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Abstract: We define a new lifetime model based on compounding the Lindley and Nadarajah-Haghighi

distributions. The proposed distribution is very competitive to other lifetime models. Some of its

mathematical properties are investigated including generating function, mean residual life, moments,

Bonferroni and Lorenz curves and mean deviations. We discuss the estimation of the model parameters

by maximum likelihood. We provide a simulation study and two applications to real data for illustrative

purposes. We prove empirically that the new distribution yields good fits to both data sets, and it can be a

useful alternative for other classical lifetime models.

Key words: Compounding approach, Exponential distribution, Lifetime data, Lindley distribution,

Nadarajah-Haghighi distribution.

1 - INTRODUCTION

The Lindley distribution was pioneered by Lindley (1958) in the context of fiducial and Bayesian inference.

It is a mixture of the exponential and length-biased exponential distributions. Let Y be a Lindley random

variable with parameter γ > 0 having probability density function (pdf)

g(y) =
γ

2

1 +γ
(1 + y) e–γy, y > 0,

where the mixing proportion is γ/(1 +γ). The survival function of Y is

G(y) =
(1 +γ+γy)

1 +γ
e–γy.

Various of its statistical properties were discussed in details by Ghitany et al. (2008b). The authors also

showed that the Lindley distribution is quite competitive with the exponential distribution. Gupta and Singh
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(2013) studied the parameter estimation of this distribution with hybrid censored data. Krishna and Kumar

(2011) considered the estimation of its model parameters for progressively type II right censored sample

and Mazucheli and Achcar (2011) applied this distribution to competing risks in lifetime data.

In distribution theory context, some generalizations are obtained based on transformations of the

Lindley distribution. We refer the reader to Nadarajah et al. (2011) for the generalized (or exponentiated)

Lindley, Bakouch et al. (2012) for the extended Lindley, Ghitany et al. (2011) and Al-Mutairi et al. (2015)

for the weighted Lindley, Ghitany et al. (2013) for the power Lindley and Ashour and Eltehiwy (2015) for

the exponentiated power Lindley distributions.

Another technique that has been considered is the discrete-continuous compounding approach. It is

defined by the minimum of N independent and identically continuous random variables, where N is a

discrete random variable.Adamidis and Loukas (1998) pioneered this method by introducing the exponential

geometric distribution.We also find in the literature somemodels obtained from compositions of the Lindley

and other discrete distributions. Sankaran (1970) defined the discrete Poisson-Lindley by combining the

Poisson and Lindley distributions. Zamani and Ismail (2010) presented the negative binomial Lindley

distribution. The zero-truncated Poisson-Lindley and Pareto Poisson-Lindley distributions were introduced

by Ghitany et al. (2008a) and Asgharzadeh et al. (2013), respectively.

The Nadarajah-Haghighi (NH) distribution is a generalization of the exponential distribution first

defined by Nadarajah and Haghighi (2011). Let Z denote a NH random variable with parameters α > 0
and λ > 0. The pdf and survival function of Z

q(z) = αλ(1 +λz)α–1e1–(1+λz)α

and

Q(z) = e1–(1+λz)α ,

respectively. Some generalizations of the NH distribution have been proposed in recent years, such as the

exponentiated Nadarajah-Haghighi (Lemonte 2013) and gamma Nadarajah-Haghighi (Bourguignon et al.

2015), among others. By using the discrete-continuous compounding approach, we have the Poisson gamma

Nadarajah-Haghighi (Ortega et al. 2015) and geometric Nadarajah-Haghighi (Marinho 2016) distributions.

A comprehensive review on compounding method for generating distributions can be found in

Tahir et al. (2016). They pointed out a different compounding approach by taking the minimum

between two continuous distributions. In the discrete-continuous compositions, N is a discrete random

variable representing the number of identical elements having some continuous distribution. For the

continuous-continuous compositions, we suppress the condition to be identically distributed and set

N = 2. Some well-known continuous-continuous compounded models are the additive Weibull (Xie

and Lai 1995, Lemonte et al. 2014), exponential-Weibull (Cordeiro et al. 2014) and generalized

exponential-exponential (Popovíc et al. 2015) distributions, among others.

In this paper, we introduce a new continuous-continuous compounded model referred to as the

Nadarajah-Haghighi Lindley (NHL) distribution. The new three-parameter distribution is obtained by

compounding the Lindley and NH distributions. We assume that Y and Z are independent random variables

and define X = min(Y,Z) as a NHL random variable, whose survival function is given by

F(x) = G(x)Q(x).
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The cumulative distribution function (cdf) of X is

F(x) = 1 –
(1 +γ+γx)

1 +γ
e1–γx–(1+λx)α , (1)

where x > 0. The parametric space of the cdf in (1) can be defined as

Θ = {(α,λ,γ) : α≥ 0,γ≥ 0,λ≥ 0,max(α,γ) > 0,max(λ,γ) > 0}.

The pdf and hazard rate function (hrf) of X are given by

f(x) =
(1 +γ+γx)

[
γ+αλ(1 +λx)α–1

]
–γ

γ+ 1
e1–γx–(1+λx)α (2)

and

h(x) =
(1 +γ+γx)

[
γ+αλ(1 +λx)α–1

]
–γ

γ+γx + 1
,

respectively. Henceforth, we consider that X ∼ NHL(α,λ,γ). The proposed distribution contains as special
models some well-known distributions. For γ = 0, the NHL reduces to the NH distribution. If γ = 0 and

α = 1, we have the exponential distribution. For α = 0 or λ = 0, we have the Lindley distribution.
Figure 1 displays plots of the pdf of X for some parameter values. The new density presents decreasing

and reverse J shaped curve. Figure 2 reveals that the NHL distribution can have decreasing, increasing,

upside-down bathtub and bathtub-shaped hazard functions. This feature makes the new distribution very

competitive to the Weibull, gamma and exponential distributions that exhibit only monotonic hazard rates.

According to Nadarajah et al. (2011) this is a major weakness because most empirical life systems have

bathtub shapes for their hrfs.

Figure 1 - Plots of the NHL density.

The NHL distribution has the following theoretical motivations: (i) It can be useful in engineering and

reliability for modeling a system having two sub-systems functioning in series independently at a given time.

IfY andZ denote the lifetimes of these independent sub-systems following the Lindley andNH distributions,

then the lifetime X of the system has the NHL distribution. Cordeiro et al. (2014) studied a similar situation

for the exponential-Weibull model. (ii) The stochastic representation X = min{Y,Z} can arise in several

An Acad Bras Cienc (2019) 91(1) e20170856 3 | 21
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Figure 2 - Plots of the NHL hazard function.

biological and medical applications. (iii) Nadarajah and Haghighi (2011) mentioned some advantages of the

NH model such as the ability to model data with mode fixed at zero and the fact that it can be interpreted

as a truncated Weibull distribution. The NHL distribution also accumulates this advantages since it has as

special model the NH distribution. (iv) Some of its mathematical properties are easily obtained. Further,

the NHL distribution has some practical motivations: (i) It can be used for modeling data with bathtub and

unimodal failure rates, which are very common in many applied areas. (ii) The finite sample behavior of the

maximum likelihood estimates of the its parameters is adequate. (iii) It is really a very competitive model

to well-known distributions such as the Weibull, exponentiated Weibull, NH and Lindley distributions as

proved empirically in two applications to real data in Section 7.

The rest of this paper is outlined as follows. In Sections 2-4, we obtain a range of mathematical

properties of the NHL distribution. In Section 5, we consider the maximum likelihood method to estimate

the model parameters. We perform a simulation study in Section 6. Two real data applications are provided

in Section 7. Some concluding remarks are offered in Section 8.
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2 - MEAN RESIDUAL LIFE

The mean residual life is a relevant characteristic to the design of safe systems in a wide variety of

applications in engineering and reliability. Given that a component survives up to time x > 0, the residual
life is defined by

m(x) = IE(X – x|X > x) =
1

1 – F(x)

∞∫
x

[1 – F(t)]dt.

It represents the period beyond x until the time of failure. Note that

m(x) =
exγ+(1+λx)α

(1 +γ+γx)

∞∫
x

(1 +γ+γ t)e–γ t–(1+λ t)α dt.

We consider the integral

J =
∞∫

x

(1 +γ+γ t)e–γ t–(1+λ t)α dt.

Setting u = (1 +λ t)α, we have t = (u1/α – 1)/λ. So, the above integral reduces to

J =
1
αλ

∞∫
(1+λx)α

u(1–α)/α[1 +γ+γλ–1(u1/α – 1)]e–u–γλ–1(u1/α–1) du.

By expanding

e–γλ–1(u1/α–1) =
∞

∑
i=0

(–1)i
γ

i(u1/α – 1)i

λii!
,

and using the binomial theorem for (u1/α – 1)i, we can write

m(x) =
eγx+(1+λx)α

αλ(1 +γ+γx)

∞

∑
i=0

(
γ

λ

)i
Ψi(α,λ,γ,x), (3)

where

Ψi(α,λ,γ,x) =
i

∑
j=0

(–1)–j

(i – j)!j!

[
γ

λ
Γ

(
j + 2
α

, (1 +λx)α
)

+
(

1 +γ–
γ

λ

)
Γ

(
j + 1
α

, (1 +λx)α
)]

.

and Γ(a,z) = Γ(a) – γ(a,z) =
∫

∞
z ta–1e–tdt is the upper incomplete gamma function. Note that (3) can be

approximated by setting large values in the upper limit of the sum, say N. Hence,

m(x) ≈ eγx+(1+λx)α

αλ(1 +γ+γx)

N

∑
i=0

(
γ

λ

)i
Ψi(α,λ,γ,x). (4)

For illustrative purposes, we provide a numerical study to analyze de convergence of the expansion

(4) by comparing its results with those from numerical integration. Table I presents the calculations for

N = 5,10,15 and 20 and x = 1. This expansion presents good approximations for the mean residual life.

All computations are obtained using the R software. We provide the scripts for these calculations in the

Appendix A.
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TABLE I

Mean residual life obtained from (4) and by numerical integration.

m(x) α λ γ Numerical integration
Series expansion

N = 5 N = 10

m(1)
1.2 1.5 0.5 0.3970 0.3962 0.3970

1.5 2.0 1.5 0.1519 0.1081 0.1519

2.5 1.5 0.5 0.0629 0.0629 0.0629

3 - GENERATING FUNCTIONAND MOMENTS

We denote by M(t) the moment generating function (mgf) of X. From Equation (2), we obtain

M(t) =
e

1 +γ

∫
∞

0

{
(γ+γx + 1)[γ+αλ(1 +λx)α–1] –γ

}
ex(t–γ)–(1+λx)αdx.

Setting u = (1 +λx)α, we have

M(t) =
e

αλ(1 +γ)

∫
∞

1
u

1–α
α

{
[γ+γλ–1(u1/α – 1) + 1](γ+αλu

α–1
α ) –γ

}
× exp

{
(u1/α – 1)(t –γ)

λ
– u

}
du.

By expanding

exp

{
(u1/α – 1)(t –γ)

λ

}
=

∞

∑
i=0

(u1/α – 1)i(t –γ)i

λii!
,

using the binomial theorem for (u1/α – 1)i and, after some algebra, we obtain (for γ > 0 and t < γ)

M(t) =
e

1 +γ

∞

∑
i=0

(
γ– t
λ

)i
Ψi(α,λ,γ),

where

Ψi(α,λ,γ) =
i

∑
j=0

(–1)j

j!(i – j)!

[
γ

λ
Γ

(
j + 1
α

+ 1, 1
)

+
γ

2

αλ2
Γ

(
j + 2
α

, 1
)

+
(

1 +γ–
γ

λ

)
Γ

(
j +α
α

, 1
)

+
γ

2(λ– 1)
αλ2

Γ

(
j + 1
α

, 1
)]

.

The generating function M(t) is useful for computing moments of the NHL distribution by

differentiation. Thus, to considering values of the parameters α, λ and γ for which the above expansion

converges, the nth derivative gives

M(n)(t) =
(–1)n e
1 +γ

∞

∑
i=n

(i)n
(γ– t)i–n

λi
Ψi(α,λ,γ),
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where (i)n = i(i – 1) · · · (i – n + 1) is the falling factorial. Therefore,

μ
′
n = M(n)(0) =

(–1)n e
1 +γ

∞

∑
i=n

(i)n
γ

i–n

λi
Ψi(α,λ,γ).

It is possible to obtain an approximation for μ′n by truncating the previous expansion. Hence, for N large

enough,

μ
′
n ≈ (–1)n e

1 +γ

N

∑
i=n

(i)n
γ

i–n

λi
Ψi(α,λ,γ). (5)

We use the R software to compute μ′n from (5) and compare the results with those obtained by numerical

integration. Table II presents the results for some parametric values and N = 5,10,15 and 20. In fact, they

illustrate that the proposed expansion provides reasonable approximations for the moments. For n = 1, note
that the series converges for all selected parameterizations even for very small N = 5. More terms may be

required when n increases. We provide the scripts for these calculations in Appendix A.

TABLE II

First four moments obtained from (5) and by numerical integration.

μ
′
n α λ γ Numerical integration

Series expansion

N = 5 N = 10 N = 15

μ
′
1

1.2 1.5 0.5 0.45973 0.46241 0.45973 0.45973

1.5 2.0 1.5 0.22280 0.23134 0.22278 0.22280

2.5 1.5 0.5 0.18676 0.18677 0.18676 0.18676

μ
′
2

1.2 1.5 0.5 0.39537 0.36964 0.39540 0.39537

1.5 2.0 1.5 0.09018 0.06314 0.09031 0.09018

2.5 1.5 0.5 0.05757 0.05756 0.05757 0.05757

μ
′
3

1.2 1.5 0.5 0.48550 0.67914 0.48488 0.48550

1.5 2.0 1.5 0.05092 0.11772 0.05013 0.05092

2.5 1.5 0.5 0.02317 0.02327 0.02317 0.02317

μ
′
4

1.2 1.5 0.5 0.76476 –0.28626 0.77456 0.76475

1.5 2.0 1.5 0.03616 –0.08171 0.04024 0.03615

2.5 1.5 0.5 0.01116 0.01057 0.01116 0.01116

The central moments (μn) and cumulants (κn) of X can be determined from these raw moments

using well-known relationships. An alternative expression for the skewness of X can be expressed as

(MacGillivray 1986)

ρ(u) = ρ(u;α,β,γ) =
Q(1 – u) + Q(u) – 2Q(1/2)

Q(1 – u) – Q(u)
,

where u ∈ (0,1) and Q(·) = F–1(·) is the quantile function (qf) of X. If X follows a symmetric distribution,

[Q(1 – u) + Q(u)]/2 equals the median of X for all u, and the numerator of ρ(u) is zero. Thus, the farther ρ(u)
is from the horizontal line ρ(u) = 0, means higher asymmetry. Decrescent form in ρ(u) indicates positive
asymmetry. Plots of the MacGillivray skewness for some parameter values are displayed in Figure 3. Note

that for λ = 1.0 and γ = 0.1, increases in α imply less skewed to the left allowing to model data with a

An Acad Bras Cienc (2019) 91(1) e20170856 7 | 21
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distribution of heavy tails. An opposite result is observed by setting α = 0.5 and γ = 0.1 and increasing λ.

Less asymmetric distributions arise for higher values of λ.

Figure 3 - Skewness of the NHL distribution for some parameter values.

4 - INCOMPLETE MOMENTS

The sth incomplete moment of X is defined by ms(y) =
∫ y

0 xn f(x)dx. Thus, by inserting (2) in ms(y), we
have

ms(y) =
e

1 +γ

∫ y

0
xs
{

(γ+γx + 1)[γ+αλ(1 +λx)α–1] –γ
}

e–λx–(1+λx)αdx.

Using the exponential and binomial expansions, we obtain

ms(y) =
(–1)s e

αλ1+s(1 +γ)

∞

∑
i=0

1
i!

(
γ

λ

)i
Ψs,i(y;α,λ,γ), (6)

where

Ψs,i(y;α,λ,γ) =
s+i

∑
j=0

(–1)j(s + i)j

j!

[
αλΓ

∗
y

(
j + 1
α

+ 1,
)

+
γ

2

λ
Γ
∗
y

(
j + 2
α

)

+
γ

2(λ– 1)
λ

Γ
∗
y

(
j + 1
α

)
+α(λ–γ+λγ)Γ∗y

(
j
α

+ 1
)]

,

and Γ∗y(a) = γ(a, (1 +λy)α) –γ(a,1) =
∫ (1+λy)α

1 ta–1e–tdt.
We compute approximations forms(y) by setting values in the upper limit of the sum of equation (6). The

results for some parameter values and y are shown in Table III. This expansion presents good approximations
for the incomplete moments. We provide the scripts for these calculations in Appendix A.
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TABLE III

Incomplete moments obtained from (6) and by numerical integration.

ms(x) α λ γ Numerical integration
Series expansion

N = 2 N = 5

m1(0.5)

1.2 1.5 0.5 0.1380 0.1381 0.1380

1.5 2.0 1.5 0.1559 0.1604 0.1559

2.5 1.5 0.5 0.1609 0.1610 0.1609

m1(1)

1.2 1.5 0.5 0.3072 0.3095 0.3072

1.5 2.0 1.5 0.2166 0.2489 0.2161

2.5 1.5 0.5 0.1866 0.1869 0.1866

m2(0.5)

1.2 1.5 0.5 0.0421 0.0422 0.0421

1.5 2.0 1.5 0.0421 0.0439 0.0421

2.5 1.5 0.5 0.0417 0.0417 0.0417

m2(1)

1.2 1.5 0.5 0.1663 0.1681 0.1663

1.5 2.0 1.5 0.0829 0.1062 0.0825

2.5 1.5 0.5 0.0574 0.0576 0.0574

Equation (6) is the main result of this section. In various practical situations, the shape of many

distributions can be usefully described by the incomplete moments. For example, the mean deviations about

the mean and median and Lorenz and Bonferroni curves are simple applications of the first incomplete

moment. Nowadays in the literature, these curves are the most used curves in inequality analysis. Also, note

that (6) can be used to approximate μ′n by setting large values in y.
For a given probability π, the Lorenz and Bonferroni curves are defined by B(π) = m1(q)/(πμ′1) and

L(π) = m1(q)/μ′1, respectively, where q = Q(π) is the qf ofX evaluated at π. Plots of the Lorenz and Bonferroni

curves for some parameter values are displayed in Figure 4.

Further, the dispersion of X can be measured to some extent by the mean deviations around the mean

μ
′
1 and median m given by δ1 = 2μ′1 F(μ′1) – 2m1(μ′1), and δ2 = μ′1 – 2m1(m), where m = Q(0.5).

5 - MAXIMUM LIKELIHOOD ESTIMATION

Let x1, · · · ,xn be a sample of size n from the NHL(α,λ,γ) distribution and θ = (α,λ,γ)T the parameter vector

of interest. The log-likelihood function for θ based on this sample is given by

`(θ) = n –γ
n

∑
i=1

xi –
n

∑
i=1

(1 +λxi)
α – nlog(1 +γ) (7)

+
n

∑
i=1

log
{

(1 +γ+γxi)
[
γ+αλ(1 +λxi)

α–1
]

–γ
}

.

Themaximum likelihood estimates (MLEs) of themodel parameters can be obtained bymaximizing (7).

There are several routines for numerical maximization in the R program (optim function), SAS

An Acad Bras Cienc (2019) 91(1) e20170856 9 | 21
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Figure 4 - (a) Bonferroni curves for the NHL model for some parameter values; (b) Lorenz curves for the NHL model for some

parameter values.

(PROC NLMIXED), Ox (MaxBFGSsub-routine), among others. Alternatively, we can differentiate (7) and

solve the resulting nonlinear likelihood equations using the quasi-Newton BFGS and Newton-Raphson

algorithms. The score components can be obtained from the authors under request.

Under standard regularity conditions and for large n, the distribution of θ̂ can be approximated by

a trivariate normal N3(0, J(θ̂)–1) distribution, where J(θ) is the observed information matrix. In addition,

this approximation can also be used for constructing confidence regions and testing hypotheses on the

parameters.

6 - SIMULATION STUDY

In this section, we provide a Monte Carlo simulation study to evaluate the adequacy of the MLEs of the

parameters of the NHL distribution. The simulations are performed by generating observations from eight

scenarios with different parameter combinations. Note that the cdf in (1) can only be inverted numerically.

However, it is possible generating random numbers by using the qfs of the Lindley and NH distributions.

Jodrá (2010) used the Lambert W function to generate random numbers from the Lindley distribution.

If Y ∼ Lindley(γ) has cdf FY(y), the qf of Y is

F–1
Y (u) = –1 –

1
γ

–
1
γ

W–1

[
1 +γ

exp(1 +γ)
(u – 1)

]
, 0 < u < 1,

whereW–1 is the negative branch of the LambertW function, which can be implemented in R (lamW package)
or C (GNU Scientific Library).

On the other hand, if Z ∼ NH(α,λ) has cdf FZ(z), the qf of Z is

F–1
Z (u) =

1
λ

{
[1 – log(1 – u)]1/α – 1

}
, 0 < u < 1.

Then, we can generate an observation x from the NHL distribution as follows:

An Acad Bras Cienc (2019) 91(1) e20170856 10 | 21
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1. Generate u1 and u2 independently from the uniform U (0,1) distribution;

2. Calculate y = F–1
Y (u1) (observation from the Lindley distribution);

3. Calculate z = F–1
Y (u2) (observation from the NH distribution);

4. Finally, calculate x = min(y,z).

The number of Monte Carlo replications is set at N = 10,000. We use the optim subroutine with

analytical derivatives in R for maximizing the log-likelihood function. We compare the performance of the

estimators by computing the mean estimates and root mean square errors (RMSEs) from N Monte Carlo

replications. We take the sample size as n ∈ {50,100,300,500}.
The simulation results are given in Table IV.As expected, under first-order asymptotic theory, the mean

estimates of the parameters tend to be closer to the true values and the RMSEs decrease when the sample

size n increases for all scenarios. The MLEs of λ and γ are more accurate than those of α. It is noteworthy

that the estimates of α have considerable biases, specially in small samples. Nevertheless, we can build

bias-corrected point estimator through bootstrap method, see Davison (1997).

The non-parametric bootstrap procedure for bias correction applied in this paper can be described as

follows:

1. Letting x = x1, . . . ,xn be a observed random sample, we obtain the MLE θ̂ for the NHL parameter

vector θ;

2. From the original data, generate a bootstrap sample x∗b = (x∗b
1 , . . . ,x∗b

n ), that is, take a size n random

sample from x with replacement;

3. Calculate the MLE of θ from the bootstrap sample x∗b, namely θ̂
∗
;

4. Repeat the steps (2) and (3) for a very large number B of times, thus obtaining θ̂
∗1

, . . . , θ̂
∗B
;

5. Compute the bias estimate by B(θ̂) =
[

1
B

B
∑

b=1
θ̂
∗b
]

–θ;

6. The bias corrected estimate of θ is given by θ̄ = θ̂– B(θ̂).

In order to evaluate the effectiveness of such correction, we carry out a separate simulation

experiment. The numbers of Monte Carlo and bootstrap replications are equal to 1,000 and n varies in

{20,30,50,70,100}. We study the performance of the bootstrap bias corrected estimates by computing the

total relative bias defined in Cribari-Neto and Soares (2003), which is a measure given by the sum of the

absolute values of the individual relative biases. Thus, the total relative bias is an aggregate measure of the

biases of the parameters estimates.

The plots in Figure 5 show the behavior of the total relative bias for the uncorrected and corrected

estimators. They reveal that the corrected estimators are more reliable than the MLEs in small sample sizes.

In fact, the corrected estimators outperform the usualMLEs for both scenarios. In addition, it is also observed

that the asymptotic property of unbiasedness of both estimators is satisfied, because their biases decrease

when the sample size increases.
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Figure 5 - Total relative bias of the estimator for (a) Scenario 2 and (b) Scenario 5.

7 - APPLICATIONS

In this section, we fit the NHL distribution to two real data sets. They illustrate the potentiality of this

distribution for modeling positive data. The first data set represents the times to reinfection of sexually

transmitted diseases (STDs) for eight hundred and seventy seven patients. The data are taken from Section

1.12 of Klein and Moeschberger (1997). The second data set corresponds to the exceedances of flood peaks

(inm3/s) of theWheaton River near Carcross inYukonTerritory, Canada. The data consist of 72 exceedances

for the years 1958 – 1984, rounded to one decimal place, see Choulakian and Stephens (2001). Table V

provides a descriptive summary for both data sets.

Note that the first data set has large amplitude and variance. Its measures of central tendency, such as

mean, median and mode, are quite distant when compared among them. Besides, both data sets present

positive values for the skewness and kurtosis. The exceedances of flood peaks data also present large

amplitude and variance, but their values are lower than those for reinfection times.

For modeling these data sets, we fit the NHL distribution and also considered the fits of six related

distributions: the ENH introduced by Lemonte (2013) with pdf

f(x) = αβλ
(1 +λx)α–1 exp{1 – (1 +λx)α}[

1 – exp{1 – (1 +λx)α}
]1–β , x > 0,

where α > 0 and β > 0 are shape parameters and λ > 0 is a scale parameter; the exponentiated Weibull (EW),

whose pdf is

f(x) = αβλxα–1 exp
(
–λxα

)
[1 – exp

(
–λxα

)
]β–1, x > 0,

where α > 0 and β > 0 are shape parameters and λ > 0 is a scale parameter; theWeibull model arises from the

EW model when β = 1; and the NH, Lindley and exponential distributions, which are NHL special models.

We estimate the NHL parameters and the parameters for the above models by maximum likelihood.

Based on the results in Section 6, the MLEs obtained for the exceedances of flood peaks data are obtained

from the bootstrap bias corrected estimators, with B = 1,000. The goodness-of-fit statistics considered are:
Akaike information criteria (AIC), consistent Akaike information criteria (CAIC), Kolmogorov-Smirnov
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TABLE IV

Monte Carlo results: mean estimates and RMSEs.

Scenario α λ γ n
Mean RMSE

α̂ λ̂ γ̂ α̂ λ̂ γ̂

1 0.1 0.2 0.3

50 0.4136 0.1763 0.2710 0.7718 0.0435 0.0735

100 0.2746 0.1842 0.2865 0.4211 0.0284 0.0520

300 0.1684 0.1891 0.3006 0.1640 0.0127 0.0228

500 0.1443 0.1896 0.3048 0.1048 0.0114 0.0188

2 0.5 1.8 1.1

50 0.5808 1.7829 1.1100 0.4232 0.0955 0.0360

100 0.5474 1.7854 1.1107 0.1645 0.0757 0.0316

300 0.5266 1.7886 1.1102 0.0418 0.0409 0.0196

500 0.5212 1.7899 1.1098 0.0311 0.0101 0.0098

3 0.5 2.5 0.1

50 0.5361 2.4629 0.1033 0.0620 0.1472 0.0292

100 0.5248 2.4749 0.1065 0.0387 0.0954 0.0171

300 0.5159 2.4844 0.1086 0.0206 0.0411 0.0117

500 0.5132 2.4863 0.1093 0.0158 0.0323 0.0110

4 0.7 2.8 0.1

50 0.8187 2.5700 0.1540 0.3410 0.5953 0.2359

100 0.7586 2.6585 0.1259 0.1346 0.4069 0.1371

300 0.7246 2.7570 0.1121 0.0427 0.1522 0.0578

500 0.7176 2.7781 0.1101 0.0245 0.0646 0.0228

5 0.7 4 0.5

50 0.8298 3.7395 0.4800 0.5494 0.7593 0.1356

100 0.7663 3.8218 0.4940 0.1629 0.5583 0.0774

300 0.7340 3.8921 0.5151 0.0697 0.3781 0.0569

500 0.7229 3.9379 0.5139 0.0438 0.2558 0.0476

6 0.8 0.4 0.1

50 0.9127 0.3675 0.1323 0.5489 0.0798 0.0737

100 0.8593 0.3785 0.1209 0.33249 0.04984 0.04455

300 0.8256 0.3859 0.1143 0.03713 0.02524 0.02618

500 0.8200 0.3882 0.1115 0.0268 0.0191 0.0204

7 0.9 0.5 0.1

50 1.0241 0.4625 0.1387 0.4564 0.0931 0.0938

100 0.9832 0.4719 0.1231 0.3026 0.0707 0.0600

300 0.9294 0.4854 0.1154 0.0416 0.0251 0.0322

500 0.9238 0.4868 0.1129 0.0401 0.0216 0.0268

8 1.3 0.4 0.1

50 1.5905 0.3703 0.1205 0.9387 0.0926 0.0671

100 1.4492 0.3801 0.1244 0.7274 0.0602 0.0652

300 1.3576 0.3860 0.1206 0.2268 0.0326 0.0475

500 1.3351 0.3895 0.1154 0.0685 0.0129 0.0225

(KS), Cramér-von Mises (W∗) and Anderson-Darling (A∗). The lower are these statistics, the better is the
adjustment to the data. The MLEs and goodness-of-fit statistics are calculated using the AdequacyModel

script in the R software.

Tables VI andVIII list the MLEs (and the corresponding standard errors in parentheses) of the unknown

parameters for the fitted models to the first and second data sets, respectively. We note that all distributions

present reasonable estimates for the standard errors. Tables VII and IX present the goodness-of-fit statistics
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TABLE V

Descriptive statistics.

Statistics Real data sets

Reinfection times Exceedances of flood peaks

Mean 369.5268 12.2042

Median 247.0000 9.5000

Mode 5.000 5.0000

Variance 136940.7000 151.2215

Skewness 1.15262 1.4725

Kurtosis 0.51036 2.8895

Maximum 1529.0000 64.0000

Minimum 1.0000 0.1000

n 877 72

TABLE VI

MLEs for reinfection data and corresponding standard

errors in parentheses.

Distributions Estimates

NHL(α,λ,γ) 0.1247 0.0718 0.0031

(0.0121) (0.0130) (0.0001)

ENH(α,λ,β) 0.8445 0.0030 0.7908

(0.0347) (0.0001) (0.0324)

EW(α,λ,β) 0.9819 0.0026 0.7447

(0.0100) (0.0001) (0.0293)

Weibull(α,λ) 0.8464 0.0073

(0.0206) (0.0009)

NH(α,λ) 0.7950 0.0039

(0.0363) (0.0003)

Lindley(γ) 0.0053

(0.0001)

Exp(λ) 0.0026

(7.568e-05)

for reinfection times and flood peaks, respectively. According to these statistics, the NHL distribution

provides a good fit and is quite competitive with the other current distributions.

For both data sets, the NHL distribution yields the best fit under all goodness-of-fit statistics. Figure 6

displays the histograms and the estimated densities for three competitive models according to their

goodness-of-fit statistics. This graphical inspection also indicates the superiority of the new distribution

to the reinfection times and flood peaks data. We also provide the TTT plots and estimated hazard functions

of the NHL fitted model for the reinfection times and flood peaks data in Figures 7 and 8, respectively. They

reveal that the NHL hazard function for both fitted models present bathtub shapes, which is in agreement

with their corresponding TTT plots. Figure 9 displays the plots of the estimated cdfs for the most competitive
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TABLE VII

Goodness-of-fit statistics for the models fitted to reinfection times.

Statistics

Distributions AIC CAIC W∗ A∗ KS

NHL 12035.71 12035.74 0.0904 0.9826 0.0332

ENH 12081.29 12081.32 0.4790 3.6459 0.0477

EW 12069.46 12069.49 0.3422 2.7487 0.0576

Weibull 12084.77 12084.78 0.5082 3.8380 0.0552

NH 12121.64 12121.65 0.5782 4.2894 0.0677

Lindley 12828.07 12828.08 0.3532 2.8802 0.2076

Exp 12126.04 12126.04 0.3572 2.8505 0.0844

TABLE VIII

MLEs for exceedances of flood peaks data and

corresponding standard errors in parentheses.

Distributions Estimates

NHL(α,λ,γ) 0.1693 0.9332 0.0898

(0.0361) (0.0190) (0.0064)

ENH(α,λ,β) 1.6963 0.0313 0.7302

(1.1459) (0.0307) (0.1353)

EW(α,λ,β) 1.3392 0.0190 0.5445

(0.4069) (0.0303) (0.2400)

Weibull(α,λ) 0.9019 0.1095

(0.0858) (0.0302)

NH(α,λ) 0.8464 0.1079

(0.2493) (0.0558)

Lindley(γ) 0.1530

(0.0128)

Exp(λ) 0.0819

(0.0096)

models and empirical cumulative function to both data sets. These plots illustrate the good adjustment of the

NHL distribution. Hence, these results reveal that the proposed distribution can be a very effective alternative

to the well-known Weibull, EW and ENH distributions, among others.

8 - CONCLUSIONS

We introduce the Nadarajah-Haghighi Lindley (NHL) model by compounding the Lindley and

Nadarajah-Haghighi distributions. Once we have a composition by taking the minimum of two continuous

independent random variables, the proposed distribution might be useful in engineering for modeling the

failure time of systems composed of two independent components in series. The NHL distribution has as

special cases the Lindley, Nadarajah-Haghighi and exponential distributions. Further, it is a competitive
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TABLE IX

Goodness-of-fit statistics for the models fitted to the

exceedances of flood peaks.

Statistics

Distributions AIC CAIC W∗ A∗ KS

NHL 505.93 506.28 0.0897 0.5286 0.0979

ENH 507.84 508.20 0.1026 0.6275 0.1066

EW 508.05 508.40 0.1071 0.6504 0.1072

Weibull 506.99 507.17 0.1379 0.7851 0.1052

NH 507.97 508.15 0.1437 0.8149 0.1258

Lindley 530.42 530.48 0.1391 0.8526 0.2409

Exp 506.25 506.31 0.1306 0.7523 0.1422

Figure 6 - Histogram and estimated pdfs of (a) the NHL, ENH and EW models for the reinfection times;

and (b) the NHL, ENH and Exp models for the exceedances of flood peaks.

Figure 7 - (a) TTT plot; and (b) estimated hazard function for the reinfection times data.

model to the Weibull, exponentiated Weibull and exponentiated Nadarajah-Haghighi distributions, among

others. We obtain some structural properties of the proposed distribution, perform the estimation of the

parameters by maximum likelihood and provide two applications to real data sets. The new distribution is

quite competitive to other classical lifetime models and yields good adjustments in both applications.
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Figure 8 - (a) TTT plot; and (b) estimated hazard function for the exceedances of flood peaks data.

Figure 9 - Empirical and estimated cdfs of (a) the NHL, ENH and EW models for the reinfection times;

and (b) the NHL, ENH and Exp models for the exceedances of flood peaks.
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10 - APPENDIXA

Scripts for approximating m(x) by the truncated expansion (4).

gamma_inc<-function(a1,x){
result=gamma(a1)-pgamma(x,a1,1)*gamma(a1)
return(result)
}

alpha=2.5
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lambda=1.5
gamma=0.5
N=2
psi<-function(i,x){
res=0
for(j in 0:i){
temp<-(1/(factorial(i-j)*factorial(j)*(-1)^j))*((gamma/lambda)*
gamma_inc((j+2)/alpha,(1+lambda*x)^alpha)+(1+gamma-gamma/lambda)*
gamma_inc((j+1)/alpha,(1+lambda*x)^alpha))
res=res+temp
}
return(res)
}
MRL<-function(x){
res<-0
k<-(exp(gamma*x+(1+lambda*x)^alpha))/(alpha*lambda*(1+gamma+gamma*x))
for(i in 0:N){
temp<-psi(i,x)*(gamma/lambda)^i
res=res+temp
}
return(k*res)
}
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Scripts for approximating μ′n by the truncated expansion (5).

gamma_inc<-function(a1,x){
result=gamma(a1)-pgamma(x,a1,1)*gamma(a1)
return(result)
}

f.fac<-function(x,n){
gamma(x+1)/gamma(x-n+1)
}

psi<-function(i){
res=0
for(j in 0:i){
temp<-((-1)^(-j))/(factorial(j)*factorial(i-j))*
((gamma/lambda)*gamma_inc((j+1)/alpha+1,1)+
(1+gamma-gamma/lambda)*gamma_inc((j+alpha)/alpha,1)+
(gamma^2)/(alpha*lambda^2)*gamma_inc((j+2)/alpha,1)+
(gamma^2*(lambda-1))/(alpha*lambda^2)*gamma_inc((j+1)/alpha,1))
res=res+temp
}
return(res)
}
fgm1<-function(n){
res<-0
k<-(exp(1)*(-1)^n)/(1+gamma)
for(i in n:N){
temp<-f.fac(i,n)*(gamma)^(i-n)*(lambda)^(-i)*psi(i)
res=res+temp
}
return(k*res)
}
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Scripts for approximating ms(y) by the truncated expansion (6).

gamma_inc<-function(a1,x1,x2){
result=pgamma(x2,a1,1)*gamma(a1)-pgamma(x1,a1,1)*gamma(a1)
return(result)
}
f.fac<-function(x,n){
gamma(x+1)/gamma(x-n+1)
}
alpha=2.5
lambda=1.5
gamma=0.5

Psi<-function(s,j,y){
ls<-(lambda*y+1)^alpha
res=0
for(k in 0:(s+j)){
temp<-f.fac(s+j,k)*(-1)^(k)/factorial(k)*
((gamma^2)*(1-(1/lambda))*gamma_inc((k+1)/alpha,1,ls)+
alpha*(lambda*gamma-gamma+lambda)*gamma_inc(k/alpha+1,1,ls)+
gamma^2/lambda*gamma_inc((k+2)/alpha,1,ls)+
alpha*gamma*gamma_inc((k+1)/alpha+1,1,ls))
res=res+temp
}
return(res)
}
Moment_inc<-function(y,s,N){
k=exp(1)*(-1)^s/((1+gamma)*alpha*lambda^(1+s))
res=0
for(j in 0:N){
res=res+(gamma/lambda)^j*(1/factorial(j))*Psi(s,j,y)
}
return(k*res)
}
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