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ABSTRACT

The porochemoelectroelastic analytical models and solutions have been used to describe the response of
chemically active and electrically charged saturated porous media such as clays, shales, and biological
tissues. However, these attempts have been restricted to one-dimensional consolidation problems, which
are very limited in practice and not general enough to serve as bench mark solutions for numerical validation.
This work summarizes the general linear porochemoelectroelastic formulation and presents the solution of
an inclined wellbore drilled in a fluid-saturated chemically active and ionized formation, such as shale, and
subjected to a three-dimensional in-situ state of stress. The analytical solution to this geometry incorporates
the coupled solid deformation and simultaneous fluid/ion flows induced by the combined influences of pore
pressure, chemical potential, and electrical potential gradients under isothermal conditions. The formation
pore fluid is modeled as an electrolyte solution comprised of a solvent and one type of dissolved cation and
anion. The analytical approach also integrates into the solution the quantitative use of the cation exchange
capacity (CEC) commonly obtained from laboratory measurements on shale samples. The results for
stresses and pore pressure distributions due to the coupled electrochemical effects are illustrated and plotted
in the vicinity of the inclined wellbore and compared with the classical porochemoelastic and poroelastic
solutions.

Key words: drilling, electrokinetic, inclined wellbore, osmotic, poromechanics, stability.

INTRODUCTION

It has long been known that chemically active porous media exhibit swelling and shrinking when brought

in contact with aqueous solutions. This phenomenon observed in clays, shales, and biological tissues is
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generally termed osmosis, which is the non-hydraulically driven fluid flow. As such, the coupled fluid

flows driven by gradients of chemical and electrical potentials are called chemico-osmosis and electro-

osmosis, respectively. Indeed, osmosis through clays and argillaceous rocks has been invoked to explain

such observed phenomena as breaching of clay barriers in waste treatment systems (Hudec 1980) and

high over pressures in subsurface aquifers (Neuzil 2000). Similarly, osmotic effect is also associated with

swelling phenomena observed in charged hydrated biological tissues (Ehlers and Markert 2001). Therefore,

the nature of these complex physicochemical interactions requires proper quantification of their effects on

the mechanical response of the system.

Of particular interest is the electrochemical effect on the stress and pore pressure distribution in sedi-

mentary subsurface where oil and gas exploration activities are being conducted. Osmotic effects may be

important in oil fields where clays and shales separate fluid of different salinity and/or electrical potential,

especially in wellbore drilling. The electrochemical interactions between the invading drilling fluid with

formation pore fluid species and the solid matrix result in changes of pore pressure distribution. Simulta-

neously, the effective stress is also modified, which could be detrimental to the formation integrity. Hence,

quantitative evaluation and prediction of the overall response require that these coupled interactions be

accounted for appropriately.

There is extensive evidence that clay-rich porous formations behave like a semi-permeable membrane,

which can restrict solute transport of certain pore fluid species (Young and Low 1965, Olsen 1969, Neuzil

2000). A membrane reflects solutes on the basis of particle size and/or electrical repulsion (Gregor and

Gregor 1978). The low permeability and charged surfaces on the constituent clays of shale contribute to its

salt rejecting membrane behavior. Differences in chemical potentials of the fluid’s components separated

by shale layers cause fluxes of water and solute/ions. Furthermore, when the porous medium, saturated

with electrolyte solution, is subjected to an electrical potential gradient, additional electrokinetic effects are

introduced. Such electrokinetic effects are associated with the flow of charged particles/ions (streaming

currents) and flow of solvent (electro-osmosis) of the pore fluid. In general, these processes involve the

coupled and simultaneous flow of fluid, electricity, and chemical species under the influences of mechanical

pressure, chemical potential, and electrical potential gradients. Macroscopic transport formulations for these

flow phenomena have been derived based on non-equilibrium thermodynamics for irreversible processes

(Katchalsky and Curran 1967, Yeung and Mitchell 1993, Malusis and Shackelford 2002, Rosanne et al.

2005).

Early analyses addressing chemical interactions in reactive porous media were presented by lumping

the activity-generated osmotic pressure and pore pressure into a chemical potential term, ignoring the solute

transport effect (Yew et al. 1990). This chemical potential is treated as a modified pressure, which is used in

the evaluation of effective stresses. In other simple approaches, the fluid pressure and solute diffusion effect

are taken into account, but ignore the transient coupled deformation-diffusion process (Van Oort 1994).

Recently, the extension of Biot’s original theory of poromechanics (Biot 1941) to include coupled

chemical and electrokinetic effects has been the subject of extensive research. Biot’s theory is reformulated

for a porous system saturated with several species of the pore fluid based on the mixture theory and non-

equilibrium thermodynamics (Sachs and Grodzinsky 1987, Corapcioglu 1991, Sherwood 1993, Heidug

and Wong 1996, Huyghe and Janssen 1999). However, general analytical solutions to these formulations

for engineering problems are very limited. Sherwood and Bailey (1994) provided an isotropic solution of
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a plane strain cylindrical wellbore by simplifying the porochemoelastic formulation using the lumped

chemical potential mentioned above and ignoring solute transport and electrokinetic effects. Ekbote and

Abousleiman (2006) generalized to the fully coupled anisotropic formulation for a chemically active for-

mation, and published the analytical solution for the inclined wellbore subjected to in-situ state of stress in

isotropic and transversely isotropic formations; however, also neglecting electrical coupling.

Analytical solutions accounting for electrokinetic effects have been limited to the one-dimensional

consolidation problem. Esrig (1968) derived such a solution for consolidation with radial drainage due

to an electrokinetic application, and pointed out that the rate of pore pressure diffusion was determined

by the hydraulic permeability and not by the electrokinetic permeability. His solution, however, employed

many simplified assumptions and ignored the ion transport effect. Recently, the full porochemoelectro-

elastic one-dimension analytical solutions have been published (Gu et al. 1999, Van Meerveld et al. 2003).

These solutions can be applied to limited laboratory and field testing conditions, yet are very restricted

and fall short from serving as bench marks for the validation of numerical schemes.

This work presents the analytical porochemoelectroelastic solution to one of the practical field prob-

lems: the drilling of an inclined wellbore in a chemically active and ionized shale formation subjected to

three-dimensional in-situ state of stress. First, the general isotropic porochemoelastic governing equations

extended to incorporate electrokinetic effects are formulated. The inclined wellbore solution is systemati-

cally derived in the Laplace transform domain using matrix diagonalization techniques to obtain uncoupled

formulations. The obtained solution is used to simulate and study the effects of the coupled electrochem-

ical phenomena on stresses and pore pressure distributions in the vicinity of an inclined wellbore, and the

subsequent impact on borehole stability.

POROCHEMOELECTROELASTIC GOVERNING EQUATIONS

In a chemically active porous medium, the driving force for the flow of pore fluid and its dissolving species

is the chemical potential comprised of the mechanical pressure and osmotic pressure accounting for the

chemical activity of pore fluid components. However, the saturating pore fluid is more often an electrolyte

solution, which contains solutes that dissolve into electrically charged ions that are sensitive to an electrical

potential gradient. On the other hand, many porous media exhibit some degree of ionization, i.e., the

solid matrix is electrically charged. For example, the abundant presence of clay minerals such as mont-

morillonite, illite, etc., usually renders the shale surface negatively charged due to isomorphic substitution

of lower-valence cations for higher valence-cations in the clay structures (Grim 1968). The electrically

charged nature of the porous medium generates an electrostatic potential field and, as a result, the move-

ment of ionic species is no longer controlled by the chemical potential alone. Incorporating the electrical

effect, the total driving force (termed the electrochemical potential) for fluid components r under isothermal

condition is expressed as (Katchalsky and Curran 1967)

μ̃r = V r p + RT ln[ar ] + zr Fψ = V r p + RT ln[ζ r mr ] + zr Fψ (1)

where μr is the electrochemical potential of the r th fluid species (r = solvent, cation and anion), V r is the

partial molar volume, p is the thermodynamic pressure, R is the universal gas constant, T is the temperature,

ar = ζ r mr is the chemical activity, ζ r is the chemical activity coefficient, mr is the mole fraction where
∑

r mr = 1, zr is the valence of ionic species, F is Faraday constant and ψ is the electrical potential.
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In an ideal or dilute solution, the activity coefficient has the property that ζ r → 1 as mr → 0, so that

ar ∼= mr . For simplicity, the pore fluid is modeled as an electrolyte solution comprised of a solvent ( f )

and one type of dissolved cation (c) and anion (a). The porous solid matrix could be ionized or electrically

neutral, but the whole fluid-saturated porous medium is electrically neutral.

TRANSPORT EQUATIONS

Eq. 1 shows that the electrochemical potential difference can be caused by imbalances in the pore pressure,

in the chemical composition, or in the electrical potential. The presence of the electrochemical gradient

results in simultaneous fluxes of the pore fluid species. For an isothermal aqueous pore solution containing

one type of cation and anion, the set of linear phenomenological equations relating the flows and the driving

forces in index notation is (Yeung and Mitchell 1993)

qi = L11
∂(−p)

∂xi
+ L12

∂(−ψ)

∂xi
+ L13

RT

ma
o

∂(−ma)

∂xi
+ L14

RT

mc
o

∂(−mc)

∂xi
(2)

Ii = L21
∂(−p)

∂xi
+ L22

∂(−ψ)

∂xi
+ L23

RT

ma
o

∂(−ma)

∂xi
+ L24

RT

mc
o

∂(−mc)

∂xi
(3)

J a,d
i = L31

∂(−p)

∂xi
+ L32

∂(−ψ)

∂xi
+ L33

RT

ma
o

∂(−ma)

∂xi
+ L34

RT

mc
o

∂(−mc)

∂xi
(4)

J c,d
i = L41

∂(−p)

∂xi
+ L42

∂(−ψ)

∂xi
+ L43

RT

ma
o

∂(−ma)

∂xi
+ L44

RT

mc
o

∂(−mc)

∂xi
(5)

where xi represents the spatial coordinates, the subscript o denotes initial condition, qi is the total volumet-

ric fluid flow vector through the porous medium per unit time (m∙s–1), Ii is the electrical current density

(A∙m–2∙s–1), J a,d
i

∼= J a
i − maqi/V f

o and J c,d
i

∼= J c
i − mcqi/V f

o are the diffusion mass fluxes (mol∙m–2∙s–1)

of the ion species relative to that of the water solvent in which J a
i and J c

i are the absolute mass fluxes of

the anion and cation relative to the solid framework, respectively.

Lmn are phenomenological coefficients representing various transport processes such as hydraulic

conduction (Darcy’s law), electro-osmosis, chemico-osmosis, electrical conduction (Ohm’s law), solute/ion

diffusion (Fick’s first law), streaming current and potential, electrophoresis, etc. According to the Onsager

principle, these coefficients are related as Lmn = Lnm(m 6= n), which results in only ten independent

transport coefficients. These transport coefficients have been well identified in the literature, and can

be expressed in terms of familiar field and/or laboratory measurable parameters such as permeability,

electro-osmotic permeability, formation resistivity, membrane reflection coefficient, and solute diffusion

coefficients as summarized in Table I (Katchalsky and Curran 1967, Yeung and Mitchell 1993, Malusis

and Shackelford 2002). The transport coefficients as presented in Table I are modified from parameters as

derived by Yeung and Mitchell (1993) to account for the limiting behavior of the effective ion diffusion

when the clay membrane behavior is ideal, i.e., the absolute ion fluxes vanish, J a
i = J c

i = 0, for perfect

membrane efficiency, χ = 1. Generally, the transport coefficients Lmn are functions of ion concentration.

When the system is not too far from equilibrium, i.e., when the macroscopic gradients are sufficiently

small, these coefficients can be assumed to be constants. From Table I, modeling of the coupled transport

processes requires measurements of only six independent transport parameters {κ, χ, κeo, κe, Da
ef f , Dc

ef f }.
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TABLE I

Coupled electrokinetic transport coefficients.

Coefficients Formulas Transport processes

L11 κ + κ2
eo
κe

Hydraulic conduction – Darcy’s law; κ =
k/μ is the open circuit (Ii = 0) mobility; k
is the permeability and μ is the fluid viscosity

L12 = L21 κeo
Electro osmosis/streaming potential
κeo is the electro-osmosis coefficient

L13 = L31
[
− χκ + (Da

ef f za F/RT )(κeo/κe)
](

ma
o/V f

o
)

Chemical osmosis/streaming current;

L14 = L41
[
− χκ + (Dc

ef f zc F/RT )(κeo/κe)
](

mc
o/V f

o
) χ is the reflection coefficient or membrane

efficiency [0,1]

L22 κe
Electrical conduction – Ohm’s law;
κe is the electrical conductivity

L23 = L32
(
Da

ef f za F/RT )(ma
o/V f

o
)

Diffusion potential/electrophoresis;

L24 = L42
(
Dc

ef f zc F/RT
)(

mc
o/V f

o
) F = 96500 C/mol is Faraday const.;

za and zc are valences of ions

L33
Da

ef f
RT

ma
o

V f
o

+
(

Da
ef f za F
RT

ma
o

V f
o

)2

/κe +
(
χma

o

V f
o

)2

κ

Solute diffusion – Fick’s first law

Da
ef f = (1 − χ)φτ Da

Dc
ef f = (1 − χ)φτ Dc

L44
Dc

ef f
RT

mc
o

V f
o

+
(

Dc
ef f zc F
RT

mc
o

V f
o

)2

/κe +
(
χmc

o

V f
o

)2

κ

where Da and Dc are anion and
cation diffusion coeff. in free
solution; φ is porosity; τ is tortuosity

L34 = L43

(
F

RT V f
o

)2
Da

ef f Dc
e f f za zcma

omc
o

κe
+

(
χ

V f
o

)2

ma
omc

oκ Coupled solute diffusion

CONSTITUTIVE EQUATIONS

In the porochemoelectroelastic constitutive approach, the original Biot’s poroelastic constitutive relations

must be extended to account for the electrochemical potentials of all pore fluid solvent and ion species. On

a thermodynamic basis, the change in free energy density for a porous medium completely saturated with

an electrolyte solution can be expressed as (Coussy 2004)

dW = σi j dεi j −
∑

r=a,c, f

Mr dμ̃r (6)

where σi j is the total stress tensor, εi j is the linearized strain tensor, and Mr is the mass content of the pore

fluid species in mole per unit reference bulk volume. The above expression is written assuming infinitesimal

deformation and isothermal condition. The electrochemical potentials of all pore fluid components are not

independent, but related by the Gibbs-Duhem equation as (Katchalsky and Curran 1967)

−φdp +
∑

r=a,c, f

Mr dμ̃r = 0 (7)
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In writing the above equation, it has been assumed that the pore space is completely saturated such that

φ =
∑

r=a,c, f V r Mr where φ is the porosity. Application of the Gibbs-Duhem equation into the free

energy density leads to

dW = σi j dεi j − φdp (8)

It is obvious that the free energy W admits εi j and p as state variables instead of the electrochemical

potentials μ̃r of all pore fluid components. As such, the linearized isotropic constitutive equations follow

naturally as (Coussy 2004)

dσi j = 2Gdεi j +
2Gν

1 − 2ν
dεkkδi j + αdpδi j (9)

dφ = −αdεkk +
1

Kφ

dp (10)

where εkk = ε11 + ε22 + ε33 is the volumetric strain, G and ν are the shear modulus and Poisson ratio, α

is the pore pressure coefficient (PPC), 1/Kφ represents the pore compressibility, δi j is the Kronecker delta

(δi j = 1 for i = j and δi j = 0 for i 6= j), compression is positive, and repeated index indicates summation.

The porosity φ in Eq. 10 can be replaced in favor of the total fluid content ζ using the complete saturation

condition and isothermal fluid state equation

dζ =
d Msol

ρsol
o

=
d(φρsol)

ρsol
o

= dφ + φo
dρsol

ρsol
o

(11)

dρsol

ρsol
o

=
1

K f
dp (12)

in which Msol =
∑

r=a,c, f Mr is the total fluid mass content (moles) and ρsol is the fluid mass density

(mole/m3); 1/K f is the isothermal fluid compressibility. Using Eq. 10 and Eq. 12 into Eq. 11 yields

dζ = −αdεkk +
1

M
dp (13)

where 1/M = 1/Kφ + φo/K f is the familiar storage coefficient in ground water literature. It is also

necessary to obtain the variation of individual fluid component contents by linearizing the relation

dζ r =
d Mr

ρsol
o

=
d(mr Msol)

ρsol
o

= mr
odζ + φodmr (14)

in which mr = Mr/Msol is the mole fraction of fluid species and the initial porosity is related to the initial

fluid mass content and density as φo = Msol
o /ρsol

o . Substituting Eq. 13 into Eq. 14 gives the constitutive

relations for solute content as

dζ r = mr
o

(
−αdεkk +

1

M
dp

)
+ φodmr (15)
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In summary, the constitutive equations for chemically active and charged saturated porous medium are

dσi j = 2Gdεi j +
2Gν

1 − 2ν
δi j dεkk + αδi j dp (16)

dζ = −αdεkk +
1

M
dp (17)

dζ a = ma
o

(
−αdεkk +

1

M
dp

)
+ φodma (18)

dζ c = mc
o

(
−αdεkk +

1

M
dp

)
+ φodmc (19)

Eqs. 16-19 are the same as the original Biot’s poroelastic constitutive formulation without electrochemical

interactions. It can be observed that the pore pressure, not the electrochemical potentials, is important; and

changing the fluid composition (chemical activity) of the pore fluid and/or electrical potential at constant

pressure will not affect the stress, strain and/or total fluid content in the medium. The electrochemical

effect, however, enters through the transient nature of the fluid and ion flows due to differences in the

electrochemical potentials across the porous medium as shown previously in the transport Eqs. 2-5.

OTHER GOVERNING EQUATIONS

Other governing equations are the strain-displacement relations (Eq. 20) and conservation equations, which

include the quasi-static stress equilibrium equation (Eq. 21), mass balance equations (Eqs. 22-24), and

electrical charge conservation equation (Eq. 25) written in index notation as

εi j =
1

2

(
∂ui

∂x j
+
∂u j

∂xi

)
(20)

∂σi j

∂xi
= 0 (21)

∂ζ

∂t
= −

∂qi

∂xi
(22)

∂ζ a

∂t
= −V f

o
∂ J a

i

∂xi
= −

∂

∂xi

(
V f

o J a,d
i + maqi

)
(23)

∂ζ c

∂t
= −V f

o
∂ J c

i

∂xi
= −

∂

∂xi

(
V f

o J c,d
i + mcqi

)
(24)

∂ρe

∂t
= −

∂ Ii

∂xi
(25)

in which ui is the displacement vector. In the ion mass conservation Eqs. 23-24, the first equality is written

by defining the ion volumetric fluxes as qr
i = V f

o J r
i (r = a, c) to be consistent with the previously defined

ion content ζ r = Mr/ρsol
o ≈ Mr V f

o . The second equality in Eqs. 23-24 expands the absolute fluxes, J a
i

and J c
i , in terms of the relative diffusion fluxes accounting for the advection contributions, maqi and mcqi .
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In the charge conservation Eq. 25, ρe is the total charge density in the porous medium. It is reasonable

to assume an electrostatic condition ∂ρe/∂t = 0, i.e., any electrical charge build-up is instantly equili-

brated/neutralized (Sachs and Grodzinsky 1987, Corapcioglu 1991). The charge conservation reduces to

(recall Eq. 3)

L12∇
2 p + L22∇

2ψ + L23
RT

ma
o

∇2ma + L24
RT

mc
o

∇2mc = 0 (26)

where ∇2 is the Laplacian operator. The constitutive Eqs. 16-19, the transport Eqs. 2-5, the strain-

displacement Eq. 20, and the conservation Eqs. 21-26 complete the governing equations for the responses

of chemically active and electrically charged porous media saturated with electrolyte pore fluid consisting

of two ion species. The porochemoelectroelastic model requires a set of ten independent parameters as

opposed to seven by the porochemolelastic and five by the poroelastic models. Table II summarizes and

compares the required material coefficients for these models.

TABLE II
Material parameter characterizations for various poromechanics models.

Poroelastic Porochemoelastic Porochemoelectroelastic

Elastic G, ν G, ν G, ν

Poroelastic coupling α,M α,M α,M

Transport κ κ, De
ef f , χ κ, χ, κeo, κe, Da

ef f , Dc
ef f

Total 5 7 10

FIELD AND DIFFUSION EQUATIONS

The governing equations are combined to yield the field and diffusion equations that are used to solve

for the coupled stress and pore pressure responses. First, the equilibrium Eq. 21 combined with the

stress-strain-pressure Eq. 16 and leads to

∂σi j

∂xi
= 2G

∂εi j

∂xi
+

2Gν

1 − 2ν

∂εkk

∂x j
+ α

∂p

∂x j
= 0 (27)

Differentiating with respect to x j gives

2G
∂2εi j

∂x j∂xi
+

2Gν

1 − 2ν

∂2εkk

∂x j∂x j
+ α

∂2 p

∂x j∂x j
= 0 (28)

Taking into account the strain-displacement Eq. 20, the following relation can be derived

∂2εi j

∂x j∂xi
=

1

2

∂2

∂x j∂xi

(
∂ui

∂x j
+
∂u j

∂xi

)
=

∂2

∂x j∂x j

(
∂ui

∂xi

)
=

∂2εkk

∂x j∂x j
≡ ∇2εkk (29)

Using Eq. 29, Eq. 28 is simplified to the field compatibility equation in poroelasticity (Rice and Cleary

1976)

∇2
(
εkk +

η

G
p
)

= 0 (30)

where η is a lumped poroelastic coefficient defined as η = α(1 − 2ν)/[2(1 − ν)].
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The diffusion equations are derived by substituting the fluid/ion content constitutive Eqs. 17-19 and

the transport Eqs. 2-5 into the mass balance equations Eqs. 22-24 as

−α
∂εkk

∂t
+

1

M

∂p

∂t
= L11∇

2 p + L12∇
2ψ + L13

RT

ma
o

∇2ma + L14
RT

mc
o

∇2mc (31)

ma
o

(
−α

∂εkk

∂t
+

1

M

∂p

∂t

)
+ φo

∂ma

∂t

= V f
o

(
L31∇

2 p + L32∇
2ψ + L33

RT

ma
o

∇2ma + L34
RT

mc
o

∇2mc

)
+ ma

o
∂qi

∂xi
+ qi

∂ma

∂xi

(32)

mc
o

(
−α

∂εkk

∂t
+

1

M

∂p

∂t

)
+ φo

∂mc

∂t

= V f
o

(
L41∇

2 p + L42∇
2ψ + L43

RT

ma
o

∇2ma + L44
RT

mc
o

∇2mc

)
+ mc

o
∂qi

∂xi
+ qi

∂mc

∂xi

(33)

The last terms on the right-hand side of Eqs. 32-33 correspond to ion transport by advection. When the

hydraulic diffusion (κ) is smaller than the effective ion diffusion (Dr
ef f V f

o /RT ), the ion transport process

is dominated by the diffusion mechanism (Yeung and Datla 1995). As a result, the advection qi (∂mr/∂xi )

terms in Eqs. 32-33 can be neglected, leading to complete linearization of the ion transport equations.

Furthermore, the assumption of electrostatic condition allows us to conveniently uncouple the pressure

and ion concentrations from the electrical potential field. Application of the Poisson-type Eq. 26 into the

diffusion Eqs. 31-33 to eliminate the electrical potential and grouping like terms yields

−α
∂εkk

∂t
+

1

M

∂p

∂t
= D11∂

2 p + D12∂
2 pa + D13∂

2 pc (34)

ma
o

(
−α

∂εkk

∂t
+

1

M

∂p

∂t

)
+
φoV f

o

RT

∂pa

∂t
= D21∇

2 p + D22∇
2 pa + D23∇

2 pc (35)

mc
o

(
−α

∂εkk

∂t
+

1

M

∂p

∂t

)
+
φoV f

o

RT

∂pc

∂t
= D31∇

2 p + D32∇
2 pa + D33∇

2 pc (36)

where pa = (RT/V f
o )ma and pc = (RT/V f

o )mc are pressure equivalent terms and Dkl is a non symmetric

lumped coefficient matrix defined in terms of the original transport coefficients Lmn and is given as






D11 D12 D13

D21 D22 D23

D31 D32 D33




 =






κ −χκ −χκ

ma
o(1 − χ)κ Da

ef f
(
V f

o /RT
)
− ma

o(1 − χ)χκ −ma
o(1 − χ)χκ

mc
o(1 − χ)κ −mc

o(1 − χ)χκ Dc
ef f

(
V f

o /RT
)
− mc

o(1 − χ)χκ




 (37)

Note that there are no electrical transport coefficients such as the electro-osmotic permeability, κeo, and/or

electrical conductivity, κe, appearing in the lumped transport coefficients, Dkl . Consequently, the assump-

tions of electrostatic condition and negligible advection effect result in a system of diffusion equations

uncoupled from the electrical potential field, and the rate/speed of diffusion are controlled only by the

hydraulic permeability, effective diffusion coefficients, and membrane reflection coefficient; not by the
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electro-osmotic permeability and electrical conductivity. The effective transport coefficients Dkl are, how-

ever, dependent upon the electrostatic potential field internal to the charged shale, i.e., function of fixed

charge density in the shale solid matrix and ion concentration in the shale pore fluid. Thus, the significant

contribution of an externally applied electrical field may only manifest as possible boundary condition ef-

fect, e.g., flux boundary condition. The electrical transport coefficients do come into play when calculating

the flux or the streaming potential field established under perturbed conditions. This observation has been

confirmed by laboratory and field data as reported by Esrig (1968). In the following section, the set of

governing field Eqs. 30 and 34-36 will be applied to model the drilling of an inclined wellbore through a

chemically active and ionized shale formation.

INCLINED WELLBORE SOLUTION

The inclined wellbore problem assumes that the wellbore axis generator is deviated with respect to the

far field in-situ state of stresses, SH , Sh , and SV as shown in Fig. 1(a). The deviation is defined by the

inclination angle, ϕz , formed with the vertical direction, and the azimuth angle, ϕy , formed with maxi-

mum horizontal in-situ stress. The porochemoelastic analytical solution for an inclined wellbore drilled in

chemically active rock formations has been published by Ekbote and Abousleiman (2006). Their solu-

tion approach follows the loading decomposition scheme as in Cui et al. (1997) to arrive at the final

three-dimension solution. By the same token, the approach is applicable to the current linear porochemo-

electroelastic model with the relevant initial and boundary conditions for the stress, pore pressure, ion

concentrations, and electrical potential.

(a) (b)

Fig. 1 – (a) Schematic of an inclined wellbore; (b) Far-field stresses, pore pressure and ion concentrations in the xyz local wellbore

coordinate system.

INITIAL EQUILIBRIUM CONDITIONS

Before drilling, the undisturbed formation is saturated with a pore fluid having initial pore pressure, po, and

ions with mole fractions, ma
o and mc

o. Estimation of the initial formation ion mole fractions, however, is not

trivial. As discussed above, the pore surfaces of clay-rich sedimentary formations are negatively charged.

These negative fixed charges must be balanced by either increasing the pore fluid mobile/exchangeable

cations or expelling some of the pore fluid anions. As a result, the equilibrium pore fluid in these rock
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(a) (b)

Fig. 2 – (a) Initial state before drilling; (b) After drilling of wellbore.

formations, e.g., shale, is not electrically neutral as depicted in Fig. 2(a). It contains excess exchangeable

cation concentration to counter-balance the negative fixed charges on the shale layers according to the

electrical neutrality requirement as

zcmc
o + zama

o + z f cm f c
o = 0 (38)

where zc > 0 and za , z f c < 0 are the valences of the cation, anion and shale fixed charge, respectively, and

m f c is the concentration of these fixed charges on the surface of the solid shale matrix expressed in terms

of mole fraction. Calculation of the initial ion concentration in the pore fluid requires knowledge of the

pore water activity of the formation, e.g., measured by an osmometer. The measured pore water activity is

actually the water activity of a free outer solution that is in thermodynamic equilibrium with the formation

initial state which requires equality of individual electrochemical potentials (Overbeek 1956)

μ̃ f
eq = μ̃ f

o ; μ̃c
eq = μ̃c

o; μ̃a
eq = μ̃a

o (39)

For a solution containing electro neutral salt, Cx Ay , which dissociates into x cations of type C having

valence zc and y anions of type A having valence za , the measured water activity can be used to estimate the

equilibrium outer salt concentration, ms
eq , through the relation a f

o = ζ
f

eqm f
eq

∼= 1 − (x + y)ms
eq assuming

dilute solution (ms
eq � 1). On the basis of Eqs. 1 and 39, we may write for the equilibrium case

V f
o peq + RT ln [1 − (x + y)ms

eq] = V f
o po + RT ln [1 − (ma

o + mc
o)] (40)

V c
o peq + RT ln [xms

eq] + zc Fψeq = V c
o po + RT ln [mc

o] + zc Fψo (41)

V a
o peq + RT ln [yms

eq] + za Fψeq = V a
o po + RT ln [ma

o] + za Fψo (42)

Making use of the electro neutrality condition, xzc + yza = 0, for the outer solution, the electrical potential

term is eliminated by multiplying Eq. 41 with x and Eq. 42 with y, and adding the resultant equations

together to arrive at

(mc
o)

x(ma
o)

y = (xms
eq)

x(yms
eq)

y exp
[

xV c
o + yV a

o

RT
(peq − po)

]
∼= x x yy(ms

eq)
x+y (43)

In the above, the exponential of the pressure term has been neglected since RT/(xV c
o + yV a

o ) � (peq − po)

in normal field conditions. For example, considering NaCl salt solution at T = 30◦C, R = 8.314 J/mol-oK,
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V Na+
o = 2.33e-6 m3/mol, and V Cl−

o = 15.17e-6 m3/mol, then, the term RT/(xV c
o + yV a

o ) is approximately

146 MPa, which is usually two orders of magnitude greater than the pressure difference. For brevity, only

the results for x : y ≡ 1 : 1 salts such as NaCl and KCl are presented in the following. Derivation for salt

solution of different x : y can be carried out analogously. Eq. 43 simplifies to

mc
oma

o = (ms
eq)

2 (44)

Solving Eq. 44 together with the electro neutrality requirement inside the formation (Eq. 38) for the initial

ion concentrations gives

ma
o = (0.5/za)

(
−z f cm f c −

√
(z f cm f c)2 − 4zazc(ms

eq)
2
)

(45)

mc
o = (0.5/zc)

(
−z f cm f c +

√
(z f cm f c)2 − 4zazc(ms

eq)
2
)

(46)

To complete the calculation of initial ion mole fraction, the amount of negative fixed charge must be

estimated. The fixed charge mole fraction is related to the formation Cation Exchange Capacity (CEC)

measured in milli-equivalent of cations per 100 grams of dry clay by

m f c = 10 ∗ C EC(1 − φo)ρs V f
o /φo (47)

in which ρs is the average grain density in g/cc and V f
o is the water molar volume in liter/mol. Assuming

zc = 1 and za = z f c = −1, and expressing the fixed charge concentration in terms of CEC and the

equilibrium salt salinity in terms of measured water activity, the initial anion concentration in the formation

is (Hanshaw 1964)

ma
o = 0.5

(
−10 ∗ C EC(1 − φo)ρs V f

o /φo +
√

[10 ∗ C EC(1 − φo)ρs V f
o /φo]2 + (1 − a f

o )2
)

(48)

Examination of Eq. 48 shows that, for two formations of the same porosity, the one with the higher sur-

face charge density or CEC will accommodate fewer anions and, thus, expulse more free salt. Hence,

a smectite abundant formation (CEC ∼ 80-120 meq./100gr) exhibits more reactivity and more ideal

membrane behavior with aqueous solution than an illite formation (CEC ∼ 20-30 meq./100gr). Mean-

while, as the porosity tends toward zero, ma
o vanishes, implying that the more compacted the formation,

the more efficient is the shale’s ion exclusion behavior. It is also interesting to see that when the measured

pore water activity is high, e.g., a f
o → 1, ma

o approaches zero. However, this does not necessarily mean that

all the anions are excluded from the formation since the pore fluid could simply be just water (a f
water = 1).

BOUNDARY CONDITIONS

After wellbore drilling, the borehole is filled with a drilling fluid having pressure pmud and solute mole

fraction ms
mud corresponding to a fluid mud activity a f

mud . For 1:1 salts, the solute in the mud dissociates

into cations and anions with equal mole fraction ma
mud = mc

mud = ms
mud . As depicted in Fig. 2(b), the

drilling mud of equal ion concentration is in contact with a formation pore fluid having excess cation

concentration. At the mud/shale interface, the electrochemical potentials of all fluid species must be
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continuous or else there would be infinite fluxes across the boundary. This leads to similar thermodynamic

requirements as in Eq. 39

μ̃
f
mud = μ̃

f
shale

∣
∣
r=Rw

; μ̃a
mud = μ̃a

shale

∣
∣
r=Rw

; μ̃c
mud = μ̃c

shale

∣
∣
r=Rw

(49)

where Rw is the wellbore radius. Following a similar procedure and replacing the corresponding subscripts

“eq” and “o” with “mud” and “r = Rw”, the ion concentrations in the shale at the wellbore wall are

determined as

ma
shale

∣
∣
r=Rw

= 0.5
(

− m f c +
√
(m f c)2 + 4(ms

mud)
2

)
(50)

mc
shale

∣
∣
r=Rw

= 0.5
(

+ m f c +
√
(m f c)2 + 4(ms

mud)
2

)
(51)

Eqs. 50-51 reveal that the total ion mole fraction in the formation at the boundary ma
o

∣
∣
r=Rw

+ mc
o

∣
∣
r=Rw

=
√
(m f c)2 + 4(ms

mud)
2 is larger than or equal to the outer mud ion concentration of 2ms

mud . Consequently,

there exists a fixed-charge-induced osmotic pressure differential at the wellbore mud/shale interface ac-

cording to

pshale

∣
∣
r=Rw

− pmud =
(
RT/V f

o

)
∗

(
ma

shale

∣
∣
r=Rw

+ mc
shale

∣
∣
r=Rw

− 2ms
mud

)

=
(
RT/V f

o

)
∗

(√
(m f c)2 + 4(ms

mud)
2 − 2ms

mud

) (52)

The above induced osmotic pressure is calculated based on the requirement of continuous electrochemical

potential of the electrically neutral water at the borehole wall, μ̃ f
mud = μ̃

f
shale

∣
∣
r=Rw

in Eq. 49. Additionally,

Eq. 52 shows that for the same drilling mud salinity, the higher the CEC of the formation, the larger

the osmotic pressure differential developed at the wellbore wall. When the formation is free of fixed

charge, i.e., CEC, m f c → 0, the pressure and ion concentrations are indeed continuous at the boundary:

pshale

∣
∣
r=Rw

= pmud and ma
shale

∣
∣
r=Rw

= mc
shale

∣
∣
r=Rw

= ms
mud . The discontinuities of ion concentrations

and pore pressure at the mud/shale interface are well known in chemistry as the Donnan equilibrium effect

(Overbeek 1956).

Accordingly, the boundary conditions to be imposed at the wellbore wall, r = Rw, are

σrr =
(
σm + σd cos[2(θ − θr )]

)
H[−t] + pmudH[t] (53)

τrθ = −σd sin[2(θ − θr )]H[−t] (54)

τr z =
(
Sxz cos[θ ] + Syx sin[θ ]

)
H[−t] (55)

p = poH[−t] +
(

pmud +1pmud/shale
)
H[t] (56)

pa =
(
RT/V f

o

)(
ma

oH[−t] + (ms
mud +1ma

mud/shale)H[t]
)

(57)

pc =
(
RT/V f

o

)(
mc

oH[−t] + (ms
mud +1mc

mud/shale)H[t]
)

(58)
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And at the far field, r → ∞

σxx = Sx ; σyy = Sy; σzz = Sz (59)

τxy = Sxy; τyz = Syz; τxz = Sxz (60)

p = po; pc = (RT/V f
o )m

c
o; pa = (RT/V f

o )m
a
o (61)

In the above, σm , σd , θr are parts of the stress boundary condition and rotation angle in polar coordinate for

a circular borehole as defined in Cui et al. (1997)

σm = (Sx + Sy)/2 (62)

σd = 0.5
√
(Sx − Sy)2 + 4S2

xy (63)

θr = 0.5 tan−1[2Sxy/(Sx − Sy)] (64)

where t is time and H[t] is the Heaviside unit step function (H[t < 0] = 0 and H[t ≥ 0] = 1). Sx , Sy ,

Sz , Sxy , Sxz , and Syz are far-field in-situ stresses transformed into the local wellbore coordinate (x, y, z) as

depicted in Fig. 1(b). 1pmud/shale, 1mc
mud/shale and 1ma

mud/shale are the pressure and ion concentration

differential at the mud/shale boundary defined as

1pmud/shale = pshale

∣
∣
r=Rw

− pmud (65)

1ma
mud/shale = ma

shale

∣
∣
r=Rw

− ms
mud (66)

1mc
mud/shale = mc

shale

∣
∣
r=Rw

− ms
mud (67)

where ma
shale

∣
∣
r=Rw

, mc
shale

∣
∣
r=Rw

, and pshale

∣
∣
r=Rw

are defined in Eqs. 50-52. It should be noted here that

since the governing field and diffusion equations are uncoupled with the electrical potential field and the

boundary conditions are of Dirichlet’s type, i.e., the values of the variables are specified on the problem’s

boundaries, it is not necessary to specify the boundary condition for the electrical potential field, unless we

want to solve for the fluxes and/or streaming electrical potential field.

THE PROBLEM SOLUTIONS

Following Cui et al. (1997), the problem can be solved by the superposition of three sub-problems. The

three sub-problems are described as the modified plane strain problem, the uniaxial problem, and an anti-

plane shear problem. It was shown that, of the three problems, solutions for the uniaxial and anti-plane

shear problems are purely elastic since they do not generate excess pore pressure (Cui et al. 1997). The

solutions to the individual problems are presented here.

Problem 1: plane strain problem

The boundary conditions for this problem are as follow.
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At the far field (r → ∞)

σxx = Sx ; σyy = Sy; σzz = 2νσm + α(1 − 2ν)po (68)

τxy = Sxy; τyz = 0; τxz = 0 (69)

p = po; pc =
(
RT/V f

o

)
mc

o; pa =
(
RT/V f

o

)
ma

o (70)

At the wellbore wall (r = Rw)

σrr = (σm + σd cos[2(θ − θr )])H[−t] + pmudH[t] (71)

τrθ = −σd sin[2(θ − θr )]H[−t] (72)

p = poH[−t] +
(

pmud +1pmud/shale
)
H[t] (73)

pa =
(
RT/V f

o

)(
ma

oH[−t] + (ms
mud +1ma

mud/shale)H[t]
)

(74)

pc =
(
RT/V f

o

)(
mc

oH[−t] + (ms
mud +1mc

mud/shale)H[t]
)

(75)

The boundary conditions of this problem are designed such that a plane strain solution can be used. First,

a reduced set of the governing Eq. 30 and Eqs. 34-36 is derived to obtain the time-dependent solutions for

a plane strain condition. Specifically, the field Eq. 30 is rewritten in polar coordinate (r, θ) as
(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

) (
εkk +

η

G
p
)

= 0 (76)

Based on the boundary loading conditions Eqs. 71-75, the various variables can be decomposed as (Carter

and Booker 1982)
{

p, pa, pc, εkk, σkk, σrr , σθθ
}

=
{

P, Pa, Pc, Ekk, Skk, Srr , Sθθ
}

cos(nθ) (77)

τrθ = Trθ sin(nθ) (78)

where P , Pa , Pc, Ekk , Skk , Srr , Sθθ , and Trθ are functions of time and radial distance only, and n is an

integer number depending on loading conditions. To facilitate the Laplace transform technique, we solve

for the perturbations/changes with respect to the initial reference state, so that the initial conditions and far

field boundary conditions for all variables vanish identically.

Incorporating Eq. 77 into Eq. 76 to eliminate θ dependency and seeking bounded solutions gives

Ẽkk = −(η/G)P̃ + Co r−n (79)

where Co = Co[s] is a constant to be determined from boundary conditions, the tilde sign ∼ denotes Laplace

transform solution and s is the Laplace variable. Utilizing Eq. 79 to replace the volumetric strain in the

diffusion Eqs. 34-36 leads to

s









1
M + αη

G 0 0

ma
o

(
1
M + αη

G

)
φoV f

o
RT 0

mc
o

(
1
M + αη

G

)
0 φoV f

o
RT









︸ ︷︷ ︸
[Y]






P̃

P̃a

P̃c





=







D11 D12 D13

D21 D22 D23

D31 D32 D33







︸ ︷︷ ︸
[D]

∇2
n






P̃

P̃a

P̃c





+ α






1

ma
0

mc
0





sCor−n (80)
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where ∇2
n = ∂2/∂r2 + (1/r)(∂/∂r) − n2/r2. The above system of differential equations only yields

realistic solutions if the 3 × 3 coefficient matrix [Z] = [Y]−1[D] is positive definite. It is easy to verify

that [Z] is positive definite since all determinants of [Z] and its leading principal sub matrices are positive

(Johnson 1970).

The solution to this coupled system can be found by uncoupling the diffusion equations using matrix

diagonalization techniques (Farlow 1993). Here, the general solutions are straightforward and given by

superimposing the homogenous solution and the particular solution as

P̃ = Co f1r−n + m11C1Kn[ξ1r ] + m12C2Kn[ξ2r ] + m13C3Kn[ξ3r ] (81)

P̃a = Co f2r−n + m21C1Kn[ξ1r ] + m22C2Kn[ξ2r ] + m23C3Kn[ξ3r ] (82)

P̃c = Co f3r−n + m31C1Kn[ξ1r ] + m32C2Kn[ξ2r ] + m33C3Kn[ξ3r ] (83)

where Ci = Ci [s] are constants to be determined from the boundary condition, Kn[ξi r ] is the modified

Bessel function of the second kind of order n, ξi =
√

s/λi , in which λi is the eigenvalue of [Z] with

{m1i ,m2i ,m3i } as its corresponding eigenvector, and fi = α[Y]−1{1 ma
0 mc

0}
T for i = 1, 2, 3.

Once the pressure solutions are obtained, the general solutions for stress, strain, and displacement

are straightforward to obtain using the constitutive equations (Eq. 16) and strain-displacement relations

(Eq. 20). For brevity, these derivations are not presented here. To determine the constants Ci , the bound-

ary conditions for this problem are further decomposed into three loading cases namely: elastic radial

loading, diffusion, and a poroelastic deviatoric stress loading case.

• Case 1

The boundary conditions at the wellbore wall are

σrr = −σm + pmud; σrθ = 0; p = pa = pc = 0 (84)

and the solution is purely elastic as given by the classical Lamé solution

σ (1)rr = −(σm − pmud)(R
2
w/r2) (85)

σ
(1)
θθ = (σm − pmud)(R

2
w/r2) (86)

where the superscript (1) denotes the loading case and only the non-zero solutions are listed.

• Case 2

The boundary conditions at the wellbore wall are

σrr = σrθ = 0; p = 1p; pa = 1pa; pc = 1pc (87)

The solution is transient and given in Laplace transform domain, which could be inverted to the time
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domain using the Stehfest’s algorithm (Stehfest 1970) as presented in Appendix A

s p̃(2) = m11118[ξ1] + m12128[ξ2] + m13138[ξ3] (88)

s p̃ a(2) = m21118[ξ1] + m22128[ξ2] + m23138[ξ3] (89)

s p̃ c(2) = m31118[ξ1] + m32128[ξ2] + m33138[ξ3] (90)

sσ̃ (2)rr = −2η{m11114[ξ1] + m12124[ξ2] + m13134[ξ3]} (91)

sσ̃ (2)θθ = 2η
{
m1111(4[ξ1] +8[ξ1])+ m1212(4[ξ2] +8[ξ2])+ m1313(4[ξ3] +8[ξ3])

}
(92)

where the tilde ∼ denotes the quantities in the Laplace transform domain. In the above

11 =
[
(m22m33 − m23m32)1p + (m13m32 − m12m33)1pa + (m12m23 − m13m22)1pc

]
/m (93)

12 =
[
(m23m31 − m21m33)1p + (m11m33 − m13m31)1pa + (m13m21 − m11m23)1pc

]
/m (94)

13 =
[
(m21m32 − m22m31)1p + (m12m31 − m11m32)1pa + (m11m22 − m12m21)1pc

]
/m (95)

m = m11(m22m33 − m23m32)− m12(m21m33 − m23m31)+ m13(m21m32 − m22m31) (96)

1p = pmud +1pmud/shale − po (97)

1pa =
(
RT/V f

o

)(
ms

mud +1ma
mud/shale − ma

o

)
(98)

1pc =
(
RT/V f

o

)(
ms

mud +1mc
mud/shale − mc

o

)
(99)

8 and 4 are functions defined as

8[x] = Ko[xr ]/Ko[x Rw] (100)

4[x] = K1[xr ]/(xrKo[x Rw])− RwK1[x Rw]/(xr2Ko[x Rw]) (101)

• Case 3

The boundary conditions at the wellbore wall are

σrr = −σd cos[2(θ − θr )]; σrθ = σd sin[2(θ − θr )]; p = pa = pc = 0 (102)

and the solutions in Laplace transform domain are

s p̃(3) = σd
{
m11 D1K2[ξ1r ] + m12 D2K2[ξ2r ] + m13 D3K2[ξ3r ] + D4 f1(R

2
w/r2)

}
cos[2(θ − θr )] (103)

s p̃a(3) = σd
{
m21 D1K2[ξ1r ] + m22 D2K2[ξ2r ] + m23 D3K2[ξ3r ] + D4 f2(R

2
w/r2)

}
cos[2(θ − θr )] (104)

s p̃c(3) = σd
{
m31 D1K2[ξ1r ] + m32 D2K2[ξ2r ] + m33 D3K2[ξ3r ] + D4 f2(R

2
w/r2)

}
cos[2(θ − θr )] (105)

sσ̃ (3)rr = −σd

{
2η(m11 D12[ξ1] + m12 D22[ξ2] + m13 D32[ξ3])

−2G(h + α/η)D4(R2
w/r2)− D5(R4

w/r4)

}

cos[2(θ − θr )] (106)

sσ̃ (3)θθ = σd{2η(m11 D15[ξ1] + m12 D25[ξ2] + m13 D35[ξ3])− D5(R
4
w/r4)} cos[2(θ − θr )] (107)

sτ̃ (3)rθ = −σd

{
4η(m11 D1�[ξ1] + m12 D2�[ξ2] + m13 D3�[ξ3])

−G(h + α/η)D4(R2
w/r2)− D5(R4

w/r4)

}

sin[2(θ − θr )] (108)
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where the constants h, D1, D2, D3, D4, and D5 are given as

h = η f1/G − 1 (109)





D1

D2

D3





=

2

G(h + α/η)






d11 d12 d13

d21 d22 d23

d31 d32 d33






−1

∙






f1

f2

f3





(110)

D4 = −
2

G(h + α/η)

{

1 + η

3∑

i=1

[
m1i Di

K1(ξi Rw)

ξi Rw

]}

(111)

D5 = 3

{

1 + 2η
3∑

i=1

[
m1i D1

(
K1(ξi Rw)

ξi Rw
+

2K2(ξi Rw)

(ξi Rw)2

)]}

(112)

di j = mi j K2[ξ j Rw] −
2η

G(h + α/η)
fi

K1[ξ j Rw]

ξ j Rw
; i, j = 1, 2, 3 (113)

2, 5, and � are functions defined as

2[x] = K1[xr ]/(xr)+ 6K2[xr ]/(xr)2 (114)

5[x] = 2[x] + K2[xr ] (115)

�[x] = K1[xr ]/(xr)+ 3K2[xr ]/(xr)2 (116)

Problem 2: uniaxial stress problem

At the far field (r → ∞)

σxx = σyy = τxy = τxz = p = pa = pc = 0 (117)

σzz = Sz − 2νσm − α(1 − 2ν)po (118)

At the wellbore wall (r = Rw)

σrr = τrθ = τr z = p = pa = pc = 0 (119)

The solution is stress and pore pressure free, and is given by a constant stress everywhere as

σzz = Sz − 2νσm − α(1 − 2ν)po (120)

σrr = σθθ = τrθ = τθ z = τr z = p = pa = pc = 0 (121)

Problem 3: anti-plane shear problem

At the far field (r → ∞)

σxx = σyy = σzz = τxy = p = pa = pc = 0 (122)

τyz = Syz; τxz = Sxz (123)
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At the wellbore wall (r = Rw)

σrr = τrθ = p = pa = pc = 0 (124)

τr z =
(
Sxz cos[θ ] + Syz sin[θ ]

)
H[−t] (125)

The solution is an elastic one and given as

τr z =
(
Sxz cos[θ ] + Syz sin[θ ]

)(
1 − (R2

w/r2)
)

(126)

τθ z = −
(
Sxz sin[θ ] − Syz cos[θ ]

)(
1 + (R2

w/r2)
)

(127)

σrr = σθθ = σzz = τrθ = p = pa = pc = 0 (128)

COMPLETE INCLINED WELLBORE SOLUTIONS

The complete solutions for stresses and pore pressures are obtained by superimposing the non-zero

solutions of the three sub-problems as

p = po + p(2) + p(3) (129)

pa =
(
RT/V f

o

)
ma

o + pa(2) + pa(3) (130)

pc =
(
RT/V f

o

)
mc

o + pc(2) + pc(3) (131)

σrr = σm + σd cos[2(θ − θr )] + σ (1)rr + σ (2)rr + σ (3)rr (132)

σθθ = σm − σd cos[2(θ − θr )] + σ
(1)
θθ + σ

(2)
θθ + σ

(3)
θθ (133)

σzz = Sz − 2νσm + ν(σrr + σθθ )+ α(1 − 2ν)(p − po) (134)

τrθ = −σd sin[2(θ − θr )] + τ
(3)
rθ (135)

τr z =
(
Sxz cos[θ ] + Syz sin[θ ]

)(
1 − (R2

w/r2)
)

(136)

τθ z = −
(
Sxz sin[θ ] − Syz cos[θ ]

)
(1 + (R2

w/r2)
)

(137)

RESULTS AND APPLICATIONS

The solutions developed in the previous section are applied to simulate and assess the electrokinetic effect

in a chemically active and ionized rock formation on the stress and pore pressure distribution in the vicinity

of a wellbore.

A wellbore of radius 0.1 m is assumed to be drilled in a shale formation characterized by in-situ stress

and pore pressure given as: SV = 73.5 MPa, SH = Sh = 58.8 MPa, and po = 29.4 MPa at a depth of 2940

meters. The formation pore fluid is assumed to be a NaCl salt solution with activity a f
o . For simplicity,

the wellbore is assumed to be vertical, ϕy = ϕz = 0◦. The formation material properties are those of an

offshore West Africa shale with moderate clay content (∼ 60%) retrieved at the above true vertical depth

where the formation temperature is taken to be T = 100◦C.

The electrokinetic effect on the response of a chemically active formation is investigated in conjunction

with the corresponding poroelastic and porochemoelastic counterparts for the case of high (a f
mud > a f

o )

and low mud activity (a f
mud < a f

o ). The wellbore is assumed to be filled with a drilling fluid maintained

at density of 1.07 SG (Specific Gravity – the ratio of fluid density to the density of water) leading to a
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wellbore mud pressure of pmud = 30.87 MPa. All of the material properties, pore-fluid properties, and

mud properties as well as resulting calculated parameters for use in the solution, are tabulated in Table III.

TABLE III
Modeling parameters for inclined wellbore.

Parameters Values Units Comments

Shear modulus, G 760 MPa

Poisson ratio, ν 0.22 dimensionless 0 ≤ ν ≤ 0.5

Pore pressure coefficient, α 0.96 dimensionless 0 ≤ α ≤ 1.0

Storage coefficient, 1/M 1/9050 1/MPa

Porosity, φ 0.19 dimensionless 0 ≤ φ ≤ 1.0

Permeability, k 1.0e-05 mD 1.0e-20 m2

Reflection coeff., χ 0.8 dimensionless 0 ≤ χ ≤ 1.0

Effective anion diffusion coefficient, Da
ef f 9.6e-12 m2/s DNa+

= 1.33e-09

Effective cation diffusion coefficient, Dc
ef f 1.47.6e-11 m2/s DCl− = 2.03e-09

Cation exchange capacity, CEC 25 meq./100gr

Formation pore fluid activity, a f
o 0.90 dimensionless

Formation fixed charged density, m f c 0.0519 fraction ∼2.88 mol/l

Formation anion concentration, ma
o 0.0304 fraction ∼1.68 mol/l

Formation cation concentration, mc
o 0.0823 fraction ∼4.56 mol/l

Figure 3 shows the pore pressure profile at time t = 0.01 day (∼ 15 minutes) into drilling for the

case of high mud activity (a f
mud = 0.93 > a f

o = 0.90) using the complete solutions in Eq. 129 by

combining the Laplace transform time inversion of Eqs. 88 and 103. Compared with the poroelastic and

porochemoelastic response, it is obvious that there is a pressure increase at the wellbore wall due to the

electrokinetic equilibrium requirement. This pressure discontinuity is not generated due to the chemical

activity/salinity gradient between the mud and the formation as shown in the lumped chemical potential

model (ignoring ion transport), but is a consequence of the electrostatic restriction of the negative fixed

charge present on the shale pore surface. The chemical osmotic effect is to increase the near wellbore

response of pore pressure in the shale formation. This makes sense since high mud activity induces

additional osmotic flow into the formation. Figure 4 shows time evolution of the pore pressure profile for

the porochemoelectroelastic solution along with the porochemoelastic solution in dashed lines. As time

elapses, the initial osmotic pore pressure peak inside the formation decreases due to subsequent diffusion

of solvent and ions. However, the fixed-charge induced pore pressure jump at the mud/shale interface stays

constant through the course of time.

Figures 5 and 6 show, respectively, the corresponding effective radial and tangential stresses at

t = 0.01 day (15 minutes). Negative values denote tensile stress. As seen in Figure 5, the effective

radial stress attains less compressive value with respect to the regular porochemoelastic solution due to the

jump in pore pressure at the borehole wall as shown previously. As a result, a tensile region is developed

in the near wellbore region, which causes spalling failure of the formation. Similarly, Figure 6 shows

that the electrokinetic effect weakens the compressive effective tangential stress close to the borehole wall,
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Fig. 3 – Pressure distribution in the formation after t = 15 minutes into drilling for high mud activity (low mud salinity):

a f
mud = 0.93 > a f

o = 0.90.

Fig. 4 – Pressure distribution in the formation at various time intervals into drilling for high mud activity (low mud salinity):

a f
mud = 0.93 > a f

o = 0.90.

Fig. 5 – Effective radial stress distribution in the formation after t = 15 minutes into drilling for high mud activity (low mud

salinity): a f
mud = 0.93 > a f

o = 0.90.
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Fig. 6 – Effective tangential stress distribution in the formation after t = 15 minutes into drilling for high mud activity (low mud

salinity): a f
mud = 0.93 > a f

o = 0.90.

Fig. 7 – Effective radial stress distribution in the formation at various time intervals into drilling for high mud activity (low mud

salinity): a f
mud = 0.93 > a f

o = 0.90 and ignoring electrokinetic effect.

which promotes tensile fracturing failure in the formation. Unlike the porochemoelastic response, the ten-

sile region for porochemoelectroelastic model does not vanish as time evolves, but enlarges as illustrated

in Figures 7 and 8.

Figure 9 shows the pore pressure response for the case of low mud activity (a f
mud = 0.87 <

a f
o = 0.90). Since the mud salinity is higher than the formation salinity, there will be an induced osmotic

back flow of water from the formation toward the wellbore and solute migration into the formation. As a

result, the near wellbore pore pressure will be depressed accordingly as illustrated in Figure 9. Meanwhile,

the redistribution of the ion at the mud/shale interface still enforces a pressure jump at the borehole wall.

In other words, the electrical effect is to always impose a pressure increase across the mud/shale inter-

face if the formation is negatively charged. Figures 10 and 11 show the corresponding effective radial

and tangential stresses for this case. Although the chemical osmosis does enhance the effective stresses,

the electrokinetic enforcement of higher wall pressure leads to weaker compressive stresses in the near

wellbore region. In this case, the electrokinetic effect counteracts chemical osmosis.
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Fig. 8 – Effective radial stress distribution in the formation at various time intervals into drilling for high mud activity (low mud

salinity): a f
mud = 0.93 > a f

o = 0.90 with electrokinetic effect.

Fig. 9 – Pore pressure distribution in the formation after t = 15 minutes into drilling for low mud activity (high mud salinity):

a f
mud = 0.87 < a f

o = 0.90.

Fig. 10 – Effective radial stress distribution in the formation after t = 15 minutes into drilling for low mud activity (high mud

salinity): a f
mud = 0.87 < a f

o = 0.90.
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Fig. 11 – Effective tangential stress distribution in the formation after t = 15 minutes into drilling for low mud activity (high mud

salinity): a f
mud = 0.87 < a f

o = 0.90.

Fig. 12 – Pore pressure distribution in the formation after t = 15 minutes at different CEC values for high mud activity (low mud

salinity): a f
mud = 0.93 > a f

o = 0.90.

Fig. 13 – Pore pressure distribution in the formation after t = 15 minutes at different CEC values for low mud activity (high mud

salinity): a f
mud = 0.87 < a f

o = 0.90.
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It should be noted that the lumped chemical potential model (ignoring ion transport) does not provide

bounds on the responses of the stress and pore pressure since it does not account for the electrokinetic

restriction. Depending on the relative magnitudes of the chemical osmotic and electrokinetic effect, the

contribution of one effect to the overall response can overshadow the other one. In the porochemoelec-

troelastic model, the electrokinetic effects are manifested as a pressure discontinuity at the mud/shale

boundary. This pressure difference is a direct function of the shale cation exchange capacity (CEC). Fig-

ures 12 and 13 illustrate the effects of CEC on the pressure redistribution in the formation for high and low

mud activity, respectively. It is observed that the higher the shale CEC, the higher the pressure increases at

the mud/shale boundary. When the CEC is large enough, the resulting electrically induced pore pressure

will eclipse the chemical osmotic effect.

CONCLUSIONS

A general isotropic porochemoelectroelastic formulation has been presented to account for electro-chemical

effect in the overall response of chemically active porous media. Based on this formulation, a set of field and

diffusion equations was developed to solve for the stress and pore pressure distribution. The corresponding

analytical solution for the inclined wellbore problem in chemically active formations subjected to the

three-dimensional in-situ state of stress has been derived and presented in this paper.

From the present solutions, it is observed that the rate of diffusion is affected not only by the hy-

draulic Darcy’s permeability, Fick’s solute diffusion coefficient, and the membrane reflection coefficient,

but with the electrokinetic contribution that manifests itself as a boundary effect at the borehole wall.

Proper modeling of the electrokinetic contribution requires the use of the commonly measured shale pa-

rameters – Cation Exchange Capacity.

Via the inclined wellbore solution, effective stress and pore pressure analyses were carried out to

study the electrokinetic and chemical effects on the overall poromechanic responses of the chemically

active formations. Effective stress calculations show that the porochemoelectroelastic solution predictions

differ substantially from the normal porochemoelastic and poroelastic approaches. Since wellbore stability

analyses are usually performed based on effective stresses, ignoring the electrokinetic effects will mislead

the predictions and assessment of potential problems in the field.
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RESUMO

Modelos analíticos poroelásticos incluindo acoplamento químico e elétrico e soluções têm sido utilizados para

descrever a resposta de meios porosos saturados ativos química e eletricamente tais como argilas, folhelhos e tecidos

biológicos. Entretanto tais tentativas têm sido restritas a problemas de consolidação unidimensional os quais exibem

limitações na prática não constituindo exemplos realistas para validação de soluções numéricas. Este trabalho apre-

senta formulações gerais dos modelos poroelásticos lineares incluindo acoplamento químico e elétrico e apresenta

a solução de um problema de estabilidade de um poço perfurado através de uma formação saturada quimicamente

An Acad Bras Cienc (2010) 82 (1)



“main” — 2010/1/25 — 11:59 — page 220 — #26

220 VINH X. NGUYEN and YOUNANE N. ABOUSLEIMAN

ativa e ionizada tal como um folhelho submetido a um estado tridimensional de tensão. A solução analítica para

esta geometria incorpora o acoplamento entre a deformação do sólido e o fluxo simultâneo de fluido e íons induzido

pelos gradientes de poro pressão, potencial químico e potencial elétrico sob condições isotérmicas. O fluido residente

na formação é modelado como uma solução eletrolítica composta de um solvente e cátions e anions dissolvidos.

A abordagem analítica integra na solução o uso quantitativo da capacidade de troca catiônica (CTC) comumente

obtida por medidas experimentais em amostras de folhelhos. Os resultados obtidos para as distribuições de tensões

e poro pressão devido ao acoplamento eletroquímico são ilustrados e plotados na vizinhança do poço inclinado e

comparados com as soluções clássicas poroelásticas com acoplamento químico.

Palavras-chave: perfuração, eletrocinética, poço inclinado, osmose, poromecânica, estabilidade.
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APPENDIX A – STEHFEST’S ALGORITHM

Given f̃ [s] as the Laplace transform of the function f [t] and a value of time t , the following equation

implements Stehfest’s algorithm and allows the calculation for the numerical value of f [t] (Stehfest 1970)

f [t] =
Log(2)

t

N∑

n=1

An f̃
[

nLog(2)

t

]
(A1)

with the coefficient An given by

An = (−1)n+ N
2

Min(n,N/2)∑

i=Floor
(

n+1
2

)

i N/2(2i)!

(N/2 − i)!i !(i − 1)!(n − 1)!(2i − n)!
(A2)

where the symbol ! denotes factorial operation, “Floor(x)” gives the greatest integer less than or equal to x ,

and “Min” means picking the minimum values. The number of term N in the series summation is an even

integer number between 2 and 20. It has been shown that a selection of N = 8 generally gives satisfactory

results (Cheng et al. 1994).
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