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bufonius (Anura, Leptodactylidae)
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Abstract: Cytogenetic analyses were performed on specimens of Leptodactylus bufonius
from different localities in Argentina. Mitotic chromosomes were studied with Giemsa and 
differential staining techniques (Ag-NOR, C-banding, and CMA3/DAPI) and fl uorescence 
in situ hybridization with the 18S DNAr probe. All specimens showed karyotypes with 
2n = 2x = 22 and FN = 44. Secondary constrictions were present in the long arm of 
chromosome pair 8, coincident with Ag-NOR and hybridization signals of the 18S DNAr 
probe. The C-banding technique evidenced an important amount of heterochromatin 
with a sex-linked pericentromeric band in the short arm of chromosome pair 4. This 
heterochromatic band was heteromorphic in males but present in both homologues 
of females, and it was CMA3 positive (DAPI negative) at fl uorescence staining. The 
occurrence of heteromorphic XY sex chromosomes in L. bufonius is the second known 
case in Leptodactylus and the fi fth within the speciose family Leptodactylidae.

Key words: C-banding, cytogenetics, heterochromatin, heteromorphism, XY.

INTRODUCTION

The diverse and complex ways of sex 
determination among different vertebrate taxa 
constitute an interesting research field that 
is currently focused on revealing genes and 
mechanisms involved, as well as chromosome 
locations (Bull 1983, Valenzuela 2008). To date, 
this is a poorly studied topic in Anura, and those 
species with already identifi ed sex chromosomes 
are just a small proportion as compared with 
other vertebrate orders (Miura 2017). Besides, 
the characteristics of such phenomena and 
associated evolutionary histories are barely 
known (Schmid 1983, Schmid et al. 2010, Uno et 
al. 2015).

However, an extraordinary variety of 
sex chromosome systems were described in 

anurans (Odierna et al. 2007, Nascimento et 
al. 2010, Schmid et al. 2010, Saba & Tripathi 
2014, Patawang et al. 2014, Gazoni et al. 2018, 
Sangpakdee et al. 2017). While most species 
show simple heteromorphic chromosomes (XY, 
ZW), there are also complex mechanisms, as W0 
founded in Leiopelma hochstetteri (Green 1988) 
or the multiple sex chromosomes observed 
in Leptodactylus pentadactylus (Gazoni et al. 
2018). Other extreme examples are Xenopus 
tropicalis (Roco et al. 2015) and Glandirana 
rugosa (Miura & Ogata 2013), in which different 
sex-determining systems coexist: XY, ZW, and 
non-differentiated sex chromosomes. Moreover, 
sex chromosome polymorphisms were also 
observed in Gastrotheca pseustes, with two 
different Y-chromosome morphs (Schmid 
et al. 1990). The impressive variation of sex 
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determination systems in anurans, also reported 
at different morphological differentiation 
stages, makes this group an excellent target for 
studying sex chromosomes origin and evolution 
in vertebrates.

Most sex chromosomes already identified 
in anuran amphibians are microscopically 
indistinguishable (homomorphic) when 
they are studied with conventional staining 
techniques (Hillis & Green 1990, Schmid 1983, 
Schmid & Steinlein 2001, Eggert 2004). Because 
of this, some researchers employed traditional 
cytogenetic markers such as C-bands, Ag-NOR, 
replication banding patterns, and DNA base-
specific fluorochromes (see Schmid et al. 2010 
for a review). More recently, modern molecular 
cytogenetic techniques like comparative genomic 
hybridization and chromosome mapping of 
repetitive sequences with fluorescent in situ 
hybridization have been used (Abramyan et al. 
2009, Vittorazzi et al. 2014, Gatto et al. 2016, 2018, 
2019). 

Heterogametic Y or W chromosomes that are 
morphologically identical to their counterparts 
(X and Z, respectively) would indicate that 
they still did not develop supramolecular 
evident differences at the chromosomal level, 
representing a primitive stage of evolution of 
the sex chromosomes (Schmid 1990, Schartl 
et al. 2016). It has been suggested that this 
feature could be related to the dynamics of 
sex-determining genes when they fail to be 
anchored to a specific chromosome, determining 
a continuous process of replacement called 
“turnover of sex-determining genes and sex 
chromosomes” (Schartl 2004, Sarre et al. 2011, 
Miura 2017). Furthermore, other processes 
could be responsible for the prevalence of 
homomorphic sex chromosomes in anurans 
like the “fountain of youth” hypothesis (Perrin 
2009), in which occasional sex reversion events 
may occur (XY females or ZW males), enhancing 

the recombination in sex-specific regions and 
preventing the accumulation of deleterious 
mutations.

The family Leptodactylidae currently 
comprises 231 species (Frost 2021), distributed in 
three subfamilies: Leptodactylinae, Leiuperinae, 
and Paratelmatobiinae. Within the first, the 
Neotropical genus Leptodactylus is a natural 
group of 82 currently recognized species (Frost 
2021), clustered in the L. fuscus, L. latrans, L. 
melanonotus, and L. pentadactylus groups 
(Heyer 1969). Leptodactylus bufonius of the L. 
fuscus group is one of the most abundant species 
in the semi-arid environments of the American 
Gran Chaco, and surrounding areas in northern 
Argentina, Paraguay, southeastern Bolivia, and 
the states of Mato Grosso and Mato Grosso do 
Sul in central Brazil (Heyer 1978, Schalk & Leavitt 
2017, Brusquetti et al. 2019). Like other species 
of the L. fuscus group, L. bufonius presents 
burrowing habits, and males build subterranean 
chambers in moist soil near streams or ponds 
for the incubating foam nests produced during 
amplexus (Gallardo 1964, Maxson & Heyer 1988, 
Ponssa 2008, Faggioni et al. 2017).

There is a large amount of information about 
chromosome data in Leptodactylus that covers 
near half of its 82 recognized species, with a 
widespread characteristic karyotype of 2n = 2x = 
22 and bi-armed chromosomes (FN = 44) (Brum-
Zorrilla & Sáez 1968, Bogart 1974, Heyer & Diment 
1974, Silva et al. 2000, 2004, 2006, Amaro-Ghiraldi 
et al. 2004, 2006, Arruda & Morielle-Versute 2008, 
de Oliveira et al. 2012, Gazoni et al. 2018, 2021, de 
Oliveira et al. 2013, Coelho et al. 2016, Gonzalez 
et al. 2016). To date, there is a single report of 
chromosomic sex determination in these frogs, 
described in L. pentadactylus, with a mechanism 
involving multiple sex chromosomes (Gazoni et 
al. 2018).

Cytogenetic studies in Leptodactylus 
bufonius are mainly restricted to the description 
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of its diploid number, based only on few 
specimens of a small portion of its geographic 
distribution in Argentina (Barbieri 1950, Brum-
Zorrilla & Sáez 1968, Bogart 1974, Heyer & Diment 
1974). In the present study, we make a thorough 
characterization of cytogenetics in this species 
with the aid of different banding techniques in 
specimens from several localities in Argentina. 
We also describe a new case of heteromorphic 
sex chromosomes in Anura, which constitutes 
the second known in the genus Leptodactylus.

MATERIALS AND METHODS

We analyzed 41 specimens of Leptodactylus 
bufonius (21 males, 20 females; Fig. 1, details in 
Appendix). Mitotic metaphases were obtained 
from cell suspensions of bone marrow and 
intestinal epithelium, using the protocol 
described by Schmid et al. (2010). Slides were 
conventionally stained with 10% phosphate-
buffered Giemsa (pH 6.8). The nucleolar 
organizer regions (NORs) were detected by 
Ag-NOR staining according to Howell & Black 
(1980) and by fluorescent in situ hybridization 
(FISH) with the ribosomal 18S biotinylated probe 
(Pinkel et al. 1986). Location of heterochromatin 

was determined using standard C-banding 
technique (Sumner 1972), and the composition of 
heterochromatic AT-rich and GC-rich bands was 
evidenced, respectively, with the fluorochromes 
DAPI (4’, 6-diamidino-2-phenylindole) and CMA3 
(Chromomycin A3) (Schweizer 1976). Karyotypes 
were arranged in decreasing size, according to 
the nomenclature proposed by Green & Sessions 
(1991, 2007). Assessment of chromosome size 
and morphology was performed with DRAWID 
v0.26 software (Kirov et al. 2017).

RESULTS

The karyotype of Leptodactylus bufonius is 
composed of 11 pairs of bi-armed chromosomes 
(2n = 2x = 22; FN = 44), arranged in seven pairs of 
large and medium-sized chromosomes and four 
small ones. Pairs 1, 2, 5, 6, 8–11 are metacentric, 
pair 3 is submetacentric, whereas pairs 4 and 
7 are subtelocentric (Fig. 2; Table I). NOR sites 
were identified in the interstitial region of the 
long arm of both homologues of pair 8 (Fig. 3), 
according to silver staining and hybridization 
signals of the 18S DNAr after FISH experiments, 
in coincidence with secondary constrictions.

The  C-banding  pat te rn  revealed 
heterochromatin in the centromeric region 
of all chromosomes, with a large number of 
additional heterochromatic bands (Fig. 2b and 
d). Interstitial C-bands were observed on the 
short arm of pairs 1, 2, 5, 6, 8, and 9, and on the 
long arm of pairs 3, 5–9, with a conspicuous 
heterochromatic band on both arms of pair 6. 
Pericentromeric C-bands were detected on the 
short arm of pair 7 and the long arm of pairs 4 
and 10. 

Ch ro m o s o m e  pa i r  4  s h o w e d  a 
pericentromeric C-band on the long arm of 
both homologues, although a sex-biased 
heteromorphism was observed for the presence 
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Figure 1. Sampling localities of Leptodactylus bufonius 
analyzed.
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of a pericentromeric C-band on the short arm of 
this pair. Over 25 specimens analyzed (14 males, 
11 females), this C-band was present on both 
homologues in females but only in one of the 
homologues in males (Fig. 2, in boxes; Fig. 4).

Additionally, three other polymorphic 
variations in the C-banding pattern were 
detected in individuals of both sexes and from 
different localities, without defined geographical 
patterns (Fig. 5). First, a polymorphism for the 
presence of an interstitial C-band was identified 
in chromosome pair 2. This condition was 
detected in homozygosis in a male (LGE 12949; 
Fig. 5a) and in heterozygosis in three males (LGE 
12163, LGE 12948, and LGE 13439; Fig. 5b) and two 
females (LGE 12046 and LGE 13437). The remaining 
specimens did not present interstitial bands in 
this pair (homozygous condition, without bands; 
Fig. 5c). A second polymorphism was detected 
for the presence of an additional interstitial 
C-band on the short arm of pair 6, detected 
in homozygosis in four males (LGE 10085, LGE 
12163, LGE 12949 and LGE 13439, Fig. 5d) and 

two females (LGE 9264 and LGE 10084). Finally, 
a polymorphism consisted of the presence of 
a pericentromeric band on the longs arms of 
pair 7, detected only in homozygosis in three 
males (LGE 12944, LGE 13264, and LGE 13391; Fig. 
5f) and three females (LGE 8098, LGE 9264, and 
LGE 10084) of the sample.

The CMA3/DAPI fluorochromes staining 
evidenced CMA3 positive (DAPI negative) 
heterochromatin in the interstitial region of 
the short arms of pairs 1–6 and 8 (including the 
heteromorphic band in pair 4), in the long arms 
of pairs 3 and 5, 7–8, and in the pericentromeric 
region of pairs 4 (Fig. 6). The conspicuous 
heterochromatic band observed on the short 
arm of pair 6 was characterized as CMA3 negative 
and DAPI negative. A CMA3 positive (DAPI negative) 
bright fluorescent band was detected in the 
interstitial position of pair 8, in coincidence with 
secondary constrictions (Fig. 3b and c). Similarly, 
the heteromorphic band observed on pair 4 was 
characterized as CMA3 positive (DAPI negative). 
Although the CMA3 bands were conspicuous, the 
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Figure 2. Karyotypes of Leptodactylus bufonius. Female. Conventional staining (a) and C-banding (b). Male. 
Conventional staining (c) and C-banding (d). Sex chromosomes (pairs 4) are shown in boxes. Bar = 5 µm.
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Table I. Chromosome morphology in Leptodactylus bufonius. Abbreviations: % set = percentage of total 
complement; CI = centromeric index; SD = standard deviation; M = metacentric; SM = submetacentric; ST = 
subtelocentric.

Chromosome 
number 1 2 3 4x 4y 5 6 7 8 9 10 11

% set 15.74 12.25 10.98 5.17 4.99 10.47 10.09 8.51 6.55 5.6 5.13 5.59

CI ± SD 0.478 
± 0.02

0.402 
± 

0.04

0.369 
± 

0.05
0.239 
± 0.02

0.236 
± 0.02

0.429 
± 

0.04

0.429 
± 

0.04

0.258 
± 

0.04

0.425 
±  

0.05

0.433 
± 

0.04

0.441 
± 

0.04

0.419 
± 

0.04

Type M M SM ST ST M M ST M M M M

a b c d

Figure 3. NOR-bearing 
chromosomes pair in 
Leptodactylus bufonius (pair 
8), characterized by Ag-NOR 
(a), CMA3 (b), DAPI (c), 18s DNAr 
probe (d). Bar = 5 µm.

4
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4
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4
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4
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Figure 4. Ideogram and sex chromosomes (pairs 4) from five females (a) and five males (b) of Leptodactylus 
bufonius, after C-banding.

a b c d e f g

Pair 2 Pair 6 Pair 7

Figure 5. Chromosome polymorphisms for the presence of additional C-bands in Leptodactylus bufonius. 
Polymorphic C-bands in homozygosis (a, d, and f), heterozygosis (b), and chromosomes without additional bands 
(c, e, and g). Bar = 5 µm.
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negative DAPI bands depended on the state of 
condensation of the chromosomes.

DISCUSSION

The 2n = 2x = 22 and FN = 44 reported here for 
Leptodactylus bufonius agrees with previous 
data (Barbieri 1950, Brum-Zorrilla & Sáez 1968, 
Bogart 1974, Heyer & Diment 1974), and the 
morphology of chromosomes is in concordance 
with that reported by Bogart (1974, Fig. 2). The 2n 
= 2x = 22 is the widespread chromosome number 
in Leptodactylidae (Tomatis et al. 2009, Targueta 
et al. 2010, Gazoni et al. 2012, Vittorazzi et al. 
2014, Lourenço et al. 2015, Cardozo et al. 2016 
and cites therein), and could be considered the 
plesiomorphic condition for Leptodactylus. In 
this genus, 34 species have been cytogenetically 
analyzed (Brum-Zorrilla & Sáez 1968, Bogart 
1974, Heyer & Diment 1974, Silva et al. 2000, 
2004, 2006, Amaro-Ghiraldi et al. 2004, 2006, 

Arruda & Morielle-Versute 2008, de Oliveira et 
al. 2012, Gazoni et al. 2012, 2018, 2021, de Oliveira 
et al. 2013, Coelho et al. 2015, Gonzalez et al. 
2016). Only two of them have a different basic 
chromosome number: L. brevipes (2n = 2x = 20; 
Gazoni et al. 2012, 2021) and L. silvanimbus (2n = 
2x = 24; Amaro-Ghiraldi et al. 2006), which would 
represent autapomorphic character states.

The information involving differential 
staining techniques in Leptodactylus bufonius 
is provided herein for the first time. NORs in the 
pair 8 of this species are in a similar position 
than most of the Leptodactylus already studied 
and is considered the plesiomorphic state in 
the genus (Silva et al. 2000, Amaro-Ghilardi 
et al. 2004, 2006, Arruda & Morielle-Versute 
2008, de Oliveira et al. 2012, Gazoni et al. 2012, 
Coelho et al. 2016). The few known exceptions 
were observed in L. mystacinus (pair 4 or 8; 
Amaro-Ghilardi et al. 2006, Silva et al. 2006), L. 
natalensis (pair 7; Gazoni et al. 2021), L. petersii 
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Figure 6. CMA3/DAPI banding 
patterns in Leptodactylus 
bufonius. Mitotic metaphases 
of a female (a, b) and male 
(c, d), stained with CMA3 and 
DAPI fluorochromes (left 
and right, respectively). Sex 
chromosomes are indicated 
with arrows. Bar = 5 µm.
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(pair 4; Amaro-Ghilardi et al. 2006, Gazoni et al. 
2012, 2021), L. rhodomystax (pair 3; Gazoni et al. 
2012), and L. brevipes (pair 4; Gazoni et al. 2012, 
2021).

The C-banding in Leptodactylus bufonius 
seems not to be typical of Leptodactylus, where 
karyotypes of the species usually bear poor 
amounts of heterochromatin (Silva et al. 2000, 
2006, Amaro-Ghilardi et al. 2004). Variation in 
the distribution of heterochromatic bands other 
than centromeric has only been reported for L. 
latrans (Silva et al. 2000, Amaro-Ghilardi et al. 
2004), L. fuscus (Silva et al. 2000), and L. petersii 
(Coelho et al. 2016).

Furthermore, the C-banding technique 
evidenced the presence of a chromosome 
sex-determination system of the type XY in 
chromosome pair 4. In all analyzed females, this 
pair was indistinguishable regarding C-bands, 
while males presented a pericentromeric C-band 
in the short arm of only one of the homologues. 
Similar heteromorphisms in terms of the 
amount of heterochromatin were described 
for Gastrotheca walkeri and G. ovifera, and 
species of the genus Eupsophus, in which the Y 
chromosome lacks heterochromatin and differs 
in size with its homologue (Iturra & Veloso 1981, 
Cuevas & Formas 1996, Schmid et al. 2002).

According to several cytogenetic and 
molecular studies about the evolution of sex 
chromosomes, the morphological differentiation 
of heteromorphic sex chromosomes may initiate 
with heterochromatin accumulation (Ray-
Chaudhuri et al. 1971, Jones 1984, Schmid & 
Steinlein 2001). Therefore, Leptodactylus bufonius 
and other above-mentioned anuran species do 
not fit in this evolutionary model, as the Y or W 
chromosomes do not present large amounts of 
heterochromatin. To explain this, Schmid et al. 
(2002) suggested that the presence of a smaller 
amount of heterochromatin in chromosome Y 
compared to the chromosome X could be due 

to deletion rather than accumulation. They 
further suggest that the heterochromatinization 
of the Y or W chromosome is possibly not 
the only evolutionary way that originates 
the morphological differentiation of sex 
chromosomes. There are some examples in 
anurans that may confirm this assumption. For 
instance, in Rana japonica, there is a single 
block of heterochromatin in the pericentromeric 
region of the long arm of the X chromosome 
that is absent in the Y chromosome (Miura 1994), 
and in Eupsophus migueli, the Y chromosome 
does not show heterochromatic regions at all 
(Iturra & Veloso 1989). Similarly, in the North 
American teiid lizard Aspidoscelis tigris there is 
less pericentromeric heterochromatin in the Y 
than the X chromosome (Bull 1978). 

Among Leptodactylidae, there are only 
a few reported cases of sex chromosomes. In 
the Engystomops petersi species complex (as 
Physalaemus petersi in Lourenço et al. 1998, 
1999, and Engystomops petersi and E. freibergi 
in Targueta et al. 2010), different types of 
heteromorphic XY chromosomes were detected. 
In this example, it is noteworthy that in some 
specimens from Acre, Brazil, the X chromosome 
contained interstit ial  heterochromatic 
segments, absent in the Y chromosomes, while 
in other individuals from the same population, 
a terminal NOR in the long arm of the Y 
chromosome can be observed. Furthermore, 
some individuals of this species from Puyo, 
Ecuador, only presented XY chromosomes 
with different morphology. In Physalaemus 
ephippifer, ZW chromosomes were identified by 
an additional segment, which comprises a distal 
NOR and an adjacent terminal C-band in the 
short arm of the W chromosome (Nascimento 
et al. 2010). Heteromorphic XY chromosomes 
were also described for Pseudopaludicola 
saltica (Duarte et al. 2010). In Leptodactylus, 
sex chromosomes were confirmed only for L. 



ROSIO G. SCHNEIDER et al. SEX CHROMOSOMES IN Leptodactylus bufonius

An Acad Bras Cienc (2021) 93(2) e20190426 8 | 12 

pentadactylus (Gazoni et al. 2018), which presents 
the largest number of sex chromosomes found 
among vertebrates. Males of this species show 
a chromosome ring consisting of 12 elements, 
resulting from multiple translocation events. 
Barale et al. (1990) also reported an XY system 
for L. macrosternum (as L. chaquensis)  and 
proposed a sex heteromorphism regarding a 
pericentromeric C-band in the first chromosome 
pair. However, these results differ from those 
obtained by Gazoni et al. (2012), who ruled out the 
occurrence of sex chromosome differentiation 
in this species.

A recent phylogenetic analysis of 
Leptodactylus recovered L. bufonius as the 
sister taxon of L. troglodytes, L. cupreus, and 
L. mystacinus + L. apepyta, in a clade that is 
sister of all remaining species of the L. fuscus 
group (de Sá et al. 2014, Schneider et al. 2019). 
In this group, the C-banding pattern is known 
only for L. mystacinus, L. gracilis, L. plaumanni, 
L. fuscus, and L. notoaktites (Silva et al. 
2000, 2004, 2006, Arruda & Morielle-Versute 
2008, de Oliveira et al. 2013), in which sexual 
chromosomes have never been detected. The 
large number of Leptodactylus species of which 
C-banding patterns are unknown does not allow 
us to determine whether the presence of sex 
chromosomes in L. bufonius corresponds to 
an autapomorphy or if it is a more extended 
condition in the L. fuscus group or the entire 
genus.

In our study case, the use of conventional 
banding techniques was sufficient to 
detect an XY sex chromosome system in 
Leptodactylus bufonius. However, a more 
exhaustive characterization is necessary with 
more resolutive techniques like fluorescent 
in situ hybridization or comparative genome 
hybridization.
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