae.

Key words
C-banding; cytogenetics; heterochromatin; heteromorphism; XY

INTRODUCTION

The diverse and complex ways of sex determination among different vertebrate taxa constitute an interesting research field that is currently focused on revealing genes and mechanisms involved, as well as chromosome locations (Bull 1983BULL J. 1983. Evolution of sex determining mechanisms. San Francisco: The Benjamin/Cummings Publishing Company, 316 p., Valenzuela 2008VALENZUELA N. 2008. Sexual development and the evolution of sex determination. Sex Dev 2(2): 64-72.). To date, this is a poorly studied topic in Anura, and those species with already identified sex chromosomes are just a small proportion as compared with other vertebrate orders (Miura 2017MIURA I. 2017. Sex determination and sex chromosomes in Amphibia. Sex Dev 11(5-6): 298-306.). Besides, the characteristics of such phenomena and associated evolutionary histories are barely known (Schmid 1983SCHMID M. 1983. Evolution of sex chromosomes and heterogametic systems in Amphibia. In: MECHANISMS OF GONADAL DIFFERENTIATION IN VERTEBRATES. Berlin: Springer, p. 13-22., Schmid et al. 2010SCHMID M, STEINLEIN C, BOGART JP, FEICHTINGER W, LEÓN P, LA MARCA E, DIAZ LM, SANZ A, CHEN SH & HEDGES SB. 2010. The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogenet Genome Res 568: 130-131., Uno et al. 2015UNO Y, NISHIDA C, TAKAGI C, IGAWA T, UENO N, SUMIDA M & MATSUDA Y. 2015. Extraordinary diversity in the origins of sex chromosomes in anurans inferred from comparative gene mapping. Cytogenet Genome Res 145(3-4): 218-229.).

However, an extraordinary variety of sex chromosome systems were described in anurans (Odierna et al. 2007ODIERNA G, APREA G, CAPRIGLIONE T, CASTELLANO S & BALLETTO E. 2007. Cytological evidence for population-specific sex chromosome heteromorphism in Palaearctic green toads (Amphibia, Anura). J Biosci 32(4): 763-768., Nascimento et al. 2010NASCIMENTO J, QUINDERÉ YRSD, RECCO-PIMENTEL SM, LIMA JRF & LOURENÇO LB. 2010. Heteromorphic Z and W sex chromosomes in Physalaemus ephippifer (Steindachner, 1864) (Anura, Leiuperidae). Genetica 138(11-12): 1127-1132., Schmid et al. 2010SCHMID M, STEINLEIN C, BOGART JP, FEICHTINGER W, LEÓN P, LA MARCA E, DIAZ LM, SANZ A, CHEN SH & HEDGES SB. 2010. The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogenet Genome Res 568: 130-131., Saba & Tripathi 2014SABA N & TRIPATHI NK. 2014. Preliminary cytogenetic study and report of ZZ/ZW sex chromosomes in the bullfrog, Hoplobatrachus tigerinus (Anura, Amphibia) from high altitude area of Jammu and Kashmir, India. Nucleus 57(1): 55-59., Patawang et al. 2014PATAWANG I, TANOMTONG A, PHIMPHAN S, CHUAYNKERN Y, CHUAYNKERN C, PHAENGPHAIREE P, KHRUEANET W & NITHIKULWORAWONG N. 2014. The Identification of Sex-Chromosomes and Karyological Analysis of Rice Frog, Fejervarya limnocharis (Anura, Ranidae) from Northeast Thailand. Cytologia 79(2): 141-150., Gazoni et al. 2018GAZONI T, HADDAD CFB, NARIMATSU H, CABRAL-DE-MELLO DC, LYRA ML & PARISE-MALTEMPI PP. 2018. More sex chromosomes than autosomes in the Amazonian frog Leptodactylus pentadactylus. Chromosoma 127(2): 269-278., Sangpakdee et al. 2017SANGPAKDEE W, PIMPHAN S, TENGJAROENKUL B, PINTHONG K, NEERATANAPHAN L & TANOMTONG A. 2017. Cytogenetic study of three microhylid species (Anura, Microhylidae) from Thailand. Cytologia 82(1): 67-74.). While most species show simple heteromorphic chromosomes (XY, ZW), there are also complex mechanisms, as W0 founded in Leiopelma hochstetteri (Green 1988GREEN DM. 1988. Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97(1): 55-70.) or the multiple sex chromosomes observed in Leptodactylus pentadactylus (Gazoni et al. 2018GAZONI T, HADDAD CFB, NARIMATSU H, CABRAL-DE-MELLO DC, LYRA ML & PARISE-MALTEMPI PP. 2018. More sex chromosomes than autosomes in the Amazonian frog Leptodactylus pentadactylus. Chromosoma 127(2): 269-278.). Other extreme examples are Xenopus tropicalis (Roco et al. 2015ROCO ÁS, OLMSTEAD AW, DEGITZ SJ, AMANO T, ZIMMERMAN LB & BULLEJOS M. 2015. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc Natl Acad Sci 112(34): E4752-E4761.) and Glandirana rugosa (Miura & Ogata 2013MIURA I & OGATA M. 2013. Change of heterogametic sex from male to female: Why so easy in the frog? Chromosome Sci 16 (1-2): 3-9.), in which different sex-determining systems coexist: XY, ZW, and non-differentiated sex chromosomes. Moreover, sex chromosome polymorphisms were also observed in Gastrotheca pseustes, with two different Y-chromosome morphs (Schmid et al. 1990SCHMID M, STEINLEIN C, FRIEDL R, DE ALMEIDA CG, HAAF T, HILLIS DM & DUELLMAN WE. 1990. Chromosome banding in Amphibia XV. Two types of Y chromosomes and heterochromatin hypervariabilty in Gastrotheca pseustes (Anura, Hylidae). Chromosoma 99(6): 13-423.). The impressive variation of sex determination systems in anurans, also reported at different morphological differentiation stages, makes this group an excellent target for studying sex chromosomes origin and evolution in vertebrates.

Most sex chromosomes already identified in anuran amphibians are microscopically indistinguishable (homomorphic) when they are studied with conventional staining techniques (Hillis & Green 1990HILLIS DM & GREEN DM. 1990. Evolutionary changes of heterogametic sex in the phylogenetic history of amphibians. J Evol Biol 3(1-2): 49-64., Schmid 1983SCHMID M. 1983. Evolution of sex chromosomes and heterogametic systems in Amphibia. In: MECHANISMS OF GONADAL DIFFERENTIATION IN VERTEBRATES. Berlin: Springer, p. 13-22., Schmid & Steinlein 2001SCHMID M & STEINLEIN C. 2001. Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class Amphibia. In: GENES AND MECHANISMS IN VERTEBRATE SEX DETERMINATION. Basel: Birkhäuser, p. 143-176., Eggert 2004EGGERT C. 2004. Sex determination: the amphibian models. Reprod Nutr Dev 44(6): 539-549.). Because of this, some researchers employed traditional cytogenetic markers such as C-bands, Ag-NOR, replication banding patterns, and DNA base-specific fluorochromes (see Schmid et al. 2010SCHMID M, STEINLEIN C, BOGART JP, FEICHTINGER W, LEÓN P, LA MARCA E, DIAZ LM, SANZ A, CHEN SH & HEDGES SB. 2010. The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogenet Genome Res 568: 130-131. for a review). More recently, modern molecular cytogenetic techniques like comparative genomic hybridization and chromosome mapping of repetitive sequences with fluorescent in situ hybridization have been used (Abramyan et al. 2009ABRAMYAN J, EZAZ T, GRAVES JAM & KOOPMAN P. 2009. Z and W sex chromosomes in the cane toad (Bufo marinus). Chromosome Res 17(8): 1015-1024., Vittorazzi et al. 2014VITTORAZZI SE, LOURENÇO LB & RECCO-PIMENTEL SM. 2014. Long-time evolution and highly dynamic satellite DNA in leptodactylid and hylodid frogs. BMC Genet 15(1): 111., Gatto et al. 2016GATTO KPG, BUSIN CS & LOURENÇO LB. 2016. Unraveling the sex chromosome heteromorphism of the paradoxical frog Pseudis tocantins. PloS ONE 11(5): e0156176., 2018GATTO KPG, MATTOS JV, SEGER KR & LOURENÇO LB. 2018. Sex chromosome differentiation in the frog genus Pseudis involves satellite DNA and chromosome rearrangements. Front Genet 9: 301., 2019GATTO KPG, SEGER KR, GARCIA PCDA & LOURENÇO LB. 2019. Satellite DNA Mapping in Pseudis fusca (Hylidae, Pseudinae) Provides new insights into sex chromosome evolution in paradoxical frogs. Genes 10(2): 160.).

Heterogametic Y or W chromosomes that are morphologically identical to their counterparts (X and Z, respectively) would indicate that they still did not develop supramolecular evident differences at the chromosomal level, representing a primitive stage of evolution of the sex chromosomes (Schmid 1990, Schartl et al. 2016SCHARTL M, SCHMID M & NANDA I. 2016. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 125(3): 553-571.). It has been suggested that this feature could be related to the dynamics of sex-determining genes when they fail to be anchored to a specific chromosome, determining a continuous process of replacement called “turnover of sex-determining genes and sex chromosomes” (Schartl 2004SCHARTL M. 2004. Sex chromosome evolution in non-mammalian vertebrates. Curr Opin Genet Dev 14(6): 634-641., Sarre et al. 2011SARRE SD, EZAZ T & GEORGES A. 2011. Transitions between sex-determining systems in reptiles and amphibians. Annu Rev Genomics Hum Genet 12: 391-406., Miura 2017MIURA I. 2017. Sex determination and sex chromosomes in Amphibia. Sex Dev 11(5-6): 298-306.). Furthermore, other processes could be responsible for the prevalence of homomorphic sex chromosomes in anurans like the “fountain of youth” hypothesis (Perrin 2009PERRIN N. 2009. Sex reversal: a fountain of youth for sex chromosomes? Evolution Int J Org Evolution 63(12): 3043-3049.), in which occasional sex reversion events may occur (XY females or ZW males), enhancing the recombination in sex-specific regions and preventing the accumulation of deleterious mutations.

The family Leptodactylidae currently comprises 231 species (Frost 2021FROST DR. 2021. Amphibian Species of the World: an Online Reference. Version 6.0 (14 March). Available from: <http://research.amnh.org/herpetology/amphibia/index.html>. American Museum of Natural History, New York, USA.
http://research.amnh.org/herpetology/amp...
), distributed in three subfamilies: Leptodactylinae, Leiuperinae, and Paratelmatobiinae. Within the first, the Neotropical genus Leptodactylus is a natural group of 82 currently recognized species (Frost 2021FROST DR. 2021. Amphibian Species of the World: an Online Reference. Version 6.0 (14 March). Available from: <http://research.amnh.org/herpetology/amphibia/index.html>. American Museum of Natural History, New York, USA.
http://research.amnh.org/herpetology/amp...
), clustered in the L. fuscus, L. latrans, L. melanonotus, and L. pentadactylus groups (Heyer 1969HEYER WR. 1969. The adaptive ecology of the species groups of the genus Leptodactylus (Amphibia, Leptodactylidae). Evolution 23: 421-428.). Leptodactylus bufonius of the L. fuscus group is one of the most abundant species in the semi-arid environments of the American Gran Chaco, and surrounding areas in northern Argentina, Paraguay, southeastern Bolivia, and the states of Mato Grosso and Mato Grosso do Sul in central Brazil (Heyer 1978HEYER WR. 1978. Systematics of the fuscus group of the frog genus Leptodactylus (Amphibia, Leptodactylidae). Nat Hist Mus Los Angel Cty Sci Ser 29: 1-85., Schalk & Leavitt 2017SCHALK CM & LEAVITT DJ. 2017. Leptodactylus bufonius. Cat Am Amphib Reptil 905: 1-22., Brusquetti et al. 2019BRUSQUETTI F, NETTO F, BALDO D & HADDAD CBF. 2019. The influence of Pleistocene glaciations on Chacoan fauna: genetic structure and historical demography of an endemic frog of the South American Gran Chaco. Biol J Linn Soc 126: 404-416.). Like other species of the L. fuscus group, L. bufonius presents burrowing habits, and males build subterranean chambers in moist soil near streams or ponds for the incubating foam nests produced during amplexus (Gallardo 1964GALLARDO JM. 1964. “Leptodactylus prognathus” Boul. y” L. mystacinus”(Burm.) con sus respectivas especies Aliadas:(“Amphibia, Leptodactylidae” del grupo “Cavicola”). Rev Mus Argent Cienc Nat 9: 91-121., Maxson & Heyer 1988MAXSON LR & HEYER WR. 1988. Molecular systematics of the frog genus Leptodactylus (Amphibia: Leptodactylidae). Fieldiana Zool 41: 1-13., Ponssa 2008PONSSA ML. 2008. Cladistic analysis and osteological descriptions of the frog species in the Leptodactylus fuscus species group (Anura, Leptodactylidae). J Zool Syst Evol Res 46(3): 249-266., Faggioni et al. 2017FAGGIONI G, SOUZA F, UETANABARO M, LANDGREF-FILHO P, FURMAN J & PRADO C. 2017. Reproductive biology of the nest building vizcacheras frog Leptodactylus bufonius (Amphibia, Anura, Leptodactylidae), including a description of unusual courtship behaviour. Herpetol J 27: 73-80.).

There is a large amount of information about chromosome data in Leptodactylus that covers near half of its 82 recognized species, with a widespread characteristic karyotype of 2n = 2x = 22 and bi-armed chromosomes (FN = 44) (Brum-Zorrilla & Sáez 1968BRUM-ZORRILLA N & SÁEZ FA. 1968. Chromosomes of Leptodactylidae (Amphibia, Anura). Cell Mol Life Sci 24(9): 969., Bogart 1974BOGART JP. 1974. A karyosystematic study of frogs in the genus Leptodactylus (Anura: Leptodactylidae). Copeia 1974: 728-737., Heyer & Diment 1974HEYER WR & DIMENT MJ. 1974. The karyotype of Vanzolinius discodactylus and comments on usefulness of karyotypes in determining relationships in the Leptodactylus complex (Amphibia, Leptodactylidae). Proc Biol Soc Wash 87: 327-336., Silva et al. 2000SILVA APZ, HADDAD CFB & KASAHARA S. 2000. Chromosomal studies on five species of the genus Leptodactylus Fitzinger, 1826 (Amphibia, Anura) using differential staining. Cytobios 103(402): 25-38., 2004SILVA APZ, GARCIA PC, MARTINS VG, BACCI M & KASAHARA S. 2004. Chromosomal and molecular analyses of Leptodactylus gracilis gracilis, L. gracilis delattini, and L. plaumanni (Anura, Leptodactylidae): taxonomic implications. Amphib-Reptilia 25(2): 185-196., 2006, Amaro-Ghiraldi et al. 2004, 2006, Arruda & Morielle-Versute 2008ARRUDA MP & MORIELLE-VERSUTE E. 2008. Cytogenetic and random amplified polymorphic DNA analysis of Leptodactylus species from rural and urban environments (Anura, Amphibia). Genet Mol Res 7: 161-176., de Oliveira et al. 2012DE OLIVEIRA HHP, SOUZA CCN, RIBEIRO CL, BASTOS RP, DA CRUZ AD & SILVA DM. 2012. Citogenética Comparativa das Famílias Leptodactylidade e Hylidae do Cerrado Goiano. Estudos (Goiânia) 39(2): 123-131., Gazoni et al. 2018GAZONI T, HADDAD CFB, NARIMATSU H, CABRAL-DE-MELLO DC, LYRA ML & PARISE-MALTEMPI PP. 2018. More sex chromosomes than autosomes in the Amazonian frog Leptodactylus pentadactylus. Chromosoma 127(2): 269-278., 2021, de Oliveira et al. 2013DE OLIVEIRA B, MOARES MS, DERTÔNIO D, FARIA RG & PANTALEÃO SM. 2013. Cytogenetic study of Leptodactylus fuscus and L. latrans (Anura: Leptodactylidae) from the semi-arid Brazilian Caatinga scrublands. Phyllomedusa 12(2): 125-133., Coelho et al. 2016COELHO AC, DE MATTOS TL, VIANA P, TERENCIO ML, SCHNEIDER CH, MENIN M & GROSS MC. 2016. Intra-generic and interspecific karyotype patterns of Leptodactylus and Adenomera (Anura, Leptodactylidae) with inclusion of five species from Central Amazonia. Genetica 144(1): 37-46., Gonzalez et al. 2016). To date, there is a single report of chromosomic sex determination in these frogs, described in L. pentadactylus, with a mechanism involving multiple sex chromosomes (Gazoni et al. 2018GAZONI T, HADDAD CFB, NARIMATSU H, CABRAL-DE-MELLO DC, LYRA ML & PARISE-MALTEMPI PP. 2018. More sex chromosomes than autosomes in the Amazonian frog Leptodactylus pentadactylus. Chromosoma 127(2): 269-278.).

Cytogenetic studies in Leptodactylus bufonius are mainly restricted to the description of its diploid number, based only on few specimens of a small portion of its geographic distribution in Argentina (Barbieri 1950BARBIERI FD. 1950. Observaciones sobre los cromosomas y espermatozoides en algunos batracios del género “Leptodactylus”. Acta Zool Lilloana 9: 455-463., Brum-Zorrilla & Sáez 1968BRUM-ZORRILLA N & SÁEZ FA. 1968. Chromosomes of Leptodactylidae (Amphibia, Anura). Cell Mol Life Sci 24(9): 969., Bogart 1974BOGART JP. 1974. A karyosystematic study of frogs in the genus Leptodactylus (Anura: Leptodactylidae). Copeia 1974: 728-737., Heyer & Diment 1974HEYER WR & DIMENT MJ. 1974. The karyotype of Vanzolinius discodactylus and comments on usefulness of karyotypes in determining relationships in the Leptodactylus complex (Amphibia, Leptodactylidae). Proc Biol Soc Wash 87: 327-336.). In the present study, we make a thorough characterization of cytogenetics in this species with the aid of different banding techniques in specimens from several localities in Argentina. We also describe a new case of heteromorphic sex chromosomes in Anura, which constitutes the second known in the genus Leptodactylus.

MATERIALS AND METHODS

We analyzed 41 specimens of Leptodactylus bufonius (21 males, 20 females; Fig. 1, details in Appendix). Mitotic metaphases were obtained from cell suspensions of bone marrow and intestinal epithelium, using the protocol described by Schmid et al. (2010)SCHMID M, STEINLEIN C, BOGART JP, FEICHTINGER W, LEÓN P, LA MARCA E, DIAZ LM, SANZ A, CHEN SH & HEDGES SB. 2010. The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogenet Genome Res 568: 130-131.. Slides were conventionally stained with 10% phosphate-buffered Giemsa (pH 6.8). The nucleolar organizer regions (NORs) were detected by Ag-NOR staining according to Howell & Black (1980)HOWELL WT & BLACK DA. 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Cell Mol Life Sci 36(8): 1014-1015. and by fluorescent in situ hybridization (FISH) with the ribosomal 18S biotinylated probe (Pinkel et al. 1986PINKEL D, STRAUME T & GRAY JW. 1986. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci 83(9): 2934-2938.). Location of heterochromatin was determined using standard C-banding technique (Sumner 1972SUMNER AT. 1972 A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304-306.), and the composition of heterochromatic AT-rich and GC-rich bands was evidenced, respectively, with the fluorochromes DAPI (4’, 6-diamidino-2-phenylindole) and CMA3 (Chromomycin A3) (Schweizer 1976SCHWEIZER D. 1976. Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58(4): 307-324.). Karyotypes were arranged in decreasing size, according to the nomenclature proposed by Green & Sessions (1991GREEN DM & SESSIONS SK. 1991. Nomenclature for chromosomes. In: AMPHIBIAN CYTOGENETICS AND EVOLUTION. Green DM and Sessions SK (Eds). San Diego: Academic Press, p. 431-432., 2007GREEN DM & SESSIONS SK. 2007. Karyology and cytogenetics. Amphibian Biology 7: 2756-2841.). Assessment of chromosome size and morphology was performed with DRAWID v0.26 software (Kirov et al. 2017KIROV I, KHRUSTALEVA L, VAN LAERE K, SOLOVIEV A, MEEUS S, ROMANOV D & FESENKO I. 2017. DRAWID: user-friendly java software for chromosome measurements and idiogram drawing. Comp Cytogenet 11(4): 747-757.).

Figure 1
Sampling localities of Leptodactylus bufonius analyzed.

RESULTS

The karyotype of Leptodactylus bufonius is composed of 11 pairs of bi-armed chromosomes (2n = 2x = 22; FN = 44), arranged in seven pairs of large and medium-sized chromosomes and four small ones. Pairs 1, 2, 5, 6, 8–11 are metacentric, pair 3 is submetacentric, whereas pairs 4 and 7 are subtelocentric (Fig. 2; Table I). NOR sites were identified in the interstitial region of the long arm of both homologues of pair 8 (Fig. 3), according to silver staining and hybridization signals of the 18S DNAr after FISH experiments, in coincidence with secondary constrictions.

Figure 2
Karyotypes of Leptodactylus bufonius. Female. Conventional staining (a) and C-banding (b). Male. Conventional staining (c) and C-banding (d). Sex chromosomes (pairs 4) are shown in boxes. Bar = 5 µm.
Figure 3
NOR-bearing chromosomes pair in Leptodactylus bufonius (pair 8), characterized by Ag-NOR (a), CMA3 (b), DAPI (c), 18s DNAr probe (d). Bar = 5 µm.
Table I
Chromosome morphology in Leptodactylus bufonius. Abbreviations: % set = percentage of total complement; CI = centromeric index; SD = standard deviation; M = metacentric; SM = submetacentric; ST = subtelocentric.

The C-banding pattern revealed heterochromatin in the centromeric region of all chromosomes, with a large number of additional heterochromatic bands (Fig. 2b and d). Interstitial C-bands were observed on the short arm of pairs 1, 2, 5, 6, 8, and 9, and on the long arm of pairs 3, 5–9, with a conspicuous heterochromatic band on both arms of pair 6. Pericentromeric C-bands were detected on the short arm of pair 7 and the long arm of pairs 4 and 10.

Chromosome pair 4 showed a pericentromeric C-band on the long arm of both homologues, although a sex-biased heteromorphism was observed for the presence of a pericentromeric C-band on the short arm of this pair. Over 25 specimens analyzed (14 males, 11 females), this C-band was present on both homologues in females but only in one of the homologues in males (Fig. 2, in boxes; Fig. 4).

Figure 4
Ideogram and sex chromosomes (pairs 4) from five females (a) and five males (b) of Leptodactylus bufonius, after C-banding.

Additionally, three other polymorphic variations in the C-banding pattern were detected in individuals of both sexes and from different localities, without defined geographical patterns (Fig. 5). First, a polymorphism for the presence of an interstitial C-band was identified in chromosome pair 2. This condition was detected in homozygosis in a male (LGE 12949; Fig. 5a) and in heterozygosis in three males (LGE 12163, LGE 12948, and LGE 13439; Fig. 5b) and two females (LGE 12046 and LGE 13437). The remaining specimens did not present interstitial bands in this pair (homozygous condition, without bands; Fig. 5c). A second polymorphism was detected for the presence of an additional interstitial C-band on the short arm of pair 6, detected in homozygosis in four males (LGE 10085, LGE 12163, LGE 12949 and LGE 13439, Fig. 5d) and two females (LGE 9264 and LGE 10084). Finally, a polymorphism consisted of the presence of a pericentromeric band on the longs arms of pair 7, detected only in homozygosis in three males (LGE 12944, LGE 13264, and LGE 13391; Fig. 5f) and three females (LGE 8098, LGE 9264, and LGE 10084) of the sample.

Figure 5
Chromosome polymorphisms for the presence of additional C-bands in Leptodactylus bufonius. Polymorphic C-bands in homozygosis (a, d, and f), heterozygosis (b), and chromosomes without additional bands (c, e, and g). Bar = 5 µm.

The CMA3/DAPI fluorochromes staining evidenced CMA3 positive (DAPI negative) heterochromatin in the interstitial region of the short arms of pairs 1–6 and 8 (including the heteromorphic band in pair 4), in the long arms of pairs 3 and 5, 7–8, and in the pericentromeric region of pairs 4 (Fig. 6). The conspicuous heterochromatic band observed on the short arm of pair 6 was characterized as CMA3 negative and DAPI negative. A CMA3 positive (DAPI negative) bright fluorescent band was detected in the interstitial position of pair 8, in coincidence with secondary constrictions (Fig. 3b and c). Similarly, the heteromorphic band observed on pair 4 was characterized as CMA3 positive (DAPI negative). Although the CMA3 bands were conspicuous, the negative DAPI bands depended on the state of condensation of the chromosomes.

Figure 6
CMA3/DAPI banding patterns in Leptodactylus bufonius. Mitotic metaphases of a female (a, b) and male (c, d), stained with CMA3 and DAPI fluorochromes (left and right, respectively). Sex chromosomes are indicated with arrows. Bar = 5 µm.

DISCUSSION

The 2n = 2x = 22 and FN = 44 reported here for Leptodactylus bufonius agrees with previous data (Barbieri 1950BARBIERI FD. 1950. Observaciones sobre los cromosomas y espermatozoides en algunos batracios del género “Leptodactylus”. Acta Zool Lilloana 9: 455-463., Brum-Zorrilla & Sáez 1968BRUM-ZORRILLA N & SÁEZ FA. 1968. Chromosomes of Leptodactylidae (Amphibia, Anura). Cell Mol Life Sci 24(9): 969., Bogart 1974BOGART JP. 1974. A karyosystematic study of frogs in the genus Leptodactylus (Anura: Leptodactylidae). Copeia 1974: 728-737., Heyer & Diment 1974HEYER WR & DIMENT MJ. 1974. The karyotype of Vanzolinius discodactylus and comments on usefulness of karyotypes in determining relationships in the Leptodactylus complex (Amphibia, Leptodactylidae). Proc Biol Soc Wash 87: 327-336.), and the morphology of chromosomes is in concordance with that reported by Bogart (1974, Fig. 2). The 2n = 2x = 22 is the widespread chromosome number in Leptodactylidae (Tomatis et al. 2009TOMATIS C, BALDO D, KOLENC F & BORTEIRO C. 2009. Chromosomal variation in the species of the Physalaemus henselii group (Anura: Leiuperidae). J Herpetol 43(3): 555-561., Targueta et al. 2010TARGUETA CP, RIVERA M, SOUZA MB, RECCO-PIMENTEL SM & LOURENÇO LB. 2010. Cytogenetic contributions for the study of the Amazonian Engystomops (Anura; Leiuperidae) assessed in the light of phylogenetic relationships. Mol Phylogenet Evol 54(3): 709-725., Gazoni et al. 2012GAZONI T, GRUBER SL, SILVA APZ, ARAÚJO OGS, NARIMATSU H, STRÜSSMANN C, HADDAD CFB & KASAHARA S. 2012. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations. BMC Genet 13(1): 109., Vittorazzi et al. 2014VITTORAZZI SE, LOURENÇO LB & RECCO-PIMENTEL SM. 2014. Long-time evolution and highly dynamic satellite DNA in leptodactylid and hylodid frogs. BMC Genet 15(1): 111., Lourenço et al. 2015LOURENÇO LB, TARGUETA CP, BALDO D, NASCIMENTO J, GARCIA PC, ANDRADE GV, HADDAD CFB & RECCO-PIMENTEL SM. 2015. Phylogeny of frogs from the genus Physalaemus (Anura, Leptodactylidae) inferred from mitochondrial and nuclear gene sequences. Mol Phylogenet Evol 92: 204-216., Cardozo et al. 2016CARDOZO DE, BOERIS JM, FERRO JM, BORTEIRO C, KOLENC F, SUÁREZ P, NETTO F, BRUSQUETTI F & BALDO D. 2016. Evidence for independent instances of chromosome number reduction in the genus Pseudopaludicola (Anura: Leptodactylidae). Salamandra 52(1): 11-22. and cites therein), and could be considered the plesiomorphic condition for Leptodactylus. In this genus, 34 species have been cytogenetically analyzed (Brum-Zorrilla & Sáez 1968BRUM-ZORRILLA N & SÁEZ FA. 1968. Chromosomes of Leptodactylidae (Amphibia, Anura). Cell Mol Life Sci 24(9): 969., Bogart 1974BOGART JP. 1974. A karyosystematic study of frogs in the genus Leptodactylus (Anura: Leptodactylidae). Copeia 1974: 728-737., Heyer & Diment 1974HEYER WR & DIMENT MJ. 1974. The karyotype of Vanzolinius discodactylus and comments on usefulness of karyotypes in determining relationships in the Leptodactylus complex (Amphibia, Leptodactylidae). Proc Biol Soc Wash 87: 327-336., Silva et al. 2000SILVA APZ, HADDAD CFB & KASAHARA S. 2000. Chromosomal studies on five species of the genus Leptodactylus Fitzinger, 1826 (Amphibia, Anura) using differential staining. Cytobios 103(402): 25-38., 2004, 2006, Amaro-Ghiraldi et al. 2004, 2006, Arruda & Morielle-Versute 2008ARRUDA MP & MORIELLE-VERSUTE E. 2008. Cytogenetic and random amplified polymorphic DNA analysis of Leptodactylus species from rural and urban environments (Anura, Amphibia). Genet Mol Res 7: 161-176., de Oliveira et al. 2012DE OLIVEIRA HHP, SOUZA CCN, RIBEIRO CL, BASTOS RP, DA CRUZ AD & SILVA DM. 2012. Citogenética Comparativa das Famílias Leptodactylidade e Hylidae do Cerrado Goiano. Estudos (Goiânia) 39(2): 123-131., Gazoni et al. 2012GAZONI T, GRUBER SL, SILVA APZ, ARAÚJO OGS, NARIMATSU H, STRÜSSMANN C, HADDAD CFB & KASAHARA S. 2012. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations. BMC Genet 13(1): 109., 2018, 2021, de Oliveira et al. 2013DE OLIVEIRA B, MOARES MS, DERTÔNIO D, FARIA RG & PANTALEÃO SM. 2013. Cytogenetic study of Leptodactylus fuscus and L. latrans (Anura: Leptodactylidae) from the semi-arid Brazilian Caatinga scrublands. Phyllomedusa 12(2): 125-133., Coelho et al. 2015, Gonzalez et al. 2016). Only two of them have a different basic chromosome number: L. brevipes (2n = 2x = 20; Gazoni et al. 2012GAZONI T, GRUBER SL, SILVA APZ, ARAÚJO OGS, NARIMATSU H, STRÜSSMANN C, HADDAD CFB & KASAHARA S. 2012. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations. BMC Genet 13(1): 109., 2021) and L. silvanimbus (2n = 2x = 24; Amaro-Ghiraldi et al. 2006), which would represent autapomorphic character states.

The information involving differential staining techniques in Leptodactylus bufonius is provided herein for the first time. NORs in the pair 8 of this species are in a similar position than most of the Leptodactylus already studied and is considered the plesiomorphic state in the genus (Silva et al. 2000SILVA APZ, HADDAD CFB & KASAHARA S. 2000. Chromosomal studies on five species of the genus Leptodactylus Fitzinger, 1826 (Amphibia, Anura) using differential staining. Cytobios 103(402): 25-38., Amaro-Ghilardi et al. 2004AMARO-GHILARDI RC, RODRIGUES MT & YONENAGA-YASSUDA Y. 2004. Chromosomal studies after differential staining and fluorescence in situ hybridization using telomeric probe in three Leptodactylus species (Leptodactylidae, Anura). Caryologia 57(1): 53-65., 2006, Arruda & Morielle-Versute 2008ARRUDA MP & MORIELLE-VERSUTE E. 2008. Cytogenetic and random amplified polymorphic DNA analysis of Leptodactylus species from rural and urban environments (Anura, Amphibia). Genet Mol Res 7: 161-176., de Oliveira et al. 2012DE OLIVEIRA HHP, SOUZA CCN, RIBEIRO CL, BASTOS RP, DA CRUZ AD & SILVA DM. 2012. Citogenética Comparativa das Famílias Leptodactylidade e Hylidae do Cerrado Goiano. Estudos (Goiânia) 39(2): 123-131., Gazoni et al. 2012GAZONI T, GRUBER SL, SILVA APZ, ARAÚJO OGS, NARIMATSU H, STRÜSSMANN C, HADDAD CFB & KASAHARA S. 2012. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations. BMC Genet 13(1): 109., Coelho et al. 2016COELHO AC, DE MATTOS TL, VIANA P, TERENCIO ML, SCHNEIDER CH, MENIN M & GROSS MC. 2016. Intra-generic and interspecific karyotype patterns of Leptodactylus and Adenomera (Anura, Leptodactylidae) with inclusion of five species from Central Amazonia. Genetica 144(1): 37-46.). The few known exceptions were observed in L. mystacinus (pair 4 or 8; Amaro-Ghilardi et al. 2006AMARO-GHILARDI RC, SKUK G, DE SÁ RO, RODRIGUES MT & YONENAGA-YASSUDA Y. 2006. Karyotypes of eight species of Leptodactylus (Anura, Leptodactylidae) with a description of a new karyotype for the genus. Phyllomedusa 5(2): 119-133., Silva et al. 2006SILVA APZ, HADDAD CFB, GALASSI GG & KASAHARA S. 2006. Multiple nucleolus organizer regions in Leptodactylus mystacinus (Amphibia, Anura) and comments on its systematic position in the L. fuscus group based on cytogenetic and molecular analyses. Genetica 127(1-3): 35-44.), L. natalensis (pair 7; Gazoni et al. 2021), L. petersii (pair 4; Amaro-Ghilardi et al. 2006AMARO-GHILARDI RC, SKUK G, DE SÁ RO, RODRIGUES MT & YONENAGA-YASSUDA Y. 2006. Karyotypes of eight species of Leptodactylus (Anura, Leptodactylidae) with a description of a new karyotype for the genus. Phyllomedusa 5(2): 119-133., Gazoni et al. 2012GAZONI T, GRUBER SL, SILVA APZ, ARAÚJO OGS, NARIMATSU H, STRÜSSMANN C, HADDAD CFB & KASAHARA S. 2012. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations. BMC Genet 13(1): 109., 2021), L. rhodomystax (pair 3; Gazoni et al. 2012GAZONI T, GRUBER SL, SILVA APZ, ARAÚJO OGS, NARIMATSU H, STRÜSSMANN C, HADDAD CFB & KASAHARA S. 2012. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations. BMC Genet 13(1): 109.), and L. brevipes (pair 4; Gazoni et al. 2012GAZONI T, GRUBER SL, SILVA APZ, ARAÚJO OGS, NARIMATSU H, STRÜSSMANN C, HADDAD CFB & KASAHARA S. 2012. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations. BMC Genet 13(1): 109., 2021).

The C-banding in Leptodactylus bufonius seems not to be typical of Leptodactylus, where karyotypes of the species usually bear poor amounts of heterochromatin (Silva et al. 2000SILVA APZ, HADDAD CFB & KASAHARA S. 2000. Chromosomal studies on five species of the genus Leptodactylus Fitzinger, 1826 (Amphibia, Anura) using differential staining. Cytobios 103(402): 25-38., 2006, Amaro-Ghilardi et al. 2004AMARO-GHILARDI RC, RODRIGUES MT & YONENAGA-YASSUDA Y. 2004. Chromosomal studies after differential staining and fluorescence in situ hybridization using telomeric probe in three Leptodactylus species (Leptodactylidae, Anura). Caryologia 57(1): 53-65.). Variation in the distribution of heterochromatic bands other than centromeric has only been reported for L. latrans (Silva et al. 2000SILVA APZ, HADDAD CFB & KASAHARA S. 2000. Chromosomal studies on five species of the genus Leptodactylus Fitzinger, 1826 (Amphibia, Anura) using differential staining. Cytobios 103(402): 25-38., Amaro-Ghilardi et al. 2004AMARO-GHILARDI RC, RODRIGUES MT & YONENAGA-YASSUDA Y. 2004. Chromosomal studies after differential staining and fluorescence in situ hybridization using telomeric probe in three Leptodactylus species (Leptodactylidae, Anura). Caryologia 57(1): 53-65.), L. fuscus (Silva et al. 2000SILVA APZ, HADDAD CFB & KASAHARA S. 2000. Chromosomal studies on five species of the genus Leptodactylus Fitzinger, 1826 (Amphibia, Anura) using differential staining. Cytobios 103(402): 25-38.), and L. petersii (Coelho et al. 2016COELHO AC, DE MATTOS TL, VIANA P, TERENCIO ML, SCHNEIDER CH, MENIN M & GROSS MC. 2016. Intra-generic and interspecific karyotype patterns of Leptodactylus and Adenomera (Anura, Leptodactylidae) with inclusion of five species from Central Amazonia. Genetica 144(1): 37-46.).

Furthermore, the C-banding technique evidenced the presence of a chromosome sex-determination system of the type XY in chromosome pair 4. In all analyzed females, this pair was indistinguishable regarding C-bands, while males presented a pericentromeric C-band in the short arm of only one of the homologues. Similar heteromorphisms in terms of the amount of heterochromatin were described for Gastrotheca walkeri and G. ovifera, and species of the genus Eupsophus, in which the Y chromosome lacks heterochromatin and differs in size with its homologue (Iturra & Veloso 1981ITURRA P & VELOSO A. 1981. Evidence for heteromorphic sex chromosomes in male amphibians (Anura: Leptodactylidae). Cytogenet Cell Genet 31(2): 108-110., Cuevas & Formas 1996CUEVAS CC & FORMAS JR. 1996. Heteromorphic sex chromosomes in Eupsophus insularis (Amphibia: Anura: Leptodactylidae). Chromosome Res 4(6): 467-470., Schmid et al. 2002SCHMID M, FEICHTINGER W, STEINLEIN C, NANDA I, MAIS C, HAAF T, VISBAL GARCIA R & FERNÁNDEZ BADILLO A. 2002. Chromosome banding in Amphibia XXII. Atypical Y chromosomes in Gastrotheca walkeri and Gastrotheca ovifera (Anura, Hylidae). Curr Opin Genet Dev 96(1-4): 228-238.).

According to several cytogenetic and molecular studies about the evolution of sex chromosomes, the morphological differentiation of heteromorphic sex chromosomes may initiate with heterochromatin accumulation (Ray-Chaudhuri et al. 1971RAY-CHAUDHURI SP, SINGH L & SHARMA T. 1971. Evolution of sex chromosomes and formation of W chromatin in snakes. Chromosoma 33: 239-251., Jones 1984JONES KW. 1984. The evolution of sex chromosomes and their consequences for the evolutionary process. In: CHROMOSOMES TODAY 8. Bennett MD, Gropp A and Wolf U (Eds). London: George Allen & Unwin, p. 241-255., Schmid & Steinlein 2001SCHMID M & STEINLEIN C. 2001. Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class Amphibia. In: GENES AND MECHANISMS IN VERTEBRATE SEX DETERMINATION. Basel: Birkhäuser, p. 143-176.). Therefore, Leptodactylus bufonius and other above-mentioned anuran species do not fit in this evolutionary model, as the Y or W chromosomes do not present large amounts of heterochromatin. To explain this, Schmid et al. (2002)SCHMID M, FEICHTINGER W, STEINLEIN C, NANDA I, MAIS C, HAAF T, VISBAL GARCIA R & FERNÁNDEZ BADILLO A. 2002. Chromosome banding in Amphibia XXII. Atypical Y chromosomes in Gastrotheca walkeri and Gastrotheca ovifera (Anura, Hylidae). Curr Opin Genet Dev 96(1-4): 228-238. suggested that the presence of a smaller amount of heterochromatin in chromosome Y compared to the chromosome X could be due to deletion rather than accumulation. They further suggest that the heterochromatinization of the Y or W chromosome is possibly not the only evolutionary way that originates the morphological differentiation of sex chromosomes. There are some examples in anurans that may confirm this assumption. For instance, in Rana japonica, there is a single block of heterochromatin in the pericentromeric region of the long arm of the X chromosome that is absent in the Y chromosome (Miura 1994MIURA I. 1994. Sex chromosome differentiation in the japanese brown frog, Rana japonica-1-Sex-related heteromorphism of the distribution pattern of constitutive heterochromatin in chromosome No. 4 of the Wakuya population. Zool Sci 11(6): 797-806.), and in Eupsophus migueli, the Y chromosome does not show heterochromatic regions at all (Iturra & Veloso 1989). Similarly, in the North American teiid lizard Aspidoscelis tigris there is less pericentromeric heterochromatin in the Y than the X chromosome (Bull 1978BULL J. 1978. Sex chromosome differentiation: an intermediate stage in a lizard. Can J Genet Cytol 20(2): 205-209.).

Among Leptodactylidae, there are only a few reported cases of sex chromosomes. In the Engystomops petersi species complex (as Physalaemus petersi in Lourenço et al. 1998LOURENÇO LB, RECCO-PIMENTEL SM & CARDOSO AJ. 1998. Polymorphism of the nucleolus organizer regions (NORs) in Physalaemus petersi (Amphibia, Anura, Leptodactylidae) detected by silver staining and fluorescence in situ hybridization. Chromosome Res 6(8): 621-628., 1999LOURENÇO LB, RECCO-PIMENTEL SM & CARDOSO AJ. 1999. Two karyotypes and heteromorphic sex chromosomes in Physalaemus petersi (Anura, Leptodactylidae). Can J Zool 77(4): 624-631., and Engystomops petersi and E. freibergi in Targueta et al. 2010TARGUETA CP, RIVERA M, SOUZA MB, RECCO-PIMENTEL SM & LOURENÇO LB. 2010. Cytogenetic contributions for the study of the Amazonian Engystomops (Anura; Leiuperidae) assessed in the light of phylogenetic relationships. Mol Phylogenet Evol 54(3): 709-725.), different types of heteromorphic XY chromosomes were detected. In this example, it is noteworthy that in some specimens from Acre, Brazil, the X chromosome contained interstitial heterochromatic segments, absent in the Y chromosomes, while in other individuals from the same population, a terminal NOR in the long arm of the Y chromosome can be observed. Furthermore, some individuals of this species from Puyo, Ecuador, only presented XY chromosomes with different morphology. In Physalaemus ephippifer, ZW chromosomes were identified by an additional segment, which comprises a distal NOR and an adjacent terminal C-band in the short arm of the W chromosome (Nascimento et al. 2010NASCIMENTO J, QUINDERÉ YRSD, RECCO-PIMENTEL SM, LIMA JRF & LOURENÇO LB. 2010. Heteromorphic Z and W sex chromosomes in Physalaemus ephippifer (Steindachner, 1864) (Anura, Leiuperidae). Genetica 138(11-12): 1127-1132.). Heteromorphic XY chromosomes were also described for Pseudopaludicola saltica (Duarte et al. 2010DUARTE TC, VEIGA-MENONCELLO ACP, LIMA JF, STRÜSSMANN C, DEL-GRANDE ML, GIARETTA AA, PEREIRA EG, ROSSA-FERES DC & RECCO-PIMENTEL SM. 2010. Chromosome analysis in Pseudopaludicola (Anura, Leiuperidae), with description of sex chromosomes XX/XY in P. saltica. Hereditas (Lund) 147(2): 43-52.). In Leptodactylus, sex chromosomes were confirmed only for L. pentadactylus (Gazoni et al. 2018GAZONI T, HADDAD CFB, NARIMATSU H, CABRAL-DE-MELLO DC, LYRA ML & PARISE-MALTEMPI PP. 2018. More sex chromosomes than autosomes in the Amazonian frog Leptodactylus pentadactylus. Chromosoma 127(2): 269-278.), which presents the largest number of sex chromosomes found among vertebrates. Males of this species show a chromosome ring consisting of 12 elements, resulting from multiple translocation events. Barale et al. (1990)BARALE GD, PINNA SENN E & LISANTI JA. 1990. Polimorfismo de bandas C ligado al sexo en Leptodactylus chaquensis (Anura Leptodactylidae). Rev UNRC 10(1): 51-53. also reported an XY system for L. macrosternum (as L. chaquensis) and proposed a sex heteromorphism regarding a pericentromeric C-band in the first chromosome pair. However, these results differ from those obtained by Gazoni et al. (2012)GAZONI T, GRUBER SL, SILVA APZ, ARAÚJO OGS, NARIMATSU H, STRÜSSMANN C, HADDAD CFB & KASAHARA S. 2012. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations. BMC Genet 13(1): 109., who ruled out the occurrence of sex chromosome differentiation in this species.

A recent phylogenetic analysis of Leptodactylus recovered L. bufonius as the sister taxon of L. troglodytes, L. cupreus, and L. mystacinus + L. apepyta, in a clade that is sister of all remaining species of the L. fuscus group (de Sá et al. 2014DE SÁ RO, GRANT T, CAMARGO A, HEYER WR, PONSSA ML & STANLEY E. 2014. Systematics of the Neotropical Genus Leptodactylus Fitzinger, 1826 (Anura: Leptodactylidae): Phylogeny, the relevance of non-molecular evidence, and species Accounts. S Am J Herpetol 9: S1-S128., Schneider et al. 2019SCHNEIDER RG, CARDOZO DE, BRUSQUETTI F, KOLENC F, BORTEIRO C, HADDAD C, BASSO NG & BALDO D. 2019. A new frog of the Leptodactylus fuscus species group (Anura: Leptodactylidae), endemic from the South American Gran Chaco. Peer J 7: e7869.). In this group, the C-banding pattern is known only for L. mystacinus, L. gracilis, L. plaumanni, L. fuscus, and L. notoaktites (Silva et al. 2000SILVA APZ, HADDAD CFB & KASAHARA S. 2000. Chromosomal studies on five species of the genus Leptodactylus Fitzinger, 1826 (Amphibia, Anura) using differential staining. Cytobios 103(402): 25-38., 2004, 2006, Arruda & Morielle-Versute 2008ARRUDA MP & MORIELLE-VERSUTE E. 2008. Cytogenetic and random amplified polymorphic DNA analysis of Leptodactylus species from rural and urban environments (Anura, Amphibia). Genet Mol Res 7: 161-176., de Oliveira et al. 2013DE OLIVEIRA B, MOARES MS, DERTÔNIO D, FARIA RG & PANTALEÃO SM. 2013. Cytogenetic study of Leptodactylus fuscus and L. latrans (Anura: Leptodactylidae) from the semi-arid Brazilian Caatinga scrublands. Phyllomedusa 12(2): 125-133.), in which sexual chromosomes have never been detected. The large number of Leptodactylus species of which C-banding patterns are unknown does not allow us to determine whether the presence of sex chromosomes in L. bufonius corresponds to an autapomorphy or if it is a more extended condition in the L. fuscus group or the entire genus.

In our study case, the use of conventional banding techniques was sufficient to detect an XY sex chromosome system in Leptodactylus bufonius. However, a more exhaustive characterization is necessary with more resolutive techniques like fluorescent in situ hybridization or comparative genome hybridization.

ACKNOWLEDGMENTS

The authors thank to the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and ANPCyT PICTs 2013-404, 2015-0813, 2015-0820, 2015-2381 and 2017-2437 for financial support. We also thank Claudio Borteiro for important observations in a first draft of the of the manuscript and Andrea Dallagnol, Mónica Soliz, Alberto Taffarel, Jimena Grosso, Grisel Navarro, Francisco Brusquetti, Orlando Escalante, Ana Sofía Duport Bru, Federico Marangoni, Julián Lescano, Emiliano Galli, María Laura Ponssa, María José Tulli, Claudio Borteiro, Daiana Paola Ferraro, Francisco Kolenc, Erica Kubish, Carina Nieto, Marcelo Tedros their help in the fieldwork and provision specimens.

REFERENCES

  • ABRAMYAN J, EZAZ T, GRAVES JAM & KOOPMAN P. 2009. Z and W sex chromosomes in the cane toad (Bufo marinus). Chromosome Res 17(8): 1015-1024.
  • AMARO-GHILARDI RC, RODRIGUES MT & YONENAGA-YASSUDA Y. 2004. Chromosomal studies after differential staining and fluorescence in situ hybridization using telomeric probe in three Leptodactylus species (Leptodactylidae, Anura). Caryologia 57(1): 53-65.
  • AMARO-GHILARDI RC, SKUK G, DE SÁ RO, RODRIGUES MT & YONENAGA-YASSUDA Y. 2006. Karyotypes of eight species of Leptodactylus (Anura, Leptodactylidae) with a description of a new karyotype for the genus. Phyllomedusa 5(2): 119-133.
  • ARRUDA MP & MORIELLE-VERSUTE E. 2008. Cytogenetic and random amplified polymorphic DNA analysis of Leptodactylus species from rural and urban environments (Anura, Amphibia). Genet Mol Res 7: 161-176.
  • BARALE GD, PINNA SENN E & LISANTI JA. 1990. Polimorfismo de bandas C ligado al sexo en Leptodactylus chaquensis (Anura Leptodactylidae). Rev UNRC 10(1): 51-53.
  • BARBIERI FD. 1950. Observaciones sobre los cromosomas y espermatozoides en algunos batracios del género “Leptodactylus”. Acta Zool Lilloana 9: 455-463.
  • BOGART JP. 1974. A karyosystematic study of frogs in the genus Leptodactylus (Anura: Leptodactylidae). Copeia 1974: 728-737.
  • BRUM-ZORRILLA N & SÁEZ FA. 1968. Chromosomes of Leptodactylidae (Amphibia, Anura). Cell Mol Life Sci 24(9): 969.
  • BRUSQUETTI F, NETTO F, BALDO D & HADDAD CBF. 2019. The influence of Pleistocene glaciations on Chacoan fauna: genetic structure and historical demography of an endemic frog of the South American Gran Chaco. Biol J Linn Soc 126: 404-416.
  • BULL J. 1978. Sex chromosome differentiation: an intermediate stage in a lizard. Can J Genet Cytol 20(2): 205-209.
  • BULL J. 1983. Evolution of sex determining mechanisms. San Francisco: The Benjamin/Cummings Publishing Company, 316 p.
  • CARDOZO DE, BOERIS JM, FERRO JM, BORTEIRO C, KOLENC F, SUÁREZ P, NETTO F, BRUSQUETTI F & BALDO D. 2016. Evidence for independent instances of chromosome number reduction in the genus Pseudopaludicola (Anura: Leptodactylidae). Salamandra 52(1): 11-22.
  • COELHO AC, DE MATTOS TL, VIANA P, TERENCIO ML, SCHNEIDER CH, MENIN M & GROSS MC. 2016. Intra-generic and interspecific karyotype patterns of Leptodactylus and Adenomera (Anura, Leptodactylidae) with inclusion of five species from Central Amazonia. Genetica 144(1): 37-46.
  • CUEVAS CC & FORMAS JR. 1996. Heteromorphic sex chromosomes in Eupsophus insularis (Amphibia: Anura: Leptodactylidae). Chromosome Res 4(6): 467-470.
  • DE OLIVEIRA B, MOARES MS, DERTÔNIO D, FARIA RG & PANTALEÃO SM. 2013. Cytogenetic study of Leptodactylus fuscus and L. latrans (Anura: Leptodactylidae) from the semi-arid Brazilian Caatinga scrublands. Phyllomedusa 12(2): 125-133.
  • DE OLIVEIRA HHP, SOUZA CCN, RIBEIRO CL, BASTOS RP, DA CRUZ AD & SILVA DM. 2012. Citogenética Comparativa das Famílias Leptodactylidade e Hylidae do Cerrado Goiano. Estudos (Goiânia) 39(2): 123-131.
  • DE SÁ RO, GRANT T, CAMARGO A, HEYER WR, PONSSA ML & STANLEY E. 2014. Systematics of the Neotropical Genus Leptodactylus Fitzinger, 1826 (Anura: Leptodactylidae): Phylogeny, the relevance of non-molecular evidence, and species Accounts. S Am J Herpetol 9: S1-S128.
  • DUARTE TC, VEIGA-MENONCELLO ACP, LIMA JF, STRÜSSMANN C, DEL-GRANDE ML, GIARETTA AA, PEREIRA EG, ROSSA-FERES DC & RECCO-PIMENTEL SM. 2010. Chromosome analysis in Pseudopaludicola (Anura, Leiuperidae), with description of sex chromosomes XX/XY in P. saltica. Hereditas (Lund) 147(2): 43-52.
  • EGGERT C. 2004. Sex determination: the amphibian models. Reprod Nutr Dev 44(6): 539-549.
  • FAGGIONI G, SOUZA F, UETANABARO M, LANDGREF-FILHO P, FURMAN J & PRADO C. 2017. Reproductive biology of the nest building vizcacheras frog Leptodactylus bufonius (Amphibia, Anura, Leptodactylidae), including a description of unusual courtship behaviour. Herpetol J 27: 73-80.
  • FROST DR. 2021. Amphibian Species of the World: an Online Reference. Version 6.0 (14 March). Available from: <http://research.amnh.org/herpetology/amphibia/index.html>. American Museum of Natural History, New York, USA.
    » http://research.amnh.org/herpetology/amphibia/index.html
  • GALLARDO JM. 1964. “Leptodactylus prognathus” Boul. y” L. mystacinus”(Burm.) con sus respectivas especies Aliadas:(“Amphibia, Leptodactylidae” del grupo “Cavicola”). Rev Mus Argent Cienc Nat 9: 91-121.
  • GATTO KPG, BUSIN CS & LOURENÇO LB. 2016. Unraveling the sex chromosome heteromorphism of the paradoxical frog Pseudis tocantins. PloS ONE 11(5): e0156176.
  • GATTO KPG, MATTOS JV, SEGER KR & LOURENÇO LB. 2018. Sex chromosome differentiation in the frog genus Pseudis involves satellite DNA and chromosome rearrangements. Front Genet 9: 301.
  • GATTO KPG, SEGER KR, GARCIA PCDA & LOURENÇO LB. 2019. Satellite DNA Mapping in Pseudis fusca (Hylidae, Pseudinae) Provides new insights into sex chromosome evolution in paradoxical frogs. Genes 10(2): 160.
  • GAZONI T ET AL. 2020. Revisiting the systematics of the Leptodactylus melanonotus group (Anura: Leptodactylidae): redescription of L. petersii and revalidation of its junior synonyms. Zool Anz 290: 117-134.
  • GAZONI T, GRUBER SL, SILVA APZ, ARAÚJO OGS, NARIMATSU H, STRÜSSMANN C, HADDAD CFB & KASAHARA S. 2012. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations. BMC Genet 13(1): 109.
  • GAZONI T, HADDAD CFB, NARIMATSU H, CABRAL-DE-MELLO DC, LYRA ML & PARISE-MALTEMPI PP. 2018. More sex chromosomes than autosomes in the Amazonian frog Leptodactylus pentadactylus. Chromosoma 127(2): 269-278.
  • GONZÁLEZ H, CORREA M, MÁRQUEZ M, MORENO A & BELLO Y. 2016. Cariotipo de Leptodactylus insularum (Anura: Leptodactilidae (Barbour, 1906) presente en un fragmento de bosque seco tropical de la región caribe colombiana. Rev Colombiana Cienc Anim Recia 8: 151-158.
  • GREEN DM. 1988. Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97(1): 55-70.
  • GREEN DM & SESSIONS SK. 1991. Nomenclature for chromosomes. In: AMPHIBIAN CYTOGENETICS AND EVOLUTION. Green DM and Sessions SK (Eds). San Diego: Academic Press, p. 431-432.
  • GREEN DM & SESSIONS SK. 2007. Karyology and cytogenetics. Amphibian Biology 7: 2756-2841.
  • HEYER WR. 1969. The adaptive ecology of the species groups of the genus Leptodactylus (Amphibia, Leptodactylidae). Evolution 23: 421-428.
  • HEYER WR. 1978. Systematics of the fuscus group of the frog genus Leptodactylus (Amphibia, Leptodactylidae). Nat Hist Mus Los Angel Cty Sci Ser 29: 1-85.
  • HEYER WR & DIMENT MJ. 1974. The karyotype of Vanzolinius discodactylus and comments on usefulness of karyotypes in determining relationships in the Leptodactylus complex (Amphibia, Leptodactylidae). Proc Biol Soc Wash 87: 327-336.
  • HILLIS DM & GREEN DM. 1990. Evolutionary changes of heterogametic sex in the phylogenetic history of amphibians. J Evol Biol 3(1-2): 49-64.
  • HOWELL WT & BLACK DA. 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Cell Mol Life Sci 36(8): 1014-1015.
  • ITURRA P & VELOSO A. 1981. Evidence for heteromorphic sex chromosomes in male amphibians (Anura: Leptodactylidae). Cytogenet Cell Genet 31(2): 108-110.
  • JONES KW. 1984. The evolution of sex chromosomes and their consequences for the evolutionary process. In: CHROMOSOMES TODAY 8. Bennett MD, Gropp A and Wolf U (Eds). London: George Allen & Unwin, p. 241-255.
  • KIROV I, KHRUSTALEVA L, VAN LAERE K, SOLOVIEV A, MEEUS S, ROMANOV D & FESENKO I. 2017. DRAWID: user-friendly java software for chromosome measurements and idiogram drawing. Comp Cytogenet 11(4): 747-757.
  • LOURENÇO LB, RECCO-PIMENTEL SM & CARDOSO AJ. 1998. Polymorphism of the nucleolus organizer regions (NORs) in Physalaemus petersi (Amphibia, Anura, Leptodactylidae) detected by silver staining and fluorescence in situ hybridization. Chromosome Res 6(8): 621-628.
  • LOURENÇO LB, RECCO-PIMENTEL SM & CARDOSO AJ. 1999. Two karyotypes and heteromorphic sex chromosomes in Physalaemus petersi (Anura, Leptodactylidae). Can J Zool 77(4): 624-631.
  • LOURENÇO LB, TARGUETA CP, BALDO D, NASCIMENTO J, GARCIA PC, ANDRADE GV, HADDAD CFB & RECCO-PIMENTEL SM. 2015. Phylogeny of frogs from the genus Physalaemus (Anura, Leptodactylidae) inferred from mitochondrial and nuclear gene sequences. Mol Phylogenet Evol 92: 204-216.
  • MAXSON LR & HEYER WR. 1988. Molecular systematics of the frog genus Leptodactylus (Amphibia: Leptodactylidae). Fieldiana Zool 41: 1-13.
  • MIURA I. 1994. Sex chromosome differentiation in the japanese brown frog, Rana japonica-1-Sex-related heteromorphism of the distribution pattern of constitutive heterochromatin in chromosome No. 4 of the Wakuya population. Zool Sci 11(6): 797-806.
  • MIURA I. 2017. Sex determination and sex chromosomes in Amphibia. Sex Dev 11(5-6): 298-306.
  • MIURA I & OGATA M. 2013. Change of heterogametic sex from male to female: Why so easy in the frog? Chromosome Sci 16 (1-2): 3-9.
  • NASCIMENTO J, QUINDERÉ YRSD, RECCO-PIMENTEL SM, LIMA JRF & LOURENÇO LB. 2010. Heteromorphic Z and W sex chromosomes in Physalaemus ephippifer (Steindachner, 1864) (Anura, Leiuperidae). Genetica 138(11-12): 1127-1132.
  • ODIERNA G, APREA G, CAPRIGLIONE T, CASTELLANO S & BALLETTO E. 2007. Cytological evidence for population-specific sex chromosome heteromorphism in Palaearctic green toads (Amphibia, Anura). J Biosci 32(4): 763-768.
  • PATAWANG I, TANOMTONG A, PHIMPHAN S, CHUAYNKERN Y, CHUAYNKERN C, PHAENGPHAIREE P, KHRUEANET W & NITHIKULWORAWONG N. 2014. The Identification of Sex-Chromosomes and Karyological Analysis of Rice Frog, Fejervarya limnocharis (Anura, Ranidae) from Northeast Thailand. Cytologia 79(2): 141-150.
  • PERRIN N. 2009. Sex reversal: a fountain of youth for sex chromosomes? Evolution Int J Org Evolution 63(12): 3043-3049.
  • PINKEL D, STRAUME T & GRAY JW. 1986. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci 83(9): 2934-2938.
  • PONSSA ML. 2008. Cladistic analysis and osteological descriptions of the frog species in the Leptodactylus fuscus species group (Anura, Leptodactylidae). J Zool Syst Evol Res 46(3): 249-266.
  • RAY-CHAUDHURI SP, SINGH L & SHARMA T. 1971. Evolution of sex chromosomes and formation of W chromatin in snakes. Chromosoma 33: 239-251.
  • ROCO ÁS, OLMSTEAD AW, DEGITZ SJ, AMANO T, ZIMMERMAN LB & BULLEJOS M. 2015. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc Natl Acad Sci 112(34): E4752-E4761.
  • SABA N & TRIPATHI NK. 2014. Preliminary cytogenetic study and report of ZZ/ZW sex chromosomes in the bullfrog, Hoplobatrachus tigerinus (Anura, Amphibia) from high altitude area of Jammu and Kashmir, India. Nucleus 57(1): 55-59.
  • SANGPAKDEE W, PIMPHAN S, TENGJAROENKUL B, PINTHONG K, NEERATANAPHAN L & TANOMTONG A. 2017. Cytogenetic study of three microhylid species (Anura, Microhylidae) from Thailand. Cytologia 82(1): 67-74.
  • SARRE SD, EZAZ T & GEORGES A. 2011. Transitions between sex-determining systems in reptiles and amphibians. Annu Rev Genomics Hum Genet 12: 391-406.
  • SCHALK CM & LEAVITT DJ. 2017. Leptodactylus bufonius. Cat Am Amphib Reptil 905: 1-22.
  • SCHARTL M. 2004. Sex chromosome evolution in non-mammalian vertebrates. Curr Opin Genet Dev 14(6): 634-641.
  • SCHARTL M, SCHMID M & NANDA I. 2016. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 125(3): 553-571.
  • SCHMID M. 1983. Evolution of sex chromosomes and heterogametic systems in Amphibia. In: MECHANISMS OF GONADAL DIFFERENTIATION IN VERTEBRATES. Berlin: Springer, p. 13-22.
  • SCHMID M, FEICHTINGER W, STEINLEIN C, NANDA I, MAIS C, HAAF T, VISBAL GARCIA R & FERNÁNDEZ BADILLO A. 2002. Chromosome banding in Amphibia XXII. Atypical Y chromosomes in Gastrotheca walkeri and Gastrotheca ovifera (Anura, Hylidae). Curr Opin Genet Dev 96(1-4): 228-238.
  • SCHMID M & STEINLEIN C. 2001. Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class Amphibia. In: GENES AND MECHANISMS IN VERTEBRATE SEX DETERMINATION. Basel: Birkhäuser, p. 143-176.
  • SCHMID M, STEINLEIN C, BOGART JP, FEICHTINGER W, LEÓN P, LA MARCA E, DIAZ LM, SANZ A, CHEN SH & HEDGES SB. 2010. The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogenet Genome Res 568: 130-131.
  • SCHMID M, STEINLEIN C, FRIEDL R, DE ALMEIDA CG, HAAF T, HILLIS DM & DUELLMAN WE. 1990. Chromosome banding in Amphibia XV. Two types of Y chromosomes and heterochromatin hypervariabilty in Gastrotheca pseustes (Anura, Hylidae). Chromosoma 99(6): 13-423.
  • SCHNEIDER RG, CARDOZO DE, BRUSQUETTI F, KOLENC F, BORTEIRO C, HADDAD C, BASSO NG & BALDO D. 2019. A new frog of the Leptodactylus fuscus species group (Anura: Leptodactylidae), endemic from the South American Gran Chaco. Peer J 7: e7869.
  • SCHWEIZER D. 1976. Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58(4): 307-324.
  • SILVA APZ, GARCIA PC, MARTINS VG, BACCI M & KASAHARA S. 2004. Chromosomal and molecular analyses of Leptodactylus gracilis gracilis, L. gracilis delattini, and L. plaumanni (Anura, Leptodactylidae): taxonomic implications. Amphib-Reptilia 25(2): 185-196.
  • SILVA APZ, HADDAD CFB, GALASSI GG & KASAHARA S. 2006. Multiple nucleolus organizer regions in Leptodactylus mystacinus (Amphibia, Anura) and comments on its systematic position in the L. fuscus group based on cytogenetic and molecular analyses. Genetica 127(1-3): 35-44.
  • SILVA APZ, HADDAD CFB & KASAHARA S. 2000. Chromosomal studies on five species of the genus Leptodactylus Fitzinger, 1826 (Amphibia, Anura) using differential staining. Cytobios 103(402): 25-38.
  • SUMNER AT. 1972 A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304-306.
  • TARGUETA CP, RIVERA M, SOUZA MB, RECCO-PIMENTEL SM & LOURENÇO LB. 2010. Cytogenetic contributions for the study of the Amazonian Engystomops (Anura; Leiuperidae) assessed in the light of phylogenetic relationships. Mol Phylogenet Evol 54(3): 709-725.
  • TOMATIS C, BALDO D, KOLENC F & BORTEIRO C. 2009. Chromosomal variation in the species of the Physalaemus henselii group (Anura: Leiuperidae). J Herpetol 43(3): 555-561.
  • UNO Y, NISHIDA C, TAKAGI C, IGAWA T, UENO N, SUMIDA M & MATSUDA Y. 2015. Extraordinary diversity in the origins of sex chromosomes in anurans inferred from comparative gene mapping. Cytogenet Genome Res 145(3-4): 218-229.
  • VALENZUELA N. 2008. Sexual development and the evolution of sex determination. Sex Dev 2(2): 64-72.
  • VITTORAZZI SE, LOURENÇO LB & RECCO-PIMENTEL SM. 2014. Long-time evolution and highly dynamic satellite DNA in leptodactylid and hylodid frogs. BMC Genet 15(1): 111.

Publication Dates

  • Publication in this collection
    04 June 2021
  • Date of issue
    2021

History

  • Received
    9 Apr 2019
  • Accepted
    13 June 2019
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br