

Anais da Academia Brasileira de Ciências (2016) 88(4): 2067-2080 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201620160013 www.scielo.br/aabc

# On non-Kupka points of codimension one foliations on $\mathbb{P}^3$

# OMEGAR CALVO-ANDRADE<sup>1</sup>, MAURÍCIO CÔRREA<sup>2</sup> and ARTURO FERNÁNDEZ-PÉREZ<sup>2</sup>

 <sup>1</sup>Centro de Investigaciones en Matemáticas/CIMAT,
 A.C., Jalisco, s/n, Col. Valenciana CP 36023 Guanajuato, Gto, México
 <sup>2</sup> Universidade Federal de Minas Gerais, Departamento de Matemática, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil

Manuscript received on January 13, 2016; accepted for publication on August 15, 2016

# ABSTRACT

We study the singular set of a codimension one holomorphic foliation on  $\mathbb{P}^3$ . We find a local normal form for these foliations near a codimension two component of the singular set that is not of Kupka type. We also determine the number of non-Kupka points immersed in a codimension two component of the singular set of a codimension one foliation on  $\mathbb{P}^3$ .

Key words: holomorphic foliations, Kupka sets, non-Kupka points.

# **1 - INTRODUCTION**

A regular codimension one holomorphic foliation on a complex manifold M, can be defined by a triple  $\{(\mathfrak{U}, f_{\alpha}, \psi_{\alpha\beta})\}$  where

- 1.  $\mathfrak{U} = \{U_{\alpha}\}$  is an open cover of M.
- 2.  $f_{\alpha}: U_{\alpha} \to \mathbb{C}$  is a holomorphic submersion for each  $\alpha$ .
- 3. A family of biholomorphisms  $\{\psi_{\alpha\beta}: f_\beta(U_{\alpha\beta}) \to f_\alpha(U_{\alpha\beta})\}$  such that

 $\psi_{\alpha\beta} = \psi_{\beta\alpha}^{-1}, \quad f_\beta|_{U_\alpha \cap U_\beta} = \psi_{\beta\alpha} \circ f_\alpha|_{U_\alpha \cap U_\beta} \quad \text{and} \quad \psi_{\alpha\gamma} = \psi_{\alpha\beta} \circ \psi_{\beta\gamma}.$ 

AMS(1991): 37F75, 32S65

Correspondence to: Maurício Côrrea

E-mail: mauriciomatufmg@gmail.com

Dedicated to José Seade in his 60 birthday.

Since  $df_{\alpha}(x) = \psi'_{\alpha\beta}(f_{\beta}(x)) \cdot df_{\beta}(x)$ , the set  $F = \bigcup_{\alpha} Ker(df_{\alpha}) \subset TM$  is a subbundle. Also  $[\psi'_{\alpha\beta}(f_{\beta})] \in \mathbb{R}$ 

 $\check{H}^1(\mathfrak{U}, \mathcal{O}^*)$  define a line bundle N = TM/F. The family of 1-forms  $\{df_\alpha\}$  glue to a global section  $\omega \in H^0(M, \Omega^1(N))$ . We have

$$0 \to F \to TM \xrightarrow{\{df_{\alpha}\}} N \to 0, \quad 0 \to \mathcal{F} \to \Theta \xrightarrow{\{df_{\alpha}\}} \mathcal{N} \to 0, \quad [\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$$

where  $\mathcal{F} = \mathcal{O}(F), \, \Theta = \mathcal{O}(TM)$  and  $\mathcal{N} = \mathcal{O}(N)$ . We also obtain

 $\wedge^n TM^* = det(F^*) \otimes N^*, \qquad \Omega^n_M := K_M = det(\mathcal{F}^*) \otimes \mathcal{N}^*, \quad n = dim(M).$ 

**Definition 1.1.** Let M be a compact complex manifold of dimension n. A singular codimension one holomorphic foliation on M, may be defined by one of the following ways:

- 1. A pair  $\mathcal{F} = (S, \mathcal{F})$ , where  $S \subset M$  is an analytic subset of  $\operatorname{codim}(S) \geq 2$ , and  $\mathcal{F}$  is a regular codimension one holomorphic foliation on  $M \setminus S$ .
- 2. A class of global sections  $[\omega] \in \mathbb{P}H^0(M, \Omega^1(L))$ , where  $L \in Pic(M)$  such that
  - (a) the singular set  $S_{\omega} = \{p \in M | \omega_p = 0\}$  has  $\operatorname{codim}(S_{\omega}) \ge 2$ .
  - (b)  $\omega \wedge d\omega = 0$  in  $H^0(M, \Omega^3(L^{\otimes 2}))$ .

In this case, we denote by  $\mathcal{F}_{\omega} = (S_{\omega}, \mathcal{F}_{\omega})$  the foliation represented by  $\omega$ .

3. An exact sequence of sheaves

$$0 \to \mathcal{F} \to \Theta \to \mathcal{N} \to 0, \quad [\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$$

where  $\mathcal{F}$  is a reflexive sheaf of rank  $rk(\mathcal{F}) = n - 1$  with torsion free quotient  $\mathcal{N} \simeq \mathcal{J}_S \otimes L$ , where  $\mathcal{J}_S$  is an ideal sheaf for some closed scheme S.

These three definitions are equivalents.

**Remark 1.2.** Let  $\omega \in H^0(M, \Omega^1(L))$  be a section.

1. The section  $\omega$  may be defined by a family of 1-forms

$$\omega_{\alpha} \in \Omega^{1}(U_{\alpha}), \quad \omega_{\alpha} = \lambda_{\alpha\beta}\omega_{\beta} \text{ in } U_{\alpha\beta} = U_{\alpha} \cap U_{\beta}, \quad L = [\lambda_{\alpha\beta}] \in \dot{H}^{1}(\mathfrak{U}, \mathcal{O}^{*}).$$

- 2. The section  $\omega$  is a morphism of sheaves  $\Theta \xrightarrow{\omega} L$ . The kernel of  $\omega$  is the tangent sheaf  $\mathcal{F}$ . The image of  $\omega$  is a twisted ideal sheaf  $\mathcal{N} = \mathcal{J}_{S_{\omega}} \otimes L$ . It is called the *normal sheaf of*  $\mathcal{F}$ .
- 3. As in the non-singular case, the following equality of line bundles holds

$$K_M = \Omega_M^n = det(\mathcal{F}^*) \otimes \mathcal{N}^* = K_\mathcal{F} \otimes L^{-1}, \quad det(N) \simeq L$$

where  $K_M, K_F = det(\mathcal{F}^*)$  are the canonical sheaf of M and  $\mathcal{F}$  respectively.

We denote by

$$\mathcal{F}(M,L) = \{ [\omega] \in \mathbb{P}H^0(M,\Omega^1(L)) \mid \operatorname{codim}(S_\omega) \ge 2, \quad \omega \wedge d\omega = 0 \}$$

$$\mathcal{F}(n,d) = \{ [\omega] \in \mathbb{P}H^0(\mathbb{P}^n, \Omega^1(d+2)) \, | \, \operatorname{codim}(S_\omega) \ge 2, \quad \omega \wedge d\omega = 0 \}.$$

The number  $d \ge 0$  is called the *degree of the foliation* represented by  $\omega$ .

#### 1.1 - STATEMENT OF THE RESULTS

In the sequel, M is a compact complex manifold with  $dim(M) \ge 3$ . We will use any of the above definitions for foliation. The singular set will be denoted by S. Observe that S decomposes as

$$S = \bigcup_{k=2}^{n} S_k$$
 where  $\operatorname{codim}(S_k) = k$ .

For a foliation  $\mathcal{F}$  on M represented by  $\omega \in \mathcal{F}(M, L)$ , the Kupka set (Kupka 1964, De Medeiros 1977) is defined by

$$K(\omega) = \{ p \in M \mid \omega(p) = 0, \, d\omega(p) \neq 0 \}.$$

We recall that for points near  $K(\omega)$  the foliation  $\mathcal{F}$  is biholomorphic to a product of a dimension one foliation in a transversal section by a regular foliation of codimension two (Kupka 1964) and in particular we have  $K(\omega) \subset S_2$ .

In this note, we focus our attention on the set of non-Kupka points  $NK(\omega)$  of  $\omega$ . The first remark is

$$NK(\omega) = \{ p \in M | \omega(p) = 0, \, d\omega(p) = 0 \} \supset S_3 \cup \dots \cup S_n \}$$

We analyze three cases, one in each section, the last two being the core of the work.

- 1.  $S_2 = K(\omega)$ , then  $NK(\omega) = S_3 \cup \cdots \cup S_n$ .
- 2. There is an irreducible component  $Z \subset S_2$  such that  $Z \cap K(\omega) = \emptyset$ .
- 3. For a foliation  $\omega \in \mathcal{F}(3, d)$ . Let  $Z \subset S_2$  be a connected component such that  $Z \setminus Z \cap K(\omega)$  is a finite set of points.

The first case has been considered in Brunella (2009), Calvo-Andrade (1999, 2016), Calvo-Andrade and Soares (1994), Cerveau and Lins Neto (1994). Let  $\omega \in \mathcal{F}(n, d)$  be a foliation with  $K(\omega) = S_2$  and connected, then  $\omega$  has a meromorphic first integral. In the generic case, the leaves define a *Lefschetz* or *a Branched Lefschetz Pencil*. The non-Kupka points are isolated singularities  $NK(\omega) = S_n$ . In this note, we present a new and short proof of this fact when the transversal type of  $K(\omega)$  is radial.

In the second section, we study the case of a non-Kupka irreducible component of  $S_2$ . These phenomenon arise naturally in the intersection of irreducible components of  $\mathcal{F}(M, L)$ . The following result is a local normal form for  $\omega$  near the singular set and is a consequence of a result of Loray (2006).

**Theorem 1.** Let  $\omega \in \Omega^1(\mathbb{C}^n, 0)$ ,  $n \geq 3$ , be a germ of integrable 1-form such that  $codim(S_\omega) = 2$ ,  $0 \in S_\omega$  is a smooth point and  $d\omega = 0$  on  $S_\omega$ . If  $j_0^1 \omega \neq 0$ , then or either

*1. there exists a coordinate system*  $(x_1, \ldots, x_n) \in \mathbb{C}^n$  *such that* 

$$j_0^1(\omega) = x_1 dx_2 + x_2 dx_1$$

and  $\mathcal{F}_{\omega}$  is biholomorphic to the product of a dimension one foliation in a transversal section by a regular foliation of codimension two, or

2. there exists a coordinate system  $(x_1, \ldots, x_n) \in \mathbb{C}^n$  such that

$$\omega = x_1 dx_1 + g_1(x_2)(1 + x_1 g_2(x_2)) dx_2,$$

such that  $g_1, g_2 \in \mathcal{O}_{\mathbb{C},0}$  with  $g_1(0) = g_2(0) = 0$ , or

3.  $\omega$  has a non-constant holomorphic first integral in a neighborhood of  $0 \in \mathbb{C}^n$ .

The alternatives are not exclusives. The following example was suggest by the referee and show that the case (3) of Theorem 1 cannot be avoid.

**Example 1.3.** Let  $\omega$  be a germ of a 1-form at  $0 \in \mathbb{C}^3$  defined by

$$\omega = xdx + (1+xf)df$$

where  $f(x, y, z) = y^2 z$ . We have

$$\omega = xdx + 2yz(1 + xy^2z)dy + y^2(1 + xy^2z)dz.$$

The singular set of  $\omega$  is  $\{x = y = 0\}$  and  $\{x = z = y^2 = 0\}$ , therefore the singular set has an embedding point  $\{x = z = y^2 = 0\}$  and  $d\omega$  vanish along  $\{x = y = 0\}$ . We will show that  $\omega$  has a holomorphic first integral F in a neighborhood of  $0 \in \mathbb{C}^3$ . In fact, let  $t = f(x, y, z) = y^2 z$  and set  $\varphi : (\mathbb{C}^3, 0) \to (\mathbb{C}^2, 0)$ defined by

$$\varphi(x, y, z) = (x, t).$$

Let  $\eta = xdx + (1+xt)dt$  be 1-form at  $0 \in \mathbb{C}^2$ , note that  $\omega = \varphi^*(\eta)$  and moreover  $\eta(0,0) \neq 0$ , this implies that  $\eta$  is non-singular at  $0 \in \mathbb{C}^2$  and by Frobenius theorem  $\eta$  has a holomorphic first integral H(x,t) on  $(\mathbb{C}^2, 0)$ . Defining  $H_1(x, y, z) := H(x, f(x, y, z)) = H(x, y^2 z)$ , we get  $H_1$  is a holomorphic first integral for  $\omega$  in a neighborhood of  $0 \in \mathbb{C}^3$ .

We apply Theorem 1 to a codimension one holomorphic foliation of the projective space with empty Kupka set.

About the third case, consider a foliation  $\omega \in \mathcal{F}(3, d)$ . Let Z be a connected component of  $S_2$ . We count the number  $|Z \cap NK(\omega)|$  of non-Kupka points of  $\omega$  in  $Z \subset S_2$ .

**Theorem 2.** Let  $\omega \in \mathcal{F}(3,d)$  be a foliation and  $Z \subset S_2$  a connected component of  $S_2$ . Suppose that Z is a local complete intersection and  $Z \setminus Z \cap K(\omega)$  is a finite set of points, then  $d\omega|_Z$  is a global section of  $K_Z^{-1} \otimes K_{\mathcal{F}}|_Z$  and the associated divisor  $D_\omega = \sum_{p \in Z} \operatorname{ord}_p(d\omega) \cdot p$  has degree

$$\deg(D_{\omega}) = \deg(K_{\mathcal{F}}) - \deg(K_Z).$$

Note that the section  $d\omega|_Z$  vanishes exactly in the non-Kupka points of  $\omega$  in Z then the above theorem determine the number  $|Z \cap NK(\omega)|$  (counted with multiplicity) of non-Kupka points of  $\omega$  in Z.

### 2 - THE SINGULAR SET

Let  $\omega \in \mathcal{F}(M, L)$  be a codimension one holomorphic foliation then singular set of  $\omega$  may be written as

$$S = \bigcup_{j=2}^{n} S_j$$
 where  $\operatorname{codim}(S_j) = j$ .

The fact that  $K(\omega) \subset S_2$  implies that  $S_3 \cup \ldots \cup S_n \subset NK(\omega)$ . To continue we focus in the components of singular set of  $\omega$  of dimension at least three.

#### 2.1 - SINGULAR SET OF CODIMENSION AT LEAST THREE

We recall the following result due to B. Malgrange.

**Theorem 2.1.** (Malgrange 1976) Let  $\omega$  be a germ at  $0 \in \mathbb{C}^n$ ,  $n \geq 3$  of an integrable 1-form singular at 0, if  $codim(S_{\omega}) \geq 3$ , then there exist  $f \in \mathcal{O}_{\mathbb{C}^n,0}$  and  $g \in \mathcal{O}_{\mathbb{C}^n,0}^*$  such that

 $\omega = gdf$  on a neighborhood of  $0 \in \mathbb{C}^n$ .

We have the following proposition.

**Proposition 2.2.** Let  $\omega \in \mathcal{F}(M, L)$  be a foliation and let  $p \in S_n$  an isolated singularity, then any germ of vector field tangent to the foliation vanishes at p.

*Proof.* Let  $\omega = gdf$ ,  $g \in \mathcal{O}_p^*$ ,  $f \in \mathcal{O}_p$  be a 1-form representing the foliation at p. Let  $\mathbf{X} \in \Theta_p$  be a vector field tangent to the foliation, i.e.,  $\omega(\mathbf{X}) = 0$ . If  $\mathbf{X}(p) \neq 0$  there exists a coordinate system with z(p) = 0 and  $\mathbf{X} = \partial/\partial z_n$ , then

$$0 = \omega(\mathbf{X}) = g \cdot \left(\sum_{i=1}^{n} (\partial f / \partial z_i) dz_i (\partial / \partial z_n)\right) = g \cdot (\partial f / \partial z_n), \text{ therefore } \partial f / \partial z_n \equiv 0,$$

and  $f = f(z_1, \ldots, z_{n-1})$ , but this function does not have an isolated singularity.

Now, we begin our study of the irreducible components of codimension two of the singular set of  $\omega$ . Note that, given a section  $\omega \in H^0(M, \Omega^1(L))$ , along the singular set, the equation  $\omega_{\alpha} = \lambda_{\alpha\beta}\omega_{\beta}$  implies  $d\omega_{\alpha}|_S = (\lambda_{\alpha\beta}d\omega_{\beta})|_S$ . Then

$$\{d\omega_{\alpha}\} \in H^0(S, (\Omega^2_M \otimes L)|_S).$$
(2.1)

#### 2.2 - THE KUPKA SET

These singularities has bee extensively studied and the main properties have been established in (Kupka 1964, De Medeiros 1977).

**Definition 2.3.** For  $\omega \in \mathcal{F}(M, L)$ . The Kupka set is

$$K(\omega) = \{ p \in M \mid \omega(p) = 0, \quad d\omega(p) \neq 0 \}.$$

The following properties of Kupka sets, are well known (De Medeiros 1977).

- 1.  $K(\omega)$  is smooth of codimension two.
- 2.  $K(\omega)$  has *local product structure* and the tangent sheaf  $\mathcal{F}$  is locally free near  $K(\omega)$ .
- 3.  $K(\omega)$  is subcanonically embedded and

$$\wedge^2 N_{K(\omega)} = L|_{K(\omega)}, \quad K_{K(\omega)} = (K_M \otimes L)|_{K(\omega)} = K_{\mathcal{F}}|_{K(\omega)}.$$

An Acad Bras Cienc (2016) 88 (4)

Let  $\omega \in \mathcal{F}(n,d)$  be a foliation with  $S_2 = K(\omega)$ . By Calvo-Andrade and Soares (1994), there exists a pair  $(V, \sigma)$ , where V is a rank two holomorphic vector bundle and  $\sigma \in H^0(\mathbb{P}^n, V)$ , such that

$$0 \longrightarrow \mathcal{O} \xrightarrow{\sigma} V \longrightarrow \mathcal{J}_K(d+2) \to 0 \quad \text{with} \quad \{\sigma = 0\} = K$$

and the total Chern class

$$c(V) = 1 + (d+2) \cdot \mathbf{h} + \deg(K(\omega))\mathbf{h}^2 \in H^*(\mathbb{P}^n, \mathbb{Z}) \simeq \mathbb{Z}[\mathbf{h}]/\mathbf{h}^{n+1}.$$

In 2009, Marco Brunella proved that following result, which in a certain sense say that the local transversal type of the singular set of foliation determines its behavior globally. Here we present a new proof of this fact. The techniques used in the proof could be of independent interest.

**Proposition 2.4.** Let  $\omega \in \mathcal{F}(n,d)$  be a foliation with  $S_2 = K(\omega)$ , (connected if n = 3) and of radial transversal type. Then  $K(\omega)$  is a complete intersection and  $\omega$  has a meromorphic first integral.

To prove Proposition 2.4, we requires the following lemma. This result may be well known but for lack of a suitable reference we include the proof in an appendix.

**Lemma 2.5.** Let F be a rank two holomorphic vector bundle over  $\mathbb{P}^2$  with  $c_1(F) = 0$  and  $c_2(F) = 0$ . Then  $F \simeq \mathcal{O} \oplus \mathcal{O}$ , is holomorphically trivial.

Now, we prove Proposition 2.4.

*Proof of Proposition 2.4.* Let  $(V, \sigma)$  be the vector bundle with a section defining the Kupka set as scheme. The radial transversal type implies (Calvo-Andrade and Soares 1994)

$$c(V) = 1 + (d+2) \cdot \mathbf{h} + \frac{(d+2)^2}{4} \cdot \mathbf{h}^2 = \left(1 + \frac{(d+2) \cdot \mathbf{h}}{2}\right)^2 \in H^*(\mathbb{P}^n, \mathbb{Z}) \simeq \mathbb{Z}[\mathbf{h}]/\mathbf{h}^{n+1}.$$

The vector bundle  $E = V(-\frac{d+2}{2})$ , has  $c_1(E) = 0$  and  $c_2(E) = 0$ . Let  $\xi : \mathbb{P}^2 \hookrightarrow \mathbb{P}^n$  be a linear embedding. By the preceding lemma we have

$$\xi^* E \simeq \mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}$$

and by the Horrocks' criterion (Okonek et al. 1980),

$$E \simeq \mathcal{O}_{\mathbb{P}^n} \oplus \mathcal{O}_{\mathbb{P}^n}$$

is trivial and hence V splits as  $\mathcal{O}_{\mathbb{P}^n}(\frac{d+2}{2}) \oplus \mathcal{O}_{\mathbb{P}^n}(\frac{d+2}{2})$  and K is a complete intersection. The existence of the meromorphic first integral follows from Theorem A of (Cerveau and Lins Neto 1994).

If  $\omega$  is such that  $K(\omega) = S_2$  and connected, the set of non-Kupka points of  $\omega$  is

$$NK(\omega) = S_3 \cup \cdots \cup S_n.$$

A generic rational map, that means, a Lefschetz or a Branched Lefschetz Pencil  $\varphi : \mathbb{P}^n \longrightarrow \mathbb{P}^1$ , has only isolated singularities away its base locus. The singular set of the foliation defined by the fibers of  $\varphi$  is  $S_n \cup S_2$ . The Kupka set corresponds away from its base locus and  $S_n = NK(\omega)$  are the singularities as a map.  $S_n$  is empty if and only if the degree of the foliation is 0. The number  $\ell(S_n)$  of isolated singularities counted with multiplicities can be calculated by (Cukierman et al. 2006). If  $\omega_p$  is a germ of form that defines the foliation at  $p \in S_n$ , we have

$$\ell(S_n) = \sum_{p \in S_n} \mu(\omega_p, p), \quad \mu(\omega, p) = \dim_{\mathbb{C}} \frac{\mathcal{O}_p}{(\omega_1, \dots, \omega_n)}, \quad \omega_p = \sum_{i=1}^n \omega_i dz_i.$$

We have that  $c_n(\mathcal{F}) = \ell(S_n)$ .

### **3 - FOLIATIONS WITH A NON-KUPKA COMPONENT**

It is well known that  $K(\omega) \subset \{p \in M | j_p^1 \omega \neq 0\}$ , but the converse is not true. Our first result describes the singular points with this property.

## 3.1 - A NORMAL FORM

Now, we analyze the situation when there is an irreducible non-Kupka component of  $S_2$ .

*Proof of Theorem 1.* By hypotheses,  $d\omega(p) = 0$  for any  $p \in S_{\omega}$ . Since

$$\omega = \omega_1 + \cdots, \qquad d\omega = d\omega_1 + \cdots = 0,$$

we get  $d\omega_1(p) = 0$  for any  $p \in S_{\omega}$ . Now, as  $\omega_1 \neq 0$  and  $\operatorname{codim}(S_{\omega}) = 2$ , we have  $1 \leq \operatorname{codim}(S_{\omega_1}) \leq 2$ . We distinguish two cases.

1.  $\operatorname{codim}(S_{\omega_1}) = 2$ : there is a coordinate system  $(x_1, \ldots, x_n) \in \mathbb{C}^n$  such that

$$\omega_1 = x_1 dx_2 + x_2 dx_1.$$

2.  $\operatorname{codim}(S_{\omega_1}) = 1$ : there is a coordinate system  $(x, \zeta) \in \mathbb{C} \times \mathbb{C}^{n-1}$  such that x(p) = 0 and  $\omega_1 = xdx$ .

The first case is known, the foliation  $\mathcal{F}_{\omega}$  is equivalent in a neighborhood of  $0 \in \mathbb{C}^n$  to a product of a dimension one foliation in a transversal section by a regular foliation of codimension two (Cerveau and Mattei 1982).

In the second case, Loray's preparation theorem (Loray 2006), shows that there exists a coordinate system  $(x, \zeta) \in \mathbb{C} \times \mathbb{C}^{n-1}$ , a germ  $f \in \mathcal{O}_{\mathbb{C}^{n-1},0}$  with f(0) = 0, and germs  $g, h \in \mathcal{O}_{\mathbb{C},0}$  such that the foliation is defined by the 1-form

$$\omega = xdx + [g(f(\zeta)) + xh(f(\zeta))]df(\zeta).$$
(3.1)

Since  $S_{\omega_1} = \{x = 0\}$  and  $0 \in S_{\omega}$  is a smooth point, we can assume that  $S_{\omega,p} = \{x = \zeta_1 = 0\}$ , where  $S_{\omega,p}$  is the germ of  $S_{\omega}$  at p = 0. Therefore,

$$S_{\omega,p} = \{x = \zeta_1 = 0\} = \{x = g(f(\zeta)) = 0\} \cup \left\{x = \frac{\partial f}{\partial \zeta_1} = \dots = \frac{\partial f}{\partial \zeta_{n-1}} = 0\right\}.$$

Hence, either g(0) = 0 and  $\zeta_1 | f$ , or  $g(0) \neq 0$  and  $\zeta_1 | \frac{\partial f}{\partial \zeta_j}$  for all j = 1, ..., n-1. In any case, we have  $\zeta_1 | f$  and then  $f(\zeta) = \zeta_1^k \psi(\zeta)$ , where  $\psi$  is a germ of holomorphic function in the variable  $\zeta$ ;  $k \in \mathbb{N}$  and  $\zeta_1$  does not divide  $\psi$ . We have two possibilities:

 $1^{st}$  case.-  $\psi(0) \neq 0$ . In this case, we consider the biholomorphism

$$G(x,\zeta) = (x,\zeta_1\psi^{1/k}(\zeta),\zeta_2,\ldots,\zeta_n) = (x,y,\zeta_2,\ldots,\zeta_n)$$

where  $\psi^{1/k}$  is a branch of the  $k^{th}$  root of  $\psi$ , we get  $f \circ G^{-1}(x, y, \zeta_2, \dots, \zeta_n) = y^k$  and

$$G_*(\omega) = xdx + (g(y^k) + xh(y^k))ky^{k-1}dy = xdx + (g_1(y) + xh_1(y))dy,$$

where  $g_1(y) = ky^{k-1}g(y^k)$ ,  $h_1(y) = ky^{k-1}h(y^k)$ . Therefore,  $\tilde{\omega} := G_*(\omega)$  is equivalent to  $\omega$  and moreover  $\tilde{\omega}$  is given by

$$\tilde{\omega} = xdx + (g_1(y) + xh_1(y))dy$$
 with  $S_{\tilde{\omega}} = \{x = g_1(y) = 0\}.$  (3.2)

Since  $d\tilde{\omega} = h_1(y)dx \wedge dy$  is zero identically on  $\{x = g_1(y) = 0\}$ , we get  $g_1|h_1$ , so that  $h_1(y) = (g_1(y))^m H(y)$ , for some  $m \in \mathbb{N}$  and such that H(y) does not divided  $g_1(y)$ . Using the above expression for  $h_1$  in (3.2), we have

$$\tilde{\omega} = xdx + g_1(y)(1 + x(g_1(y))^{m-1}H(y))dy = xdx + g_1(y)(1 + xg_2(y))dy,$$

where  $g_2(y) = (g_1(y))^{m-1}H(y)$ . Consider  $\varphi : (\mathbb{C}, 0) \times (\mathbb{C}^{n-1}, 0) \to (\mathbb{C}^2, 0)$  defined by  $\varphi(x, \zeta) = (x, y)$ , then

$$\omega = \varphi^*(xdx + g_1(y)(1 + xg_2(y))dy).$$
(3.3)

 $2^{nd}$  case.–  $\psi(0)=0.$  We have  $S_{\omega,p}=\{x=\zeta_1=0\}$  and

$$\omega = xdx + (g(\zeta_1^k\psi) + xh(\zeta_1^k\psi))d(\zeta_1^k\psi), \qquad (3.4)$$

therefore

$$\omega = xdx + (g(\zeta_1^k \psi) + xh(\zeta_1^k \psi))\zeta_1^{k-1}(k\psi d\zeta_1 + \zeta_1 d\psi).$$
(3.5)

Note that  $g(0) \neq 0$ , otherwise  $\{x = \zeta_1 \psi(\zeta) = 0\}$  would be contained in  $S_{\omega,p}$ , but it is contradiction because  $S_{\omega,p} = \{x = \zeta_1 = 0\} \subsetneq \{x = \zeta_1 \psi(\zeta) = 0\}$ . Furthermore  $k \ge 2$ , because otherwise  $\zeta_1 | \psi$ . Let  $\varphi : (\mathbb{C}, 0) \times (\mathbb{C}^{n-1}, 0) \to (\mathbb{C}^2, 0)$  be defined by

$$\varphi(x,\zeta) = (x,\zeta_1^k\psi(\zeta)) = (x,t),$$

then from (3.4), we get that

$$\omega = \varphi^*(\eta),$$

where  $\eta = xdx + (g(t) + xh(t))dt$ . Since  $\eta(0,0) = g(0)dt \neq 0$ , we deduce that  $\eta$  has a non-constant holomorphic first integral  $F \in \mathcal{O}_{\mathbb{C}^2,0}$  such that  $dF(0,0) \neq 0$ . Therefore,  $F_1(x,\zeta) = F(x,\zeta_1^k\psi(\zeta))$  is a non-constant holomorphic first integral for  $\omega$  in a neighborhood of  $0 \in \mathbb{C}^n$ .

## 3.2 - APPLICATIONS TO FOLIATIONS ON $\mathbb{P}^n$

In order to give some applications of Theorem 1, we need the Baum-Bott index associated to singularities of foliations of codimension one.

Let M be a complex manifold and let  $\mathcal{G}_{\omega} = (S, \mathcal{G})$  be a codimension one holomorphic foliation represented by  $\omega \in H^0(M, \Omega^1(L))$ . We have the exact sequence

$$0 \to \mathcal{G} \to \Theta_M \xrightarrow{\omega} \mathcal{N}_{\mathcal{G}} \to 0, \quad \mathcal{N}_{\mathcal{G}} \simeq \mathcal{J}_S \otimes L.$$

Set  $M^0 = M \setminus S$  and take  $p_0 \in M^0$ . Then in a neighborhood  $U_\alpha$  of  $p_0$  the foliation  $\mathcal{G}$  is induced by a holomorphic 1-form  $\omega_\alpha$  and there exists a differentiable 1-form  $\theta_\alpha$  such that

$$d\omega_{\alpha} = \theta_{\alpha} \wedge \omega_{\alpha}$$

Let Z be an irreducible component of  $S_2$ . Take a generic point  $p \in Z$ , that is, p is a point where Z is smooth and disjoint from the other singular components. Pick  $B_p$  a ball centered at p sufficiently small, so that  $S(B_p)$  is a sub-ball of  $B_p$  of codimension 2. Then the De Rham class can be integrated over an oriented 3-sphere  $L_p \subset B_p^*$  positively linked with  $S(B_p)$ :

$$BB(\mathcal{G}, Z) = \frac{1}{(2\pi i)^2} \int_{L_p} \theta \wedge d\theta.$$

This complex number is the *Baum-Bott residue of G along Z*. We have a particular case of the general Baum-Bott residues Theorem (Baum and Bott 1972), reproved by Brunella and Perrone (2011).

**Theorem 3.1.** Let  $\mathcal{G}$  be a codimension one holomorphic foliation on a complex manifold M. Then

$$c_1(L)^2 = c_1^2(\mathcal{N}_{\mathcal{G}}) = \sum_{Z \subset S_2} BB(\mathcal{G}, Z)[Z],$$

where  $\mathcal{N}_{\mathcal{G}} = \mathcal{J}_S \otimes L$  is the normal sheaf of  $\mathcal{G}$  on M and the sum is done over all irreducible components of  $S_2$ .

In particular, if  $\mathcal{G}$  is a codimension one foliation on  $\mathbb{P}^n$  of degree d, then the normal sheaf  $\mathcal{N}_{\mathcal{G}} = \mathcal{J}_S(d+2)$  and the Baum-Bott Theorem looks as follows

$$\sum_{Z \subset S_2} \operatorname{BB}(\mathcal{G}, Z) \operatorname{deg}[Z] = (d+2)^2.$$

**Remark 3.2.** If there exist a coordinates system  $(U, (x, y, z_3, ..., z_n))$  around  $p \in Z \subset S_2$  such that x(p) = y(p) = 0 and  $S(\mathcal{G}) \cap U = Z \cap U = \{x = y = 0\}$ . Moreover, if we assume that

$$\omega|_U = P(x, y)dy - Q(x, y)dx$$

is a holomorphic 1-form representing  $\mathcal{G}|_U$ . Then we can consider the  $\mathcal{C}^{\infty}$  (1,0)-form  $\theta$  on  $U \setminus Z$  given by

$$\theta = \frac{\left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}\right)}{|P|^2 + |Q|^2} (\bar{P}dx + \bar{Q}dy).$$

Since  $d\omega = \theta \wedge \omega$ , we get

$$BB(\mathcal{G}, Z) = \frac{1}{(2\pi i)^2} \int_{L_p} \theta \wedge d\theta = \operatorname{Res}_0 \left\{ \frac{\operatorname{Tr}(D\mathbf{X}) \, dx \wedge dy}{PQ} \right\},\tag{3.6}$$

where  $\text{Res}_0$  denotes the Grothendieck residue,  $D\mathbf{X}$  is the Jacobian of the holomorphic map  $\mathbf{X} = (P, Q)$ . It follows from Griffiths and Harris (1978) that if  $D\mathbf{X}(p)$  is non-singular, then

$$BB(\mathcal{G}, Z) = \frac{Tr(D\mathbf{X}(p))^2}{\det(D\mathbf{X}(p))}.$$

An Acad Bras Cienc (2016) 88 (4)

In the situation explained above, the tangent sheaf  $\mathcal{G}(U)$  is locally free and generated by the holomorphic vector fields

$$\mathcal{G}(U) = \left\langle \mathbf{X} = P(x, y) \frac{\partial}{\partial x} + Q(x, y) \frac{\partial}{\partial y}, \frac{\partial}{\partial z_3}, \dots, \frac{\partial}{\partial z_n} \right\rangle$$

and the vector field X carries the information of the Baum-Bott residues.

The next result, in an application of Theorem 1

**Theorem 3.3.** Let  $\omega \in \mathcal{F}(M, L)$  be a foliation and  $Z \subset S_2 \setminus K(\omega)$ . Suppose that Z is smooth and  $j_p^1 \omega \neq 0$  for all  $p \in Z$ , then  $BB(\mathcal{F}_{\omega}, Z) = 0$ .

*Proof.* We work in a small neighborhood U of  $p \in Z \subset M$ . According to Theorem 1 there exist a coordinate system  $(x, y, z_3, \ldots, z_n)$  at p such that  $Z \cap U = \{x = y = 0\}$  and one has three cases. In the first case,  $\mathcal{F}_{\omega}$  is the product of a dimension one foliation in a section transversal to Z by a regular foliation of codimension two and  $j_p^1(\omega) = xdy + ydx$ . In this case, it follows from (3.6) that BB $(\mathcal{F}_{\omega}, Z) = 0$ . In the second case

$$\omega = xdx + g_1(y)(1 + xg_2(y))dy,$$

where  $g_1, g_2 \in \mathcal{O}_{\mathbb{C},0}$  and it follows from Lemma 3.9 of Cerveau and Lins Neto (2013) that

$$BB(\mathcal{F}_{\omega}, Z) = \operatorname{Res}_{t=0} \left[ \frac{(g_1(t)g_2(t))^2 dt}{g_1(t)} \right] = \operatorname{Res}_{t=0} \left[ g_1(t)(g_2(t))^2 \right].$$

Since  $g_1(y)(g_2(y))^2$  is holomorphic at y = 0, we get BB $(\mathcal{F}_{\omega}, Z) = 0$ . In the third case  $\mathcal{F}_{\omega}$  has a holomorphic first integral in neighborhood of p and is known that BB $(\mathcal{F}_{\omega}, Z) = 0$ .

The Baum-Bott formula implies the following result.

**Corollary 3.4.** Let  $\omega \in \mathcal{F}(n,d)$ ,  $n \geq 3$ , be a foliation with  $K(\omega) = \emptyset$ . Then there exists a smooth point  $p \in S_2$  such that  $j_p^1 \omega = 0$ .

*Proof.* If for all smooth point  $p \in S_2$  one has  $j_p^1 \omega \neq 0$ , the above theorem shows that  $BB(\mathcal{F}_{\omega}, Z) = 0$  for all irreducible components  $Z \subset S_2$ . By Baum–Bott's theorem, we get

$$0 < (d+2)^2 = \sum_{Z \subset S_2} \operatorname{BB}(\mathcal{F}_{\omega}, Z) \operatorname{deg}[Z] = 0$$

which is a contradiction. Therefore there exists a smooth point  $p \in S_2$  such that  $j_p^1 \omega = 0$ .

In particular, if  $\omega \in \mathcal{F}(n,d)$ ,  $n \geq 3$ , is a foliation with  $j_p^1 \omega \neq 0$  for any  $p \in \mathbb{P}^n$ , then its Kupka set is not empty.

#### 4 - THE NUMBER OF NON-KUPKA POINTS

Through this section, we consider codimension one foliations on  $\mathbb{P}^3$ , but some results remain valid to codimension one foliations on others manifolds of dimension three.

An Acad Bras Cienc (2016) 88 (4)

#### 4.1 - SIMPLE SINGULARITIES

Let  $\omega$  be a germ of 1-form at  $0 \in \mathbb{C}^3$ . We define the *rotational* of  $\omega$  as the unique vector field **X** such that

$$rot(\omega) = \mathbf{X} \iff d\omega = \imath_{\mathbf{X}} dx \wedge dy \wedge dz,$$

moreover  $\omega$  is integrable if and only if  $\omega(rot(\omega)) = 0$ .

Let  $\omega$  be a germ of an integrable 1-form at  $0 \in \mathbb{C}^3$ . We say that 0 is a *simple singularity* of  $\omega$  if  $\omega(0) = 0$  and either  $d\omega(0) \neq 0$  or  $d\omega$  has an isolated singularity at 0. In the second case, these kind of singularities, are classified as follows

- 1. Logarithmic. The second jet  $j_0^2(\omega) \neq 0$  and the linear part of  $\mathbf{X} = rot(\omega)$  at 0 has non zero eigenvalues.
- 2. Degenerated. The rotational has a zero eigenvalue, the other two are non zero and necessarily satisfies the relation  $\lambda_1 + \lambda_2 = 0$ .
- 3. Nilpotent. The rotational vector field X, is nilpotent as a derivation.

The structure near simple singularity is known (Calvo-Andrade et al. 2004). If  $p \in S$  is a simple singularity and  $d\omega(p) = 0$ , then p is a singular point of S.

**Theorem 4.1.** Let  $\omega \in \Omega^1(\mathbb{C}^3, 0)$ ,  $n \ge 3$ , be a germ of integrable 1-form such that  $\omega$  has a simple singularity at 0 then the tangent sheaf  $\mathcal{F} = Ker(\omega)$  is locally free at 0 and it is generated by  $\langle rot(\omega), \mathbf{S} \rangle$ , where **S** has non zero linear part.

*Proof.* Let  $\omega$  be a germ at  $0 \in \mathbb{C}^3$  of an integrable 1-form and 0 a simple non-Kupka singularity. Then  $0 \in \mathbb{C}^3$  is an isolated singularity of  $\mathbf{X} = rot(\omega)$ . Consider the Koszul complex of the vector field  $\mathbf{X}$  at 0

$$\mathbb{K}(\mathbf{X})_0: 0 \to \Omega^3_{\mathbb{C}^3, 0} \xrightarrow{\imath_{\mathbf{X}}} \Omega^2_{\mathbb{C}^3, 0} \xrightarrow{\imath_{\mathbf{X}}} \Omega^1_{\mathbb{C}^3, 0} \xrightarrow{\imath_{\mathbf{X}}} \mathcal{O}_{\mathbb{C}^3, 0} \to 0$$

Since  $\omega(\mathbf{X}) = 0$ , then  $\omega \in H^1(\mathbb{K}(\mathbf{X})_0)$  that vanishes because **X** has an isolated singularity at 0. Therefore, there exists  $\theta \in \Omega^2_{\mathbb{C}^3,0}$  such that  $\imath_{\mathbf{X}}\theta = \omega$ . The map  $\Theta_{\mathbb{C}^3,0} \ni \mathbf{Z} \mapsto \imath_{\mathbf{Z}} dx \wedge dy \wedge dz \in \Omega^2_{\mathbb{C}^3,0}$  is an isomorphism, hence

 $\omega = \imath_{\mathbf{X}}\theta$ , and  $\theta = \imath_{\mathbf{S}}dx \wedge dy \wedge dz$ , implies  $\omega = \imath_{\mathbf{X}}\theta = \imath_{\mathbf{X}}\imath_{\mathbf{S}}dx \wedge dy \wedge dz$ 

and then, the vector fields  $\{X, S\}$  generate the sheaf  $\mathcal{F}$  in a neighborhood of 0.

Let  $\omega \in \mathcal{F}(3,d)$  be a foliation and  $Z \subset S_2$  be a connected component of  $S_2$ . Assume that Z is a local complete intersection and has only simple singularities. We will calculate the number  $|NK(\omega) \cap Z|$  of non-Kupka points in Z.

*Proof of Theorem 2.* Let  $\mathcal{J}$  be the ideal sheaf of Z. Since Z is a local complete intersection, consider the exact sequence

 $0 \to \mathcal{J}/\mathcal{J}^2 \to \Omega^1 \otimes \mathcal{O}_Z \to \Omega^1_Z \to 0$ 

Taking  $\wedge^2$  and twisting by  $L = K_{\mathbb{P}^3}^{-1} \otimes K_Z = K_Z(4)$  we get

$$0 \to \wedge^2 \mathcal{J}/\mathcal{J}^2 \otimes L \to \Omega^2_{\mathbb{P}^3}|_Z \otimes L \to \cdots$$

An Acad Bras Cienc (2016) 88 (4)

Since  $Z \subset S$ , the singular set, we have seen before that

$$d\omega|_Z \in H^0(Z, \wedge^2(\mathcal{J}/\mathcal{J}^2) \otimes L)$$

Now, from the equalities of sheaves

$$K_Z^{-1}\otimes K_{\mathbb{P}^3}\simeq\wedge^2(\mathcal{J}/\mathcal{J}^2),\quad\text{and}\quad L\simeq K_{\mathbb{P}^3}^{-1}\otimes K_{\mathcal{F}}$$

we have

$$H^{0}(Z, \wedge^{2}(\mathcal{J}/\mathcal{J}^{2}) \otimes L) = H^{0}(Z, K_{Z}^{-1} \otimes K_{\mathcal{F}}|_{Z}),$$

the non-Kupka points of  $\omega$  in Z satisfies  $d\omega|_Z = 0$ , denoting

$$D_{\omega} = \sum_{p \in Z} ord_p(d\omega)$$

the associated divisor to  $d\omega|_Z$ , one has

$$\deg(D_{\omega}) = \deg(K_{\mathcal{F}}) - \deg(K_Z),$$

as claimed.

**Remark 4.2.** The method of the proof works also in projective manifolds, and does not depends on the integrability condition.

# 4.2 - EXAMPLES

We apply Theorem 2 for some codimension one holomorphic foliations on  $\mathbb{P}^3$  and determine the number of non-Kupka points.

**Example 4.3** (Degree two logarithmic foliations). Recall that the canonical bundle of a degree two foliation of  $\mathbb{P}^3$  is trivial. There are two irreducible components of logarithmic foliations in the space of foliations of  $\mathbb{P}^3$  of degree two:  $\mathcal{L}(1, 1, 2)$  and  $\mathcal{L}(1, 1, 1, 1)$ . We analyze generic foliations on each component.

**Component**  $\mathcal{L}(1, 1, 2)$ : let  $\omega$  be a generic element of  $\mathcal{L}(1, 1, 2)$  and consider its singular scheme  $S = S_2 \cup S_3$ . By Theorem 3 of Cukierman et al. (2006), we have  $\ell(S_3) = 2$ . On the other hand,  $S_2$  has three irreducible components, two quadratics and a line, the arithmetic genus is  $p_a(S_2) = 2$ . Note that Theorem 2, implies that the number  $|NK(\omega) \cap S_2|$ , of non-Kupka points in  $S_2$  is

$$|NK(\omega) \cap S_2| = deg(D_{\omega}) = deg(K_{\mathcal{F}}) - deg(K_{S_2}) = -\chi(S_2) = 2.$$

The non-Kupka points of the foliation  $\mathcal{F}_{\omega}$  are  $|NK(\omega)| = \ell(S_3) + |NK \cap S_2| = 4$ .

**Component**  $\mathcal{L}(1, 1, 1, 1)$ : let  $\omega$  be a generic element of  $\mathcal{L}(1, 1, 1, 1)$  then the tangent sheaf is  $\mathcal{O} \oplus \mathcal{O}$  and the singular scheme  $S = S_2$  (Giraldo and Pan-Collantes 2010), moreover consists of 6 lines given the edges of a tetrahedron, obtained by intersecting any two of the four invariant hyperplanes  $H_i$ . The arithmetic genus is  $p_a(S_2) = 3$ , by Theorem 2,  $|NK(\omega)| = |NK(\omega) \cap S_2| = 4$ , corresponding to the vertices of the tetrahedron where there are simple singularities of logarithmic type.

2078

**Example 4.4** (The exceptional component  $\mathcal{E}(3)$ ). The leaves of a generic foliation  $\omega \in \mathcal{E}(3) \subset \mathcal{F}(3,2)$ , are the orbits of an action of  $\operatorname{Aff}(\mathbb{C}) \times \mathbb{P}^3 \to \mathbb{P}^3$  and its tangent sheaf is  $\mathcal{O} \oplus \mathcal{O}$  (see Calvo-Andrade et al. 2004, Giraldo and Pan-Collantes 2010). Its singular locus  $S = S_2$  has deg(S) = 6 and three irreducible components: a line L, a conic C tangent to L at a point p, and a twisted cubic  $\Gamma$  with L as an inflection line at p. Then  $NK(\omega) = L \cap C \cap \Gamma = \{p\} \subset S$ .

The arithmetic genus is  $p_a(S) = 3$  and the canonical bundle of the foliation again is trivial, by Theorem 2, the number of non-Kupka points  $|NK(\omega)| = 4$ . Therefore the non-Kupka divisor  $NK(\omega) \cap S = 4p$ . If  $\omega$  represents the foliation at p, then  $\mu(d\omega, p) = \mu(rot(\omega), p) = 4$ .

#### ACKNOWLEDGMENTS

The first author was partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP N° 2014/23594-6), CONACYT 262121 and thanks the Federal University of Minas Gerais (UFMG), Instituto de Matemática Pura e Aplicada (IMPA), and Instituto de Matemática, Estatística e Computação Científica da UNICAMP for the hospitality during the elaboration of this work. The second author was partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-DGU 247/11), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 300351/2012-3 and PPM-00169-13). The third author was partially supported by Bolsista/CAPES and thanks the Instituto de Matemática y Ciencias Afines (IMCA) for the hospitality. Finally, we would like to thank the referee by the suggestions, comments and improvements to the exposition.

#### REFERENCES

- BAUM P AND BOTT R. 1972. Singularities of holomorphic foliations. J Differential Geometry 7: 279-342.
- BRUNELLA M. 2009. Sur les Feuilletages de l'espace projectif ayant une composante de Kupka. Enseig Math (2) 55(3-4): 227-234.
   BRUNELLA M AND PERRONE C. 2011. Exceptional singularities of codimension one holomorphic foliations. Publ Mathemàtique 55: 295-312.
- CALVO-ANDRADE O. 1999. Foliations with a Kupka Component on Algebraic Manifolds. Bull of the Brazilian Math Soc 30(2): 183-197.
- CALVO-ANDRADE O. 2016. Foliations with a radial Kupka set on projective spaces. Bull of the Brazilian Math Soc, 13 p. doi 10.1007/s00574-016-0158-6
- CALVO-ANDRADE O AND SOARES M. 1994. Chern numbers of a Kupka component. Ann Inst Fourier 44: 1219-1236.
- CALVO-ANDRADE O, CERVEAU D, GIRALDO L AND LINS NETO A. 2004. Irreducible components of the space of foliations associated with the affine Lie algebra. Ergodic Theory and Dyn Sist 24: 987-1014.
- CERVEAU D AND LINS NETO A. 1994. Codimension one Foliations in Cp<sup>n</sup>, n ≥ 3, with Kupka components. In: Lins A, Moussu R and Sad P (Eds), Complex Analytic Methods in Dynamical Systems. Camacho C, Astérisque 222, p. 93-133.
- CERVEAU D AND LINS NETO A. 2013. A structural theorem for codimension-one foliations on  $P^n$ ,  $n \ge 3$ , with application to degree three foliations. Ann Sc Norm Super Pisa Cl Sci (5) 12(1): 1-41.
- CERVEAU D AND MATTEI JF. 1982. Formes intégrables holomorphes singulières. Astérisque 97, Paris: Soc Math de France.
- CUKIERMAN F, SOARES M AND VAINSENCHER I. 2006. Singularities of Logarithmic foliations. Compositio Math 142: 131-142.
- DE MEDEIROS A. 1977. Structural stability of integrable differential forms. Palis J and do Carmo M (Eds), Geometry and Topology, Springer LNM 597, p. 395-428.
- GIRALDO L AND PAN-COLLANTES AJ.. 2010. On the singular scheme of codimension one holomorphic foliations in P<sup>3</sup>. Int J Math 21(7): 843-858.
- GRIFFITHS PH AND HARRIS J. 1978. Principles of Algebraic Geometry. In Pure & Appl Math, Wiley Interscience.
- KUPKA I. 1964. Singularities of structurally stable Pfaffian forms. Proc Nat Acad of Sc USA 52: 1431-1432.
- LORAY F. 2006. A preparation theorem for codimension-one foliations. Ann of Math (2) 163(2): 709-722.

MALGRANGE B. 1976. Frobenius avec singularités. Codimension 1. IHES Publ Math 46: 163-173.

OKONEK CH, SCHNEIDER M AND SPINDLER H. 1980. Vector Bundles on Complex Projective spaces. Progress in Math Vol 3, Boston: Birkhauser, vii + 389 p.

### 5 - APPENDIX

We prove Lemma 2.5.

*Proof.* First, we see that  $h^0(F) \ge 1$ . By Riemann–Roch–Hirzebruch, we have

$$\chi(F) = h^0(F) - h^1(F) + h^2(F) = [ch(F) \cdot Td(\mathbb{P}^2)]_2 = 2,$$

then

$$h^{0}(F) + h^{2}(F) = [ch(F) \cdot Td(\mathbb{P}^{2})]_{2} + h^{1}(F) \ge [ch(F) \cdot Td(\mathbb{P}^{2})]_{2} = 2$$

By Serre duality (Griffiths and Harris 1978, Okonek et al. 1980), we get  $h^2(F) = h^0(F(-3))$ . Moreover  $h^0(F) \ge h^0(F(-k))$  for all k > 0, hence  $h^0(F) \ge 1$ . Let  $\tau \in H^0(F)$  be a non zero section, consider the exact sequence

$$0 \longrightarrow \mathcal{O} \xrightarrow{\cdot \tau} F \longrightarrow \mathcal{Q} \longrightarrow 0 \quad \text{with} \quad \mathcal{Q} = F/\mathcal{O}.$$
(5.1)

The sheaf Q is torsion free, therefore  $Q \simeq \mathcal{J}_{\Sigma}$  for some  $\Sigma \subset \mathbb{P}^2$ . The sequence (5.1), is a free resolution of the sheaf Q with vector bundles with zero Chern classes. From the definition of Chern classes for coherent sheaves (Baum and Bott 1972), we get c(Q) = 1, in particular deg $(\Sigma) = c_2(Q) = 0$ , we conclude that  $\Sigma = \emptyset$  and  $Q \simeq \mathcal{O}$ . Then F is an extension of holomorphic line bundles, hence it splits (Okonek et al. 1980, p. 15).