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ABSTRACT

When Debye length is comparable or larger than the distance between two identical particles, the overlapping
among the particles double-layers can play an important role in their interactions. This paper presents a
theoretical analysis of the interaction among two identical particles with overlapped double-layers. We
particularly focus on the effect of a Stern electrostatic condition from linearization of the adsorption isotherm
near the isoelectric (neutrality) point in order to capture how polyvalent ion condensation affects and reverses
the surface charge. The stationary potential problem is solved within the framework of an asymptotic
lubrication approach for a mean-field Poisson-Boltzmann model. Both spherical and cylindrical particles
are analyzed. The results are finally discussed in the context of Debye-Hückel (D-H) limit and beyond it.
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INTRODUCTION

Recent AFM studies have shown that, in the presence of a polyvalent counter-ion, two similarly charged

or identical surfaces can develop a short-range attractive force at a distance comparable to the Debye

screening length λ (Zohar et al. 2006, Besteman et al. 2004). This observation is most likely related to

earlier reports on attraction between identical colloids in an electrolyte, although the role of poly-valency

is not as well established for colloids (Han and Grier 1999). It is also related to the condensation of

likecharged molecules like DNAs (Gelbart et al. 2000). Such attraction has raised some debate during

the past ten years since, for two identical objects it is necessarily repulsive according to the classical

Poisson-Boltzmann (PB) mean-field theory (Neu 1999). Some supplementary polarisability effects could

be important to consider. Such effects are associated with dipolar interactions among charges, which, in

Selected paper presented at the IUTAM Symposium on Swelling and Shrinking of Porous Materials: From Colloid Science to
Poromechanics – August 06-10 2007, LNCC/MCT.
Correspondence to: Franck Plouraboué
E-mail: plourab@imft.fr

An Acad Bras Cienc (2010) 82 (1)



“main” — 2010/1/22 — 13:12 — page 96 — #2

96 FRANCK PLOURABOUÉ and HUA-CHIA CHANG

general, are much weaker than electro-static effects, but can be important to take into account at high ionic

concentrations and for confined configurations (Boström et al. 2001). These polarisability effects can be

described by a dispersion potential associated with a Hamaker cubic decay, and their implication have been

computed for the interaction among two planes (Boström et al. 2001) and two cylinders (Boström et al.

2002). Improving theoretical description beyond the usual point-like charge description has been another

quest to improve the standard PB description. Taking into account finite size steric effects (Borukhov et al.

1997, Kilic et al. 2007a, b) at high voltages also leads to modified mean-field PB equations, and could be

part of the explanation for attraction or ion specific interactions at nano-scales.

Nevertheless, for moderate concentrations and potentials, the attraction is experimentally observed,

and the observed exponential attraction is still left unexplained (Zohar et al. 2006, Besteman et al. 2004).

For this reason, theories for like-charge attraction phenomena have sought mechanisms beyond the

classical mean-field description. Some contributions have investigated the inclusion of spatial correlation

of charge fluctuations (Lukatsky and Safran 1999, Netz and Orland 2000, Lau and Pincus 2002, Lau 2008).

In a previous contribution by Plouraboué and Chang (2009), we realized that including a Stern layer for

the mean-field boundary condition is compatible with previous field-theoretical analysis of the role of

fluctuations on mean-field description (Lau and Pincus 2002, Lau 2008). Those results have been obtained

for two identical surfaces whereas previous studies by Chan et al. (2006) have investigated the effect of

Stern layers for dissimilar surfaces. In this framework, we obtained an implicit analytic solution for the

mean-field potential and compute the attraction among two planar surfaces for which the far field behavior

leads to an exponential attraction.

In this contribution, we derive an asymptotic computation of the potential among two spherical or

cylindrical identical particles. As opposed to the situation where the particle distance is large compared

to the Debye length for which the DLVO approximation holds (Sader et al. 1995), we focus here on the

possible non-linear interaction among the particles double-layers.

PROBLEM UNDER STUDY

GOVERNING EQUATION

We very briefly discuss here the stationary electro-kinetic problem that one has to solve for the elec-

tric potential φ′ (Cf for example Karniadakis et al. (2004) for more details). We consider an electrolyte

solution composed of Z -charged positive/negative ions. Boltzmann equilibrium associated with the con-

centration/potential leads to the non-linear mean-field PB relation:

∇2φ′ = 2
Z FC∞

ε0εp
sinh

(
Z Fφ′

RgT

)
, (1)

where F is the Faraday constant, εp the solution relative permittivity, ε0 the dielectric permittivity of

vacuum, Rg the perfect gas constant, T the temperature and C∞ a reference concentration in the far-field

region. These parameters are usually used to define the Debye length λ =
√
ε0εp RgT/2Z2 F2C∞.

PARTICLE SHAPE AND BOUNDARY CONDITIONS

Let us now discuss the surface shape h′(r ′) of the particles sketched on Figure 1. This figure represents

a section of either a cylindrical or a spherical particle. In the first case, the problem under study is trans-
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lationally invariant along the direction perpendicular to the figure plane, aligned along the cylinder main

axis. In the second case, the problem under study is rotationally invariant along the z′ axis. In both cases

the particle shape in the section follows a circle. From elementary trigonometry identities one gets:

(
a − (h′ − hm)

)2
+ r ′2 = a2, (2)

so that,

h′(r ′) = hm + a −
√

a2 − r ′2. (3)

This problem can be associated with different boundary conditions at the particles surfaces. We mainly

focus on the influence of a Stern layer at the particles surfaces:

∂nφ
′(±h′(r ′)) = Kφ′(±h′(r ′)) (4)

We consider an iso-electric point situation for which the reference potential is taken to be zero, so that the

right-hand side of (4) is a linear function of φ′. This very usual phenomenelogical boundary condition

can be justified from a more fundamental point of view from realizing that fluctuations associated with the

adsorption of ions at the solid surface produce some punctual effective interaction at the surface, which can

be exactly mapped with a Stern layer boundary condition (Plouraboué and Chang 2009).

a

p+

p−

z’

2hm r’
h’(r’)

Fig. 1 – Slide view of the two indentical particles under study.

We compare the obtained results for Stern-Layer with other boundary conditions such as an applied

surface field at each particles:

−∂nφ
′(±h(r ′)) = ∓E ′

p± , (5)

where E ′
p± stands for the Electric field prescribed either at the top p+ or the bottom p− particle. From

using Gauss’s theorem, one realizes that prescribing the field is equivalent to prescribe a surface charge at

the particle surfaces. Another widely used boundary condition is to prescribe the electrical potential at the

particle surface:

φ′(±h(r ′)) = φ′
p± . (6)

In the following we will compare these three boundary conditions in the D-H approximation.
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ASYMPTOTIC FORMULATION

Dimensionless formulation

Let us first discuss some physics associated with the problem for choosing an interesting dimensionless

formulation. First, the distance among the particles involves one characteristic length, which is the mini-

mum distance hm . As discussed in the Introduction, non-trivial effects for particles interactions arise when

this distance is of the same order or shorter than the Debye length λ. Furthermore, difficulties in quantify-

ing this interaction are associated with the importance of non-linear effects in the double-layer. Numerical

estimation can be used, but needs an accurate description of rapid potential variations inside double layers,

which can be computationally challenging. The use of some refined methods using bi-spherical coordinates

discretized with finite volume (Lima et al. 2007) or spectral collocation (Carnie et al. 1994, Stankovich and

Carnie 1996) methods can lead to accurate results with moderate computational cost. Such computations,

nevertheless needs the elaboration of rather involved numerical formulations. Furthermore, the validation

of these numerical methods is an useful and necessary step. We will see in the following how developping

an alternative theoretical approximation associated with lubrication asymptotic approach can provide a

simple one-dimensional integral for the interaction force, which is, then, useful for numerical validations.

Finally, some more complex configurations (different than two spheres or two cylinders) for confined

slender-body shapes might also be of interest in nano-scale context. For such complex confined geometries

(maybe associated with the electrical interaction of rough surfaces), the elaboration of a simplified asymp-

totic lubrication approach should also be of interest in the limit for which double-layer effects matters,

i.e. when the distance hm is of the same order as the Debye lenght. From realizing that the Debye length

λ generally lies between nanometer to sub-micron scale, it can be seen that many interesting situations

are associated with particle radius a larger than Debye length a � λ. In the limit hm � a, an asymp-

totic “lubrication” analysis of the problem can be sough for. More specifically, in this limit, most of the

potential variation holds along the transverse direction between two particles whose typical length is hm

rather than in the longitudinal direction, roughly parallel to the particles surfaces, for which the potential

variations holds along a typical length-scale
√

ahm . This discussion suggests the following dimensionless

formulation of transverse coordinates z, h and the longitudinal one r :

z′ = hmz , h′ = hmh , r ′ =
√

hmar (7)

Those coordinates associated with rapid variation of the potential inside a central region are “inner” coor-

dinates and are used in section Asymptotic expansion: inner region.

Another choice could have been taken from simply considering the potential variations far from the

confined region, for which the only relevant length-scale is the particle radius. In this case, “outer” dimen-

sionless coordinates can be defined with upper-case notations:

z′ = aZ , r ′ = a R , h′ = aH (8)

that will be subsequently used in section Outer region.
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Asymptotic expansion: inner region

Introducing the small parameter ε = hm/a, one can, then, re-write the shape equation (3):

h(r) =
1

ε
+ 1 −

1

ε
(1 − εr2)1/2 ' 1 +

r2

2
+ ε

r4

8
(9)

This behavior suggests the following asymptotic sequence for the shape:

h = h0 + εh1 , h0(r) = 1 +
r2

2
, h1(r) =

r4

8
(10)

The normal vector n to the particle surfaces can also be computed:

n ' −
(

0

1

)
+

√
ε

(
y

0

)
+ ε

(
0

1

)
y2

2
+ ∙ ∙ ∙ (11)

Using the usual dimensionless formulation for the potential φ = Z Fφ′/RgT , the normal derivative of

the dimensionless potential on the upper particle reads:

∂nφ = ∇φ.n ' −∂zφ + ε

(
∂yφy + ∂zφ

y2

2

)
(12)

A similar result with opposite sign for the first term holds for the lower particle. Dimensionless PB

problem (1) reads:
(
∂2

z + ε∇2
//

)
φ = 2

(
hm

λ

)2

sinh φ , (13)

where ∇2
// is the Laplacian contribution orthogonal to the (ez, er), section which is different for cylindrical

or spherical particles. We will not need to specify it further, since we are just going to compute the leading

order contribution to the following asymptotic sequence in the inner region suggested by (10):

φ = φ0 + εφ1 . (14)

Introducing this sequence in the governing equation (13) leads to the leading order:

∂2
z φ0 = βm sinh φ0 , (15)

where βm = 2(hm/λ)
2. From (12) the associated Boundary conditions, with prescribed electric fields

(5), reads at the leading order:

∂zφ0(±h0) = ±E p± , (16)

where we have used dimensionless electric fields E p± = Z F E ′
p±/RgT hm . For prescribed potentials

(6), the leading order boundary conditions reads:

φ0(±h0) = φp± (17)

And finally the Stern layer boundary condition reads at leading order:

∂zφ0(±h0) = ∓μβmφ0(±h0) , (18)

where we have introduced a parameter μ that stands for dimensionless pre-factor between the potential

and its gradient at the particle surface boundary condition.
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Outer region

Using dimensionless formulation, (8) PB problems (1) reads:

ε2∇28 = βm sinh8 . (19)

The inner problem suggests the following asymptotic sequence for the potential in the outer region:

8 = 80 + ε81 (20)

Injecting this sequence in the outer governing equation (19) leads to the following leading order problem:

sinh80 = 0 , (21)

whose solution is 80 = 0, so that the matching condition at leading order is just lim y→∞ φ0(0, y) = 0.

RESULTS

Since the outer region solution is trivial, we now focus on the inner region solution that is going to provide

the interesting potential variations for particle interactions.

DEBYE-HÜCKEL APPROXIMATION

We examine here the linearized limit of small dimensionless potential φ � 1. Let us first consider

prescribed electrical fields at the particles surfaces. In this case, the solution of the linearized limit of (15)

with boundary conditions (16) reads:

φ0 =
1

2

(
E+ cosh

√
βmz

sinh
√
βm h0

+
E− sinh

√
βmz

cosh
√
βmh0

)
(22)

where we have introduced notation E+ = E p+ + E p− and E− = E p+ − E p−. The case of symmetrical

particles corresponds to E− = 0, since the corresponding fields at each particle are identical and of

opposite sign. We then recover in this case that ∂zφ0(r, z = 0) = 0. Let us now write-down the solution

associated with the boundary conditions (17):

φ0 =
1

2

(
φ+ cosh

√
βm z

cosh
√
βm h0

+
φ− sinh

√
βm z

sinh
√
βm h0

)
, (23)

where we have introduced notation φ+ = φp+ + φp−, and φ− = φp+ − φp−. One can also see that, in

this case, symmetrical particles are associated with φ− = 0, so that the resulting field will also fulfills

∂zφ0(r, z = 0) = 0. Finally, let us now discuss the D-H limit solution associated with boundary con-

ditions (18). Since the boundary conditions specify two independant linear equations with an associated

non-zero determinant, one coud think, in a first step, that the only possible solution is the trivial one φ0 = 0.

Nevertheless, there is a special value of βm for which the determinant of the linear system associated with

boundary conditions becomes singular (Plouraboué and Chang 2009), i.e., βmc = 1/2 ln(μ+ 1)/(μ− 1).

Up to this parameter, some non-trivial solution can emerge from the trivial one from a pitch-fork bifurcation

through non-linear effects as shown in Figure 2.
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Fig. 2 – Surface potential of an anti-symmetric solution φ(1) at ζ = 1 versus dimensionless parameter β. The dotted lines display

an asymptotic value which can be computed (Cf see Plouraboué and Chang (2009) for more details on this point).

NON-LINEAR PB PROBLEM

It is now interesting to realize that the leading order problem (15) associated with boundary conditions

(16), (17) or (18) can be expressed in a single variable ζ = z/h0(r) independently of any other explicit

dependance on the longitudinal variable r . Hence, one can, then, map the leading order PB problem

between two identical particle onto the same problem between two parallel planes. Hence, we recover here

the solution previously studied in (Plouraboué and Chang 2009) for Stern layer boundary conditions. Let us

now recall here the main steps of the solution. A first integral of (15) using the variable change ζ = z/h0(r)

for φ0(ζ ) is:
1

2
(∂ζφ0)

2 = β(r) (cosh φ0)+ d (24)

where d depends on the value prescribed at the particle, and β(r) = 2(hmh0(r)/λ)2. Introducing notation

d ′ = d/β, one finds that this constant depends upon the applied boundary condition. For prescribed electric

field (16), one finds:

d ′(r) =
d

β(r)
=

1

2
E2

p+ − coshφ0(1) =
1

2
E2

p− − coshφ0(−1), (25)

whilst, in the case of prescribed potentials (17):

d ′(r) =
d

β(r)
=

1

2
[∂ζφ0(1)]

2 − cosh φp+ =
1

2
[∂ζφ0(−1)]2 − cosh φp−. (26)

Finally, in the case of Stern layer boundary conditions (18), this constant is:

d ′(r) =
d

β(r)
=

1

2
[μφ0(1)]

2 − cosh φ0(1) =
1

2
[μφ0(−1)]2 − cosh φ0(−1) (27)

Hence, in each case, the function d ′(r) either depends on the potential solution at the particle surface or on

its gradient. In the case of Stern layer boundary condition (18), the anti-symmetrical solution associated

with parameter μ > 1 is always attractive (Plouraboué and Chang 2009). This is, thus, the solution onto

which we will focus on. A symmetrical solution also exists for parameter μ < 1, but this case is not
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considered in this study. Let us now briefly recall here the main steps for finding an implicit solution to the

PB non-linear problem. We use Boltzmann transformation:

ψ0 = e−φ0/2 (28)

so that (24) reads:
1

2
(∂ζφ0)

2 = 2eφ0(∂ζψ0)
2 =

1

2

(
ψ2

0 +
1

ψ2
0

)
+ d ′ (29)

then, the problem on the new variable ψ0 becomes:

∂ζψ0 = ±
1

2

√
ψ4

0 + 2d ′ψ2
0 + 1 = ±

1

2

√
(ψ2

0 − α−)(ψ
2
0 − α+) , (30)

with:

α± = −d ′ ±
√

d ′2 − 1, (31)

The first integral (30) can be solved formally by a supplementary integration from separating ζ and ψ0

(dividing by the right hand side). The solution of this integral form is associated with an elliptic integral,

so that,

±

√
β(r)

2
ζ + c = −

√
α−F

(
ψ0

√
α+, α−

)
, (32)

up to a constant c to be specified. Evaluating (32) at the upper and lower particle boundary ζ = z/h0 = ±1

leads to the following implicit condition for the potential value ψ0(±1):

√
β(r) = −

√
α−

[
F

(
ψ0(1)

√
α+, α−

)
− F

(
ψ0(−1)

√
α+, α−

)]
, (33)

Now, collecting relation (28) and (33) with one of the boundary condition associated with the d ′(r) value

(25), (27) gives a system of two transcendental equations for φ0(±1) that can be solved numerically

(Plouraboué and Chang 2009) for each β(r). Figure 2 shows the result of this numerical computation.

It is interesting to note that, for value of β smaller than a critical value that depends on μβ < βc(μ), the

resulting surface potential is zero and, thus, the solution will be zero everywhere else in between the two

particles (Cf Plouraboué and Chang (2009) for the expression of β < βc(μ)). In these regions, the local

interaction will obviously be zero at leading order.

COMPUTATION OF THE FORCE

LOCAL PRESSURE CONTRIBUTION

We now compute the force between the particle. From using Green’s theorem it is possible to show that the

particle/particle interaction can be computed from evaluating the Maxwell stress tensor contraction with

the normal surface of any closed surface around one particle (Neu 1999). Since, at infinity, the matching

condition gives vanishing field perturbations, any closed far-field surface around one of the two particles,

which intersects the mean-plane, has no contribution to the force. Hence, the only contribution on the force

is the scalar product of the stress tensor on the normal to the z = 0 mean-plane.
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Let us now compute the force from considering the asymptotic expansion of the Maxwell stress tensor.

For dimensionless formulation σ ′ = σεp(RT/Z F)2/λ2, this tensor reads:

σ =
1

β(r)






−
1

2
(∂ζφ)

2 +
ε

2
(∂rφ)

2 √
ε∂rφ∂ζφ

√
ε∂rφ∂ζφ −

1

2
(∂ζφ)

2 −
ε

2
(∂rφ)

2




 (34)

So that, one can write:

σ =
1

β(r)

(

−
1

2
(∂ζφ)

2I +
√
ε∂rφ∂ζφ

(
0 1

1 0

)

+ ε(∂rφ)
2

(
1 0

0 −1

)

+ ..

)

(35)

Using (11), one can have that the contribution of the stress tensor to the mean-plane being:

ez.σ.ez =
1

β(r)

(
−

1

2
(∂zφ)

2 −
ε

2
(∂rφ)

2 + ..

)
(36)

Now using (14) one finds,

ez.σ.ez =
1

β(r)

(
−

1

2
(∂zφ0)

2 − ε

(
1

2
(∂rφ0)

2 + ∂zφ0∂zφ1

)
+ ..

)
(37)

which is the contribution of the Maxwell stress. The dimensionless osmotic contribution p0 associated

with a far-field zero reference potential is:

p0 = cosh φ − 1 = cosh φ0 − 1 + O(ε) (38)

Finally, to the leading order, one can find the total local pressure at ζ = 0

p(r) =
(

−
1

2β(r)
[∂ζφ0(r, 0)]2 + cosh φ0(r, 0)− 1

)
+ O(ε) . (39)

As previously indicated, it is interesting to note that, in the case of an anti-symmetrical solution for which

φ0(r, 0) = 0, this pressure is always negative and, thus, attractive. For any symmetrical solution for which,

on the contrary, ∂zφ0(r, 0) = 0 and φ0(r, 0) 6= 0, we observe that this pressure is positive, so that the

interaction is repulsive, because the osmotic contribution is always positive. Finally, it is interesting to note

from (24) that this force is simply related to the constant d ′:

p(r) = −d ′(r)− 1 + O(ε) (40)

This shows that solving for the potential at the particle surface φ0(r, ζ = ±1) is enough to compute the

total force from using (25) or (27) to deduce constant d ′ for a given value of β(r), that is to say a given

value of r . Let us now explicitly estimate this force for spherical or cylindrical particles.

TOTAL FORCE

The total force formulation is the integral of the local force over the horizontal plane z = 0. We define

two distinct dimensionless forces in the case of spherical or cylindrical particles. For spherical particles,
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we scale the force to the square of the sphere radius Fs = aλεp(RT/Z F)2/λ2 F ′. For cylindrical particles,

we rather consider the product of radius a to the cylinder length L : Fc =
√

aλLεp(RT/Z F)2/λ2 F ′.

The integration, nevertheless, differs between spherical or cylindrical particles. In the case of two spheres,

one finds:

Fs = 2π
∫ ∞

0
p(r)rdr. (41)

In the following, we will also use an equivalent formulation, using parameter h rather than r . Both being

dimensionless and related by (10), (41) can be rewritten:

Fs = 2π
∫ ∞

hm
λ

p(h0)dh0. (42)

In the case of two cylinders, the total force per unit length is:

Fc

L
= 2

(
hm

λ

)1/2 ∫ ∞

0
p(r)dr (43)

Relation (41) and (43) associated with expression (39) and (40) gives an one-dimensional integral formula-

tion for the force given the local potential solution. At this stage, it is important to stress that it is a drastic

simplification upon the initial three-dimensional non-linear problem (1). Furthermore, it is also interesting

to mention here that such lubrication formulation provides very robust approximation for the force, even if

the ε parameter is not small (even of order one).

The potential solution should be solved numerically for each gap distance r . This potential could be

computed from solving numerically an one dimensional Poisson-Boltzmann problem, with, for exemple, a

collocation method as in (Carnie et al. 1994, Stankovich and Carnie 1996). One could alternatively find

the only necessary constant d ′ in (40) from using the potential value at one boundary in equation (27).

The latter can be determined by solving the transcendental equation (33). In the subsequent analysis of the

force, we did both: the former, with a moderate numerical cost, and the latter, without a negligeable time

cost. We found no distinct differences in the results between the two methods.

Let us now first evaluate the forces in the D-H limit.

Force in the Debye-Hückel approximation

Even if it is known that the Debye-Hückel limit is a very rough approximation, it can be useful for code

validation or comparison with experiments to get explicit analytical expression for the force.

• In the case of prescribed fields, the evaluation of (39) in the φ0 � 1 limit, using solution (22),

leads to:

p(r) =
1

8

(
λ

hm

)2 E2
+ cosh2 h0 − E2

− sinh2(h0)

cosh2(h0) sinh2(h0)
, (44)

One can see that, in the case of symmetrical boundary conditions E− = 0, this pressure is positive leading

to repulsion. In the fully non-symmetrical case, then, E+ = 0, and this pressure is negative leading, as

expected to an attraction among the particles. For sphere, one finds:

Fs =
(
λ

hm

)
π

4
(E2

+ Is1 − E2
− Is2) (45)
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where,

Is1 =
∫ ∞

0

rdr

sinh2(1 + r2/2)
=

2

e2 + 1
' 0.23840

Is2 =
∫ ∞

0

rdr

cosh2(1 + r2/2)
=

2

e2 − 1
' 0.31303

(46)

For cylinders, one finds:
Fc

L
=

(
λ

hm

)3/2 1

4
(E2

+ Ic1 − E2
− Ic2) (47)

where:

Ic1 =
∫ ∞

0

dr

sinh2(1 + r2/2)
' 0.5895922

Ic2 =
∫ ∞

0

dr

cosh2(1 + r2/2)
' 0.40108449

(48)

• Let us now consider the case with prescribed potentials. From linearization of (39) in the φ0 � 1

limit, the solution (23) leads to the following local pressure

p =
(
λ

hm

)2 1

8

φ2
+sinh2(h0)− φ2

−cosh2(h0)

cosh2(h0)sinh2(h0)
, (49)

As expected, this pressure is again always repulsive for symmetrical boundary conditions φ− = 0, and

might be attractive for fully anti-symmetric conditions φ+ = 0. For two spheres, one finds the total force:

Fs =
λ

hm

π

4
(φ2

+ Is2 − φ2
− Is1), (50)

Whilst, for two cylinders:
Fc

L
=

(
λ

hm

)3/2 1

4
(φ2

+ Ic2 − φ2
− Ic1). (51)

Hence, in the Debye-Hückel approximation, the force can only be attractive for prescribed non-sym-

metrical fields. We do not discuss here the D-H limit for the Stern layer boundary condition, since the

solution is only specified up to a multiplicative constant in this regime. Therefore, the absolute value of

the force is not define.

One needs to go to the non-linear PB problem to find a definite answer to this question.

FORCE FOR STERN-LAYER BOUNDARY CONDITION

In this case, a numerical computation has been carried out from the solution found for the potential field

at the surface, which permits to deduce the d ′(r) from (27) and the local pressure from (40).

• The numerical integration is, then, performed in the spherical case from formulation (42) with a

simple trapezoidal rule. The result obtained is plotted on Figure 3a where one can observe a saturation of

the Force when the gap is smaller than the critical ratio βc, for which the local pressure tends to zero.

• A different behavior for the total force is found in the case of two cylinders, for which the for-

mulation (43), associated with an integration along variable r , is chosen to obtain again a simple direct

integration. Depending on the value of parameter μ, the total force can either display a localized minimum

close to hm/λ '
√
βc/2, or can decay with the minimum gap as represented on Figure 3b.
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Fig. 3 – Dimensionless Force computed versus the minimum-gap to Debye layer ratio for a different value of the mixed bound-

ary condition parameter μ. (a) Between two spheres, (b) between two cylinders.

DISCUSSION

Let us discuss here the main results that have been obtained. We found in the D-H limit that, for any

imposed electric field or potential at the particle surface, the only possible attractive regime exists for

non-symmetrical boundary conditions as expected from previous works (Neu 1999). On the quantitative

point of view for any imposed electric field or potential, we found in the D-H limit that the (attractive or

repulsive) force display a divergent behavior with the minimum distance hm , which is (λ/hm)
2 for a sphere

or a (λ/hm)
3/2 for a cylinder.

These results differ from the one obtained for Stern layer boundary conditions at the iso-electric point.

For two spheres, the force decreases up to a critical ratio of hm/λ, which is related to the parameter βc

below which the local pressure tends to zero. The total force, then, decays to zero for very small hm/λ

values due to the fact that, at small separation among the two spheres, the only admissible solution is a zero

potential, which leads to zero interaction. This is obviously the leading-order behavior of the force, up to

some O(ε) correction.

This behavior is similar for two cylinders for which a local minimum can be observed for a small

value of the Stern layer parameter μ. Both behaviors are very different from those obtained for prescribed

electric field and potential.

In any case, two important remarks have to be added to better grasp the validity range of the pre-

sented results in the Stern layer case.

First, it is interesting to note that our computation is not valid for very small value of hm/λ � 1.

It is important to realize that the most substantial part of potential variations is mostly concentrated in the

thin region of width
√

ahm , whereas it is very small outside this region. Since there is no interaction for

distances smaller than βc, for there is no local pressure, a critical in-plane distance rc is associated with

the critical parameter βc, such that
√
βc/2 = hm/λ(1 + r2

c /2) for any interaction to occur. If rc exceeds
√

ahm , our leading order estimate will not give an accurate answer to the resulting very small interaction
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that will be associated to the problem. This gives a lower bond for the ratio hm/λ, which has to be larger

than hm/λ > 2βcε for our analysis to be valid.

For smaller value of the hm/λ, one should, then, consider the influence of O(ε) corrections to the

force, which might change the final picture.

CONCLUSION

We compute the electro-osmotic interaction among two particles when the gap hm is smaller than the Debye

length λ. We have shown that, in the confined regime for which hm � a and hm < λ, the problem can be

mapped onto an one dimensional planar formulation in a reduced parameter z/h0(r), which encapsulate

any radial shape of the particles. We analyzed the influence of a Stern layer boundary condition at the iso-

electric point on the interaction, and found distinct new and interesting behavior for the particle interaction.

Further extension of this work to non iso-electric point situations could be considered in the future.
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RESUMO

Quando o comprimento de Debye é comparável ou maior do que as distâncias entre duas partículas idênticas, a

interseção entre as duplas camadas pode desempenhar papel importante na interação entre elas. Este artigo apresenta

uma análise teórica da interação entre duas partículas idênticas as quais apresentam interseção entre as camadas duplas.

Nós particularmente focamos a análise sobre o efeito da condição eletrostática de Stern a partir da linearização da

isoterma de adsorção perto do ponto isoelétrico para capturar como a condensação do íon polivalente afeta e reverte a

densidade de carga superficial. O problema que governa o potencial estacionário é resolvido no contexto de uma teoria

assintótica de lubrificação para o modelo de Poisson-Boltzmann. O modelo é analisado para partículas cilíndricas e

esféricas. Os resultados são finalmente discutidos no contexto do limite de Debye-Hückel e além dele.

Palavras-chave: atração entre partículas, camadas de Stern, problema de Poisson-Boltzmann, interação entre duplas

camadas.
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