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Bayesian inference for the log-symmetric
autoregressive conditional duration model
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Abstract: This paper adapts Hamiltonian Monte Carlo methods for application in
log-symmetric autoregressive conditional duration models. These recent models are
based on a class of log-symmetric distributions. In this class, it is possible to model both
median and skewness of the duration time distribution. We use the Bayesian approach
to estimate the model parameters of some log-symmetric autoregressive conditional
duration models and evaluate their performance using a Monte Carlo simulation study.
The usefulness of the estimation methodology is demonstrated by analyzing a high
frequency financial data set from the German DAX of 2016.
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distributions.

INTRODUCTION

Bibliographical review and preliminaries

The concept of log-symmetry appears when a random variable presents the same distribution as its
reciprocal, or in terms of ordinary symmetry regarding the distribution of the logged random variable;
see Jones (2008). The class of distributions having this property is called log-symmetric and it has
been used to describe the behavior of strictly positive data. The log-symmetric class encompasses
bimodal distributions as special cases, and distributions that possess either lighter or heavier tails
than the log-normal distribution, which is a particular case of this class; see e.g., Vanegas & Paula
(2016b). Some examples of log-symmetric distributions are: log-normal, log-Student-t, log-logistic,
log-Laplace, log-Cauchy, log-power-exponential, log-slash, harmonic law, Birnbaum-Saunders, and
Birnbaum-Saunders-t; see e.g., Crow & Shimizu (1988), Birnbaum & Saunders (1969), Rieck & Nedelman
(1991), Johnson et al. (1994, 1995), Díaz-García & Leiva (2005), Marshall & Olkin (2007), Jones (2008), and
Vanegas & Paula (2016b).

The class of log-symmetric distributions has been primarily used in the regression context.
Vanegas & Paula (2016a) proposed log-symmetric regression models which allow both the median
and skewness (or the relative dispersion) be described using an arbitrary number of non-parametric
additive components. Vanegas & Paula (2016b) studied some interesting properties of the
log-symmetric class of distributions. Vanegas & Paula (2016c) proposed an extension to allow the
presence of non-informative left or right-censored data in log-symmetric regressionmodels. Medeiros
& Ferrari (2017) discussed the issue of testing hypothesis in symmetric and log-symmetric regression
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models. In special, the authors considered the Wald, likelihood ratio, score and gradient tests for this
purpose. Finally, Ventura et al. (2019) analyzed movie business data using log-symmetric regression
models.

High frequency financial data on transactions have been modeled primarily by autoregressive
conditional duration (ACD) models, which were proposed by Engle & Russell (1998). These models are
commonly used to capture the clustering structure and they can be seen as the counterpart of GARCH
models for modeling trade duration (TD) data; see Liu & Heyde (2008). We strongly recommend
reading the works by Pacurar (2008) and Bhogal & Variyam (2019), which are literature reviews on
ACD models. Some characteristics concerning TD data are: (C1) the irregular nature with respect to
the way they are collected; (C2) the diurnal intra-day pattern; (C3) the large number of observations;
(C4) the probability density function (PDF) with asymmetric shape; and (C5) the hazard rate (HR) with
inverse bathtub shape (unimodal); see e.g., Leiva et al. (2014). Extensions of the original ACD model
proposed by Engle & Russell (1998) are basically based on the following aspects: (A1) the distributional
assumption in order to yield an asymmetric PDF and an unimodal HR; (A2) the linear form for the
conditional mean or median dynamics; (A3) and the time series properties; see, for example, Bauwens
& Giot (2000), Grammig & Maurer (2000), Meitz & Terasvirta (2006), Chiang (2007), Pacurar (2008),
Bhatti (2010), Leiva et al. (2014), Diana (2015), Dionne et al. (2015), Zheng et al. (2016), Saulo et al.
(2019), and Mishra & Ramanathan (2017).

Recently, Saulo & Leao (2017) proposed a family of ACD models based on the class of
log-symmetric models. The log-symmetric ACD models encompass all the log-symmetric distributions
cited at the beginning of this introduction as special cases, that is, they encompass highly competitive
performance models in the literature. For example, the log-normal-ACD, Birnbaum-Saunders-ACD
and Birnbaum-Saunders-t-ACD models; see Xu (2013) and Leiva et al. (2014). The log-symmetric
ACD models are written in terms of a conditional median duration rather than a conditional mean
duration - the typical parameter used in the literature is the mean. The use of the median is
more interesting because it is a measure of central tendency better than the mean, besides the
median-based approach provides additional protection against outliers; see Saulo et al. (2019). On
the other hand, the log-symmetric family provides a wide range of asymmetric distributions with HR
with inverse bathtub shape. Therefore, characteristics (C4) and (C5) and aspects (A1) and (A2) are
addressed by the log-symmetric ACD models.

The flexibility provided by the log-symmetric family makes its corresponding ACD models an
important area to be explored in the literature. In this context, this paper deals with the problem
of Bayesian inference for log-symmetric-ACD models. The estimation methodology is based on the
Hamiltonian Monte Carlo (HMC) method, which generates chains both with little dependence and
high probability of acceptance (Neal 2011). The main advantage of log-symmetric ACD models is the
robustness property of the median, namely, it is not affected by extremes or outliers. In terms of
predictions, it implies that they will not be significantly affected by freak events; see Saulo et al.
(2019).
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Log-symmetric distributions

A continuous and positive random variable X follows a log-symmetric distribution if its PDF is given
by

fX(x; θ,φ, g(·)) =


1√
φxg

(
a2(x)

)
, x > 0,

0, otherwise,
(1)

where a(x) = log
(
[x/θ]1/

√
φ
)
, θ > 0 is a scale parameter, φ is a power parameter and g is a density

generator with g(u) > 0 for u > 0 and
∫∞
0 u–1/2g(u)du = 1. Note that gmay involve an extra parameter

ξ or an extra parameter vector ξξξ. In this case, the notation X ∼ LS(θ,φ, g) is used. For example, in order
to obtain a random variable X following a log-normal, log-Student-t (having ξ degrees of freedom),

log-Laplace or log-slash distribution, we use, respectively, g(u) ∝ exp
(
–12u

)
, g(u) ∝

(
1 + u

ξ

)– ξ+1
2 ,

g(u) ∝ exp
(
–12u

1
2

)
, g(u) ∝ IGF

(
ξ+ 1

2 ,
u
2

)
, where IGF(a, x) = 1

xa
∫ x
0 exp(–t)t

a–1dt is the incomplete
gamma function for a > 0 and x ≥ 0. The quantile function of the log-symmetric distribution is given
by

tX(q; θ,φ, g(·)) = θ exp
[√

φvξ(q)
]
, (2)

where vξ(q) is the q×100th quantile of V =
(Y–μ)√

φ
∼ S(μ = 0,φ = 1, g(·)), with the notation S referring

to symmetrical distributions.
Some statistical properties related to a random variable X following a log-symmetric distribution,

namely X ∼ LS(θ,φ, g), are: (P1) X? =
(
X
θ

)1/√φ
∼ LS(θ = 1,φ = 1, g) is standard log-symmetric

distributed; (P2) cX ∼ LS(cθ,φ, g), with c > 0; (P3) Xc ∼ LS(θc, c2φ, g), with c 6= 0; (P4) θ is the the
median of the distribution of X; and (P5) setting Y = log(X); (Vanegas & Paula 2015). With this, we
obtain a symmetric random variable whose distribution belongs to the symmetric class with PDF given
by

fY(y; μ,φ, g(·)) =
1√
φ
g

(
(y – μ)2

φ

)
, y ∈ R, (3)

where μ = log(θ) ∈ R is a location parameter, φ > 0 is a dispersion parameter and g is as in (2); see
Fang et al. (1990) and we write Y ∼ S(μ,φ, g). The properties (P2) and (P3) say that the log-symmetric
distribution is closed under scale and reciprocal transformations, respectively.

Organization of the paper

The rest of this paper proceeds as follows. The log-symmetric ACD models are formulated in
Section LOG-SYMMETRIC ACD MODELS, with parameters estimated by the Bayesian approach using
HMC algorithm. In Section NUMERICAL EVALUATION we present a numerical evaluation of the
proposed model considering the (i) evaluation of this model via Monte Carlo (MC) simulations and;
(ii) application of a real-world high-frequency financial data. Some concluding remarks and possible
future research are mentioned in Section CONCLUDING REMARKS.
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LOG-SYMMETRIC ACD MODELS

Consider a sequence of successive times T1, . . . , Tn at which market events, or trades, occur. Then, the
duration or time elapsed between Xi and Xi–1, for i = 1, . . . ,n, is given by Xi = Ti – Ti–1. The family of
log-symmetric ACD models introduced by Saulo & Leao (2017) considers a dynamic point process in
terms of a conditional median duration

θi = tX(0.5; θi,φi, g),

where tX(·) is the quantile function (QF) of the log-symmetric distribution presented in (2) and Ωi–1 is
an information set including all information available until time Ti–1. The log-symmetric ACD model
is defined by

Xi = θi ε
√

φi
i , i = 1, . . . ,n, (4)

where {εi} are independent identically distributed (IID) random variables following a log-symmetric
distribution with median and power equal to one, denoted by εi

IID∼ LS(1, 1, g), and θi and φi are
the median and skewness of the Xi distribution, respectively, as Xi

IND∼ LS(θi,φi, g), then the Xis are
independent (IND) not identically distributed. The linear form of (4) is given by

log(Xi)︸ ︷︷ ︸
Yi

= log(θi)︸ ︷︷ ︸
μi

+
√
φi log(εi)︸ ︷︷ ︸

εi

, i = 1, . . . ,n, (5)

where εi
IND∼ S(0, 1, g(·)), namely {εi}, are IID random variables following a standard symmetric

distribution with PDF given by (3). Then, we write Yi
IND∼ S(μi,φi, g).

The component θi in (4) is defined in terms of autoregressive (AR) and moving average (MA)
processes, of order p and q respectively, as

log(θi) = $ +
∑p
j=1 αj log(θi–j) +

∑q
j=1 βj

(
Xi–j
θi–j

)
, (6)

where$ > 0, αj ≥ 0 and βj ≥ 0. Then, the notation LSACD(p, q) is used. The order of lags for LSACD(p, q)
models, in general, are set as p = 1 and q = 1, because a higher order does not improve the model
fit; see Bhatti (2010). Thereby, in the following, any LSACD(p = 1, q = 1) model is simply denoted as
LSACD. Moreover, for simplicity’s sake, it is assumed that φi = φ, for i = 1, . . . ,n.

Bayesian inference

The Bayesian inference is based on the Bayes theorem

π(θθθ,φi | X) ∝ fX|θ,φ(xi|θi,φi; g(·))π(θθθ,φi),

where π(θθθ,φi | X) is the posterior distribution and π(θθθ,φi) is the prior distribution. We will use the
following estimator

θ̂θθ = Eθθθ|y[θθθ], (7)

which minimizes the expected squared error of the estimate. The Equation (7) is analytically
intractable. Therefore, we adopt HMC sampling strategies for obtaining samples from the joint
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posterior distributions and adopt the sample mean of the HMC simulation as an estimator of Eθθθ|y[θθθ].
In the next subsection, we present the HMC methodology.

The HMC is a method which combines alternately Gibbs updates and Metropolis ones and avoids
the random walk behavior. The main advantage of using HMC as opposed to other methods is to
generate chains both with little dependence and high probability of acceptance (Neal 2011), especially
when compared to the Metropolis-Hastings algorithm. The HMC method is implemented in the R
package rstan; see www.R-project.org and R-Team (2019). Consider a random vector θθθ ∈ Rk as
position variables (parameters) and r ∈ Rk an independent auxiliary random vector, with r ∼ Nk(0,M).
The joint PDF of (θθθ, r) is given by

π(θθθ, r) ∝ exp(–H(θθθ, r)), (8)

where H(θθθ, r) = U(θθθ)+K(r) is a Hamiltonian function, U(θθθ) = – log[π(θθθ | y)π(θθθ)] is called the potential
energy and K(r) = rM–1r is called the kinetic energy.

This method considers a candidate to (θθθ, r) which is generated in two stages before being
subjected to a Metropolis acceptance step. These stages are presented in Algorithm 1

Algorithm 1 Steps before to acceptance Metropolis
Step 1. Generate a random number of a normal distribution with mean 000 and covariance matrix MMM independently
of θ.
Step 2. The joint system (θθθ, r) made up of the current parameter values θθθ, and new momentum r through
Hamiltonian dynamics operates. The system is evolved via Hamilton’s equations:

∂θθθ

∂t =
H(θθθ, r)
∂r =

∂K(r)
∂r ,

∂r
∂t =

H(θθθ, r)
∂θθθ

= –∂U(θθθ)
∂θθθ

.

Hamilton’s equations must be approximated by discretizing time, using some small step-size, ε. The leapfrog
method has been used to solve the Hamilton’s equations, which works as follows:

ri(t + ε/2) = ri(t) – (ε/2)
∂U(θθθ(t))

∂θi
,

θi(t + ε) = θi(t + ε/2) – ε
∂K(r(t + ε/2))

∂ri
,

ri(t + ε) = ri(t + ε/2) – (ε/2)
∂U(θθθ(t + ε))

∂θi
.

It applies L leapfrog steps, a total of Lε time is simulated. The resulting state at the end of the simulation (L
repetitions of the three steps above) is denoted by (θθθ∗, r∗). Applying the Metropolis algorithm, the state (θ∗,ω∗)
is then accepted as the next state of the Markov chain with probability

P(θθθ,ωωω;θθθ∗,ωωω∗) = min{1, exp{H(θθθ,ωωω) – H(θθθ∗,ωωω∗)}}.

NUMERICAL EVALUATION

In this section, we carry out a simulation study to evaluate the performance of the Bayesian estimators
of some log-symmetric ACD models. Then, we illustrate the proposed methodology by applying it to a
real-world high-frequency financial data set. This data set refers to price durations of BASF-SE stock
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on 19th April 2016 downloaded from the Dukascopy site (www.dukascopy.com). We consider the ACD
models based on the following log-symmetric distributions: log-normal (LNACD), log-Laplace (LLACD),
log-Student-t (LtACD) and log-slash (LSACD). To estimate the parameters of the model, we used the
HMC algorithm using rstan in the R software. In Stan’s programming language the convergence of a
Markov chain to a stationary distribution by no-U-turn sampler (NUTS) which is even more efficient
at exploring the posterior; see Hoffman & Gelman (2014). The interested reader in Stan programming
language and HMC algorithm is referred to Hoffman & Gelman (2014) and Carpenter et al. (2017).

A simulation study

The scenario considers: sample size n ∈ {500, 2000, 5000}, vector of true parameters (ω, α, β,φ)> =

{0.10, 0.90, 0.10, 0.50} for LNACD and LLACD models; (ω, α, β,φ, ξ)> = {0.10, 0.90, 0.10, 4.00} for LtACD
and LSACD models, and the following independent prior distributions: ω ∼ N(0, 100)I(ω > 0); α ∼
N(0, 100)I(0 ≤ α ≤ 1); β ∼ N(0, 100)I(0 ≤ β ≤ 1); μ ∼ N(0, 100); ξ ∼ N(0, 100)I(ξ > 2) if εt ∼ log-tξ;
and ξ ∼ N(0, 100)I(ξ > 1) if εt ∼ log-slashξ.

For each value of the parameter and sample size, we report the empirical values for the mean,
median, standard deviation (SD) and the percentage of data sets where the true parameter value was
contained inside the Bayesian 90% and 95% credible intervals: this is the MC estimate of frequentist
coverage for an interval estimator. The estimates computed by the Bayesian approach are presented
by Tables I and II. As the sample size increases, the Bayesian estimators become more efficient.
Therefore, in general, all of these results show the good performance of the Bayesian estimators of
the corresponding parameters.

Analysis of high-frequency financial transaction data

We now illustrate the log-symmetric ACDmodels by analyzing the BASF-SE data set. A data adjustment
is necessary due to the fact that these data often exhibit certain diurnal patterns; see Tsay (2002). We
used the R package ACDm (see Belfrage 2015) to perform the diurnal adjustment of the BASF-SE data. We
simulated two chains with 1500 iterations and discarded the first 500 as burn-in. Table III presents
some descriptive statistics for the BASF-SE data set, including central tendency statistics, standard
deviation (SD), coefficient of variation (CV), skewness (CS) and kurtosis (CK). From Table III, we observe
the right skewed nature and high kurtosis level of the data distribution. The skewness is ratified by
the histogram showed by Figure 1(a).

A tool to characterize the shape of a hazard rate is the scaled total time on test (TTT) function; see
Aarset (1987). The hazard rate of a random variable X is defined by h(x) = f (x)/[1 – F(x)], where f and
F are the PDF and cumulative distribution function (CDF) of X. The scaled TTT function is defined by
W(u) = H–1(u)/H–1(1), for 0 ≤ u ≤ 1, where H–1(u) =

∫ F–1(u)
0 [1 – F(y)]dy, with F–1 being the inverse

function of the CDF of X. An approximation for W is obtained by plotting the points [k/n,Wn(k/n)],
with

Wn(k/n) =
∑k
i=1 x(i) + [n – k]xk∑n

i=1 x(i)
, k = 1, . . . ,n,

and x(i) being the ith observed order statistic. Figure 1(b) suggests that the hazard rate for the BASF-SE
data set is inverse-bathtub-shaped, as expected; see Leiva et al. (2014).
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Table I. Summary statistics from simulated LNACD and LLACD data for the
indicated estimators and nnn.

Statistic

LNACD LLACD

n n

500 2000 5000 500 2000 5000

ω̂ ω̂

True value 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Mean 0.1607 0.1176 0.0973 0.1928 0.1071 0.0998

Median 0.1467 0.1104 0.0963 0.1848 0.0956 0.0992

SD 0.1196 0.0571 0.0275 0.0892 0.0614 0.0165

CR90% 0.8838 0.8866 0.9022 0.7606 0.8930 0.9004

CR95% 0.9194 0.9318 0.9486 0.8430 0.9404 0.9474

α̂ α̂

True value 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000

Mean 0.8195 0.8831 0.9004 0.8346 0.9135 0.8988

Median 0.8268 0.8872 0.9011 0.8386 0.9197 0.8986

SD 0.0608 0.0310 0.0143 0.0437 0.0322 0.0073

CR90% 0.6774 0.8552 0.9022 0.6056 0.9050 0.8932

CR95% 0.7760 0.9072 0.9502 0.7220 0.9400 0.9506

β̂ β̂

True value 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Mean 0.1686 0.1146 0.1026 0.1344 0.0684 0.1052

Median 0.1682 0.1138 0.1025 0.1340 0.0667 0.1052

SD 0.0289 0.0157 0.0083 0.0203 0.0126 0.0038

CR90% 0.2262 0.7710 0.8830 0.4852 0.6102 0.8932

CR95% 0.3326 0.8552 0.9346 0.6202 0.7276 0.9455

φ̂ φ̂

True value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Mean 0.5212 0.5022 0.4945 0.4391 0.4479 0.4985

Median 0.5209 0.5021 0.4944 0.4383 0.4477 0.4987

SD 0.0161 0.0078 0.0049 0.0195 0.0129 0.0086

CR90% 0.6374 0.8878 0.8956 0.3196 0.8684 0.8974

CR95% 0.7506 0.9392 0.9492 0.4300 0.9264 0.9448
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Table II. Summary statistics from simulated LtttACD and LSACD data for the
indicated estimators and nnn.

Statistic
LtACD LSACD
n n

500 2000 5000 500 2000 5000
ω̂ ω̂

True value 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
Mean 0.0557 0.0985 0.1035 0.2890 0.1224 0.0960
Median 0.0530 0.0985 0.1034 0.2639 0.1221 0.0926
SD 0.0355 0.0021 0.0046 0.1769 0.0425 0.0289
CR90% 0.6292 0.7988 0.8116 0.7702 0.8104 0.9066
CR95% 0.7622 0.8804 0.9540 0.8506 0.8826 0.9536

α̂ α̂

True value 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
Mean 0.9162 0.9001 0.8999 0.7501 0.8857 0.8991
Median 0.9180 0.9001 0.8998 0.7636 0.8864 0.9007
SD 0.0180 0.0007 0.0022 0.0872 0.0218 0.0148
CR90% 0.7542 0.8998 0.8982 0.5314 0.7608 0.9080
CR95% 0.8588 0.9470 0.9476 0.6543 0.8438 0.9528

β̂ β̂

True value 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
Mean 0.1020 0.0993 0.0991 0.1975 0.1061 0.1042
Median 0.1019 0.0992 0.0991 0.1974 0.1059 0.1038
SD 0.0121 0.0013 0.0016 0.0320 0.0119 0.0077
CR90% 0.8396 0.8520 0.8926 0.7920 0.7970 0.8814
CR95% 0.9094 0.9192 0.9430 0.8065 0.8750 0.9348

φ̂ φ̂

True value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Mean 0.4912 0.5070 0.5137 0.5987 0.4986 0.4995
Median 0.4909 0.5069 0.5138 0.6006 0.4943 0.4987
SD 0.0296 0.0140 0.0087 0.0269 0.0303 0.0123
CR90% 0.5236 0.8556 0.8854 0.3420 0.8960 0.9036
CR95% 0.6430 0.9210 0.9416 0.5260 0.9476 0.9496

ξ̂ ξ̂

True value 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000
Mean 3.8302 3.5650 3.9848 5.5243 4.1830 3.9987
Median 3.7381 3.5486 3.9756 5.6100 4.9140 3.9790
SD 0.7377 0.2866 0.2217 0.8520 0.4132 1.4082
CR90% 0.5270 0.9092 0.9024 0.5809 0.9096 0.9023
CR95% 0.6512 0.9584 0.9536 0.6460 0.9160 0.9429

Table III. Summary statistics for the BASF-SE data.

n Minimum Median Mean Maximum SD CV CS CK

2194 0.061 0.682 1.067 9.776 1.167 109.35% 2.521 8.902
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Figure 1(c) shows the usual and adjusted box-plots, where the latter is useful in cases when the
data follow a skew distribution, since a significant number of observations can be classified as atypical
when they are not; see Hubert & Vanderveeken (2008). From Figure 1(c), we note that potential outliers
considered by the usual box-plot are not influential when we observe the adjusted box-plot.

Figure 1. Histogram (left), TTT plot (center) and boxplots (right) for the BASF-SE data.

Table IV reports the Bayesian estimates of the LNACD, LtACD, LLACD and LSACD model parameters
(with estimated standard errors in parentheses). Furthermore, we report the Expected Bayesian
Information Criterion (EBIC), Deviance Information Criterion (DIC), Watanabe-Akaike Information
Criterion (WAIC) and Bayesian Information Criterion (BIC); see Akaike (1992), Watanabe (2010), Schwarz
et al. (1978) and Spiegelhalter et al. (2002).

Table IV. Estimates (with SE in parentheses) for fit to the BASF-SE data.

LNACD LtACD LLACD LSACD

$ –0.3228 (0.0831) –0.3211 (0.0853) –0.2122 (0.0507) –0.2203 (0.0821)

α 0.4748 (0.1673) 0.4809 (0.1681) 0.6646 (0.1145) 0.5819 (0.1632)

β 0.0507 (0.0107) 0.0516 (0.0117) 0.0564 (0.0117) 0.0512 (0.0113)

φ 1.0694 (0.0164) 1.0597 (0.0187) 0.8720 (0.0183) 0.9641 (0.0163)

ξ 6.7067 (1.0554) 7.8025 (4.9732)

AIC 6543.0070 6546.5520 6787.1950 6604.3071

BIC 6562.6380 6571.0910 6806.8260 6643.2816

WAIC 6539.0000 6541.1000 6789.8000 6671.2800

DIC 6524.3930 6590.7080 6815.9870 6695.7233

From Table IV, note that the LNACD model provides the better adjustment compared to the other
models based on the values of EBIC, DIC, WAIC and BIC. Table V reports the estimate of effective sample
size and R statistic of Gelman et al. (1992), we observed that the generated chains were efficient.
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Figure 2. Trace plots and ACF for the LNACD model.

Table V. Estimate of effective sample size and R statistic.

LNACD LtACD LLACD LSACD

n_eff R̂ n_eff R̂ n_eff R̂ n_eff R̂

$ 380 1.00 563 1.01 531 1.01 571 1.01

α 313 1.00 624 1.01 579 1.01 631 1.01

β 384 1.01 748 1.00 515 1.00 683 1.00

φ 358 1.00 1065 1.00 1087 1.00 895 1.00

ξ 2698 1.00 947 1.00 607 1.01

Figure 2 shows the sample autocorrelation function (ACF) and trace plots for the parameters from
LNACD model. From this figure, we can notice the absence of autocorrelation and that the chains
converge to their stationary distributions also observed by the statistic R of the Table V.

CONCLUDING REMARKS

We have discussed Bayesian inference for log-symmetric autoregressive conditional duration models,
which are based on the conditional median duration. We have employed Hamiltonian Monte Carlo
sampling strategies to obtain the estimates of the model parameters. A Monte Carlo simulation study
was carried out to evaluate the behavior of the Bayesian estimates of the corresponding parameters.
We have applied the proposed models to a real-world data set of financial transactions from the
German DAX stock exchange.
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As part of future research, it would be of interest to propose an outlier detection procedure
to detect and estimate outlier effects for these models; see Chiang & Wang (2012). Also, influence
diagnostic tools can be extended to log-symmetric autoregressive conditional duration models; see
Leiva et al. (2014). Work on these issues is currently in progress and we hope to report some findings
in a future paper.
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