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ABSTRACT

We study the singular set of a codimension one holomorphic foliation on P3. We find a local normal form

for these foliations near a codimension two component of the singular set that is not of Kupka type. We also

determine the number of non-Kupka points immersed in a codimension two component of the singular set

of a codimension one foliation on P3.
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1 - INTRODUCTION

A regular codimension one holomorphic foliation on a complex manifold M , can be defined by a triple

{(U, fα, ψαβ)} where

1. U = {Uα} is an open cover ofM .

2. fα : Uα → C is a holomorphic submersion for each α.

3. A family of biholomorphisms {ψαβ : fβ(Uαβ) → fα(Uαβ)} such that

ψαβ = ψ−1
βα , fβ|Uα∩Uβ

= ψβα ◦ fα|Uα∩Uβ
and ψαγ = ψαβ ◦ ψβγ .
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Since dfα(x) = ψ′
αβ(fβ(x)) · dfβ(x), the set F =

⋃
α

Ker(dfα) ⊂ TM is a subbundle. Also [ψ′
αβ(fβ)] ∈

Ȟ1(U,O∗) define a line bundle N = TM/F . The family of 1–forms {dfα} glue to a global section ω ∈
H0(M,Ω1(N)). We have

0 → F → TM
{dfα}−−−→ N → 0, 0 → F → Θ

{dfα}−−−→ N → 0, [F ,F ] ⊂ F

where F = O(F ), Θ = O(TM) and N = O(N). We also obtain

∧nTM∗ = det(F ∗)⊗N∗, Ωn
M := KM = det(F∗)⊗N ∗, n = dim(M).

Definition 1.1. Let M be a compact complex manifold of dimension n. A singular codimension one

holomorphic foliation onM , may be defined by one of the following ways:

1. A pair F = (S,F), where S ⊂ M is an analytic subset of codim(S) ≥ 2, and F is a regular

codimension one holomorphic foliation onM \ S.

2. A class of global sections [ω] ∈ PH0(M,Ω1(L)), where L ∈ Pic(M) such that

(a) the singular set Sω = {p ∈M |ωp = 0} has codim(Sω) ≥ 2.

(b) ω ∧ dω = 0 in H0(M,Ω3(L⊗2)).

In this case, we denote by Fω = (Sω,Fω) the foliation represented by ω.

3. An exact sequence of sheaves

0 → F → Θ → N → 0, [F ,F ] ⊂ F

where F is a reflexive sheaf of rank rk(F) = n − 1 with torsion free quotient N ' JS ⊗ L, where

JS is an ideal sheaf for some closed scheme S.

These three definitions are equivalents.

Remark 1.2. Let ω ∈ H0(M,Ω1(L)) be a section.

1. The section ω may be defined by a family of 1-forms

ωα ∈ Ω1(Uα), ωα = λαβωβ in Uαβ = Uα ∩ Uβ, L = [λαβ] ∈ Ȟ1(U,O∗).

2. The section ω is a morphism of sheaves Θ
ω−→ L. The kernel of ω is the tangent sheaf F . The image

of ω is a twisted ideal sheaf N = JSω
⊗ L. It is called the normal sheaf of F .

3. As in the non-singular case, the following equality of line bundles holds

KM = Ωn
M = det(F∗)⊗N ∗ = KF ⊗ L−1, det(N) ' L

whereKM ,KF = det(F∗) are the canonical sheaf ofM and F respectively.

We denote by

F(M,L) = {[ω] ∈ PH0(M,Ω1(L)) | codim(Sω) ≥ 2, ω ∧ dω = 0 }

F(n, d) = {[ω] ∈ PH0(Pn,Ω1(d+ 2)) | codim(Sω) ≥ 2, ω ∧ dω = 0}.

The number d ≥ 0 is called the degree of the foliation represented by ω.
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1.1 - STATEMENT OF THE RESULTS

In the sequel,M is a compact complex manifold with dim(M) ≥ 3. We will use any of the above definitions

for foliation. The singular set will be denoted by S. Observe that S decomposes as

S =

n⋃
k=2

Sk where codim(Sk) = k.

For a foliation F onM represented by ω ∈ F(M,L), the Kupka set (Kupka 1964, De Medeiros 1977) is

defined by

K(ω) = {p ∈M | ω(p) = 0, dω(p) 6= 0}.

We recall that for points nearK(ω) the foliationF is biholomorphic to a product of a dimension one foliation

in a transversal section by a regular foliation of codimension two (Kupka 1964) and in particular we have

K(ω) ⊂ S2.

In this note, we focus our attention on the set of non-Kupka points NK(ω) of ω. The first remark is

NK(ω) = {p ∈M |ω(p) = 0, dω(p) = 0} ⊃ S3 ∪ · · · ∪ Sn.

We analyze three cases, one in each section, the last two being the core of the work.

1. S2 = K(ω), then NK(ω) = S3 ∪ · · · ∪ Sn.

2. There is an irreducible component Z ⊂ S2 such that Z ∩K(ω) = ∅.

3. For a foliation ω ∈ F(3, d). Let Z ⊂ S2 be a connected component such that Z \Z ∩K(ω) is a finite

set of points.

The first case has been considered in Brunella (2009), Calvo-Andrade (1999, 2016), Calvo-Andrade

and Soares (1994), Cerveau and Lins Neto (1994). Let ω ∈ F(n, d) be a foliation with K(ω) = S2 and

connected, then ω has a meromorphic first integral. In the generic case, the leaves define a Lefschetz or a

Branched Lefschetz Pencil. The non-Kupka points are isolated singularities NK(ω) = Sn. In this note, we

present a new and short proof of this fact when the transversal type ofK(ω) is radial.

In the second section, we study the case of a non-Kupka irreducible component of S2. These phe-

nomenon arise naturally in the intersection of irreducible components of F(M,L). The following result is

a local normal form for ω near the singular set and is a consequence of a result of Loray (2006).

Theorem 1. Let ω ∈ Ω1(Cn, 0), n ≥ 3, be a germ of integrable 1–form such that codim(Sω) = 2, 0 ∈ Sω
is a smooth point and dω = 0 on Sω. If j

1
0ω 6= 0, then or either

1. there exists a coordinate system (x1, . . . , xn) ∈ Cn such that

j10(ω) = x1dx2 + x2dx1

and Fω is biholomorphic to the product of a dimension one foliation in a transversal section by a

regular foliation of codimension two, or
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2. there exists a coordinate system (x1, . . . , xn) ∈ Cn such that

ω = x1dx1 + g1(x2)(1 + x1g2(x2))dx2,

such that g1, g2 ∈ OC,0 with g1(0) = g2(0) = 0, or

3. ω has a non-constant holomorphic first integral in a neighborhood of 0 ∈ Cn.

The alternatives are not exclusives. The following example was suggest by the referee and show that

the case (3) of Theorem 1 cannot be avoid.

Example 1.3. Let ω be a germ of a 1-form at 0 ∈ C3 defined by

ω = xdx+ (1 + xf)df

where f(x, y, z) = y2z. We have

ω = xdx+ 2yz(1 + xy2z)dy + y2(1 + xy2z)dz.

The singular set of ω is {x = y = 0} and {x = z = y2 = 0}, therefore the singular set has an embedding

point {x = z = y2 = 0} and dω vanish along {x = y = 0}. We will show that ω has a holomorphic first

integral F in a neighborhood of 0 ∈ C3. In fact, let t = f(x, y, z) = y2z and set ϕ : (C3, 0) → (C2, 0)

defined by

ϕ(x, y, z) = (x, t).

Let η = xdx+(1+xt)dt be 1-form at 0 ∈ C2, note that ω = ϕ∗(η) and moreover η(0, 0) 6= 0, this implies

that η is non-singular at 0 ∈ C2 and by Frobenius theorem η has a holomorphic first integral H(x, t) on

(C2, 0). Defining H1(x, y, z) := H(x, f(x, y, z)) = H(x, y2z), we get H1 is a holomorphic first integral

for ω in a neighborhood of 0 ∈ C3.

We apply Theorem 1 to a codimension one holomorphic foliation of the projective space with empty

Kupka set.

About the third case, consider a foliation ω ∈ F(3, d). Let Z be a connected component of S2. We

count the number |Z ∩NK(ω)| of non-Kupka points of ω in Z ⊂ S2.

Theorem 2. Let ω ∈ F(3, d) be a foliation and Z ⊂ S2 a connected component of S2. Suppose that Z is

a local complete intersection and Z \ Z ∩ K(ω) is a finite set of points, then dω|Z is a global section of

K−1
Z ⊗KF |Z and the associated divisor Dω =

∑
p∈Z

ordp(dω) · p has degree

deg(Dω) = deg(KF )− deg(KZ).

Note that the section dω|Z vanishes exactly in the non-Kupka points of ω in Z then the above theorem

determine the number |Z ∩NK(ω)| (counted with multiplicity) of non-Kupka points of ω in Z.

2 - THE SINGULAR SET

Let ω ∈ F(M,L) be a codimension one holomorphic foliation then singular set of ω may be written as

S =

n⋃
j=2

Sj where codim(Sj) = j.
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The fact thatK(ω) ⊂ S2 implies that S3 ∪ . . .∪Sn ⊂ NK(ω). To continue we focus in the components of

singular set of ω of dimension at least three.

2.1 - SINGULAR SET OF CODIMENSION AT LEAST THREE

We recall the following result due to B. Malgrange.

Theorem 2.1. (Malgrange 1976) Let ω be a germ at 0 ∈ Cn, n ≥ 3 of an integrable 1–form singular at 0,

if codim(Sω) ≥ 3, then there exist f ∈ OCn,0 and g ∈ O∗
Cn,0 such that

ω = gdf on a neighborhood of 0 ∈ Cn.

We have the following proposition.

Proposition 2.2. Let ω ∈ F(M,L) be a foliation and let p ∈ Sn an isolated singularity, then any germ of

vector field tangent to the foliation vanishes at p.

Proof. Let ω = gdf, g ∈ O∗
p, f ∈ Op be a 1-form representing the foliation at p. Let X ∈ Θp be a vector

field tangent to the foliation, i.e., ω(X) = 0. If X(p) 6= 0 there exists a coordinate system with z(p) = 0 and

X = ∂/∂zn, then

0 = ω(X) = g ·

(
n∑

i=1

(∂f/∂zi)dzi(∂/∂zn)

)
= g · (∂f/∂zn), therefore ∂f/∂zn ≡ 0,

and f = f(z1, . . . , zn−1), but this function does not have an isolated singularity.

Now, we begin our study of the irreducible components of codimension two of the singular set of ω.

Note that, given a section ω ∈ H0(M,Ω1(L)), along the singular set, the equation ωα = λαβωβ implies

dωα|S = (λαβdωβ)|S . Then
{dωα} ∈ H0(S, (Ω2

M ⊗ L)|S). (2.1)

2.2 - THE KUPKA SET

These singularities has bee extensively studied and the main properties have been established in (Kupka

1964, De Medeiros 1977).

Definition 2.3. For ω ∈ F(M,L). The Kupka set is

K(ω) = {p ∈M |ω(p) = 0, dω(p) 6= 0 }.

The following properties of Kupka sets, are well known (De Medeiros 1977).

1. K(ω) is smooth of codimension two.

2. K(ω) has local product structure and the tangent sheaf F is locally free nearK(ω).

3. K(ω) is subcanonically embedded and

∧2NK(ω) = L|K(ω), KK(ω) = (KM ⊗ L)|K(ω) = KF |K(ω).
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Let ω ∈ F(n, d) be a foliation with S2 = K(ω). By Calvo-Andrade and Soares (1994), there exists a pair

(V, σ), where V is a rank two holomorphic vector bundle and σ ∈ H0(Pn, V ), such that

0 −→ O σ−−→ V −→ JK(d+ 2) → 0 with {σ = 0} = K

and the total Chern class

c(V ) = 1 + (d+ 2) · h+ deg(K(ω))h2 ∈ H∗(Pn,Z) ' Z[h]/hn+1.

In 2009, Marco Brunella proved that following result, which in a certain sense say that the local transversal

type of the singular set of foliation determines its behavior globally. Here we present a new proof of this

fact. The techniques used in the proof could be of independent interest.

Proposition 2.4. Let ω ∈ F(n, d) be a foliation with S2 = K(ω), (connected if n = 3) and of radial

transversal type. ThenK(ω) is a complete intersection and ω has a meromorphic first integral.

To prove Proposition 2.4, we requires the following lemma. This result may be well known but for lack

of a suitable reference we include the proof in an appendix.

Lemma 2.5. Let F be a rank two holomorphic vector bundle over P2 with c1(F ) = 0 and c2(F ) = 0. Then

F ' O ⊕O, is holomorphically trivial.

Now, we prove Proposition 2.4.

Proof of Proposition 2.4. Let (V, σ) be the vector bundle with a section defining the Kupka set as scheme.

The radial transversal type implies (Calvo-Andrade and Soares 1994)

c(V ) = 1 + (d+ 2) · h+
(d+ 2)2

4
· h2 =

(
1 +

(d+ 2) · h
2

)2

∈ H∗(Pn,Z) ' Z[h]/hn+1.

The vector bundle E = V (−d+2
2 ), has c1(E) = 0 and c2(E) = 0. Let ξ : P2 ↪→ Pn be a linear embedding.

By the preceding lemma we have

ξ∗E ' OP2 ⊕OP2

and by the Horrocks’ criterion (Okonek et al. 1980),

E ' OPn ⊕OPn

is trivial and hence V splits as OPn(d+2
2 ) ⊕ OPn(d+2

2 ) and K is a complete intersection. The existence of

the meromorphic first integral follows from Theorem A of (Cerveau and Lins Neto 1994).

If ω is such thatK(ω) = S2 and connected, the set of non-Kupka points of ω is

NK(ω) = S3 ∪ · · · ∪ Sn.

A generic rational map, that means, a Lefschetz or a Branched Lefschetz Pencil ϕ : Pn 99K P1, has

only isolated singularities away its base locus. The singular set of the foliation defined by the fibers of ϕ is

Sn ∪ S2. The Kupka set corresponds away from its base locus and Sn = NK(ω) are the singularities as a

map. Sn is empty if and only if the degree of the foliation is 0. The number `(Sn) of isolated singularities
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counted with multiplicities can be calculated by (Cukierman et al. 2006). If ωp is a germ of form that defines

the foliation at p ∈ Sn, we have

`(Sn) =
∑
p∈Sn

µ(ωp, p), µ(ω, p) = dimC
Op

(ω1, . . . , ωn)
, ωp =

n∑
i=1

ωidzi.

We have that cn(F) = `(Sn).

3 - FOLIATIONS WITH A NON-KUPKA COMPONENT

It is well known thatK(ω) ⊂ {p ∈M | j1pω 6= 0}, but the converse is not true. Our first result describes the
singular points with this property.

3.1 - A NORMAL FORM

Now, we analyze the situation when there is an irreducible non-Kupka component of S2.

Proof of Theorem 1. By hypotheses, dω(p) = 0 for any p ∈ Sω. Since

ω = ω1 + · · · , dω = dω1 + · · · = 0,

we get dω1(p) = 0 for any p ∈ Sω. Now, as ω1 6= 0 and codim(Sω) = 2, we have 1 ≤ codim(Sω1
) ≤ 2.

We distinguish two cases.

1. codim(Sω1
) = 2: there is a coordinate system (x1, . . . , xn) ∈ Cn such that

ω1 = x1dx2 + x2dx1.

2. codim(Sω1
) = 1: there is a coordinate system (x, ζ) ∈ C× Cn−1 such that x(p) = 0 and ω1 = xdx.

The first case is known, the foliation Fω is equivalent in a neighborhood of 0 ∈ Cn to a product of

a dimension one foliation in a transversal section by a regular foliation of codimension two (Cerveau and

Mattei 1982).

In the second case, Loray’s preparation theorem (Loray 2006), shows that there exists a coordinate

system (x, ζ) ∈ C × Cn−1, a germ f ∈ OCn−1,0 with f(0) = 0, and germs g, h ∈ OC,0 such that the

foliation is defined by the 1–form

ω = xdx+ [g(f(ζ)) + xh(f(ζ))]df(ζ). (3.1)

Since Sω1
= {x = 0} and 0 ∈ Sω is a smooth point, we can assume that Sω,p = {x = ζ1 = 0}, where Sω,p

is the germ of Sω at p = 0. Therefore,

Sω,p = {x = ζ1 = 0} = {x = g(f(ζ)) = 0} ∪
{
x =

∂f

∂ζ1
= · · · = ∂f

∂ζn−1
= 0

}
.

Hence, either g(0) = 0 and ζ1|f , or g(0) 6= 0 and ζ1| ∂f∂ζj
for all j = 1, . . . , n− 1. In any case, we have ζ1|f

and then f(ζ) = ζk1ψ(ζ), where ψ is a germ of holomorphic function in the variable ζ; k ∈ N and ζ1 does

not divide ψ. We have two possibilities:
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1st case.– ψ(0) 6= 0. In this case, we consider the biholomorphism

G(x, ζ) = (x, ζ1ψ
1/k(ζ), ζ2, . . . , ζn) = (x, y, ζ2, . . . , ζn)

where ψ1/k is a branch of the kth root of ψ, we get f ◦G−1(x, y, ζ2, . . . , ζn) = yk and

G∗(ω) = xdx+ (g(yk) + xh(yk))kyk−1dy = xdx+ (g1(y) + xh1(y))dy,

where g1(y) = kyk−1g(yk), h1(y) = kyk−1h(yk). Therefore, ω̃ := G∗(ω) is equivalent to ω and moreover

ω̃ is given by

ω̃ = xdx+ (g1(y) + xh1(y))dy with Sω̃ = {x = g1(y) = 0}. (3.2)

Since dω̃ = h1(y)dx ∧ dy is zero identically on {x = g1(y) = 0}, we get g1|h1, so that h1(y) =

(g1(y))
mH(y), for some m ∈ N and such that H(y) does not divided g1(y). Using the above expression

for h1 in (3.2), we have

ω̃ = xdx+ g1(y)(1 + x(g1(y))
m−1H(y))dy = xdx+ g1(y)(1 + xg2(y))dy,

where g2(y) = (g1(y))
m−1H(y). Consider ϕ : (C, 0)× (Cn−1, 0) → (C2, 0) defined by ϕ(x, ζ) = (x, y),

then

ω = ϕ∗(xdx+ g1(y)(1 + xg2(y))dy). (3.3)

2nd case.– ψ(0) = 0. We have Sω,p = {x = ζ1 = 0} and

ω = xdx+ (g(ζk1ψ) + xh(ζk1ψ))d(ζ
k
1ψ), (3.4)

therefore

ω = xdx+ (g(ζk1ψ) + xh(ζk1ψ))ζ
k−1
1 (kψdζ1 + ζ1dψ). (3.5)

Note that g(0) 6= 0, otherwise {x = ζ1ψ(ζ) = 0}would be contained in Sω,p, but it is contradiction because

Sω,p = {x = ζ1 = 0} ( {x = ζ1ψ(ζ) = 0}. Furthermore k ≥ 2, because otherwise ζ1|ψ.
Let ϕ : (C, 0)× (Cn−1, 0) → (C2, 0) be defined by

ϕ(x, ζ) = (x, ζk1ψ(ζ)) = (x, t),

then from (3.4), we get that

ω = ϕ∗(η),

where η = xdx + (g(t) + xh(t))dt. Since η(0, 0) = g(0)dt 6= 0, we deduce that η has a non-constant

holomorphic first integral F ∈ OC2,0 such that dF (0, 0) 6= 0. Therefore, F1(x, ζ) = F (x, ζk1ψ(ζ)) is a

non-constant holomorphic first integral for ω in a neighborhood of 0 ∈ Cn.

3.2 - APPLICATIONS TO FOLIATIONS ON Pn

In order to give some applications of Theorem 1, we need the Baum-Bott index associated to singularities

of foliations of codimension one.

Let M be a complex manifold and let Gω = (S,G) be a codimension one holomorphic foliation

represented by ω ∈ H0(M,Ω1(L)). We have the exact sequence

0 → G → ΘM
ω−→ NG → 0, NG ' JS ⊗ L.
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ON NON-KUPKA POINTS OF CODIMENSION ONE FOLIATIONS ON P3 2075

Set M0 = M \ S and take p0 ∈ M0. Then in a neighborhood Uα of p0 the foliation G is induced by a

holomorphic 1–form ωα and there exists a differentiable 1–form θα such that

dωα = θα ∧ ωα

Let Z be an irreducible component of S2. Take a generic point p ∈ Z, that is, p is a point where Z is smooth

and disjoint from the other singular components. Pick Bp a ball centered at p sufficiently small, so that

S(Bp) is a sub-ball of Bp of codimension 2. Then the De Rham class can be integrated over an oriented

3-sphere Lp ⊂ B∗
p positively linked with S(Bp):

BB(G, Z) = 1

(2πi)2

∫
Lp

θ ∧ dθ.

This complex number is the Baum-Bott residue of G along Z. We have a particular case of the general

Baum-Bott residues Theorem (Baum and Bott 1972), reproved by Brunella and Perrone (2011).

Theorem 3.1. Let G be a codimension one holomorphic foliation on a complex manifoldM . Then

c1(L)
2 = c21(NG) =

∑
Z⊂S2

BB(G, Z)[Z],

whereNG = JS ⊗L is the normal sheaf of G onM and the sum is done over all irreducible components of

S2.

In particular, if G is a codimension one foliation on Pn of degree d, then the normal sheaf NG =

JS(d+ 2) and the Baum-Bott Theorem looks as follows∑
Z⊂S2

BB(G, Z) deg[Z] = (d+ 2)2.

Remark 3.2. If there exist a coordinates system (U, (x, y, z3, . . . , zn)) around p ∈ Z ⊂ S2 such that

x(p) = y(p) = 0 and S(G) ∩ U = Z ∩ U = {x = y = 0}. Moreover, if we assume that

ω|U = P (x, y)dy −Q(x, y)dx

is a holomorphic 1-form representing G|U . Then we can consider the C∞ (1,0)-form θ on U \ Z given by

θ =
(∂P∂x + ∂Q

∂y )

|P |2 + |Q|2
(P̄ dx+ Q̄dy).

Since dω = θ ∧ ω, we get

BB(G, Z) = 1

(2πi)2

∫
Lp

θ ∧ dθ = Res0

{
Tr
(
DX
)
dx ∧ dy

PQ

}
, (3.6)

where Res0 denotes the Grothendieck residue, DX is the Jacobian of the holomorphic map X = (P,Q). It

follows from Griffiths and Harris (1978) that if DX(p) is non-singular, then

BB(G, Z) = Tr(DX(p))2

det(DX(p))
.
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In the situation explained above, the tangent sheafG(U) is locally free and generated by the holomorphic

vector fields

G(U) =

〈
X = P (x, y)

∂

∂x
+Q(x, y)

∂

∂y
,
∂

∂z3
, . . . ,

∂

∂zn

〉
and the vector field X carries the information of the Baum–Bott residues.

The next result, in an application of Theorem 1

Theorem 3.3. Let ω ∈ F(M,L) be a foliation and Z ⊂ S2 \K(ω). Suppose that Z is smooth and j1pω 6= 0

for all p ∈ Z, then BB(Fω, Z) = 0.

Proof. Wework in a small neighborhoodU of p ∈ Z ⊂M . According to Theorem 1 there exist a coordinate

system (x, y, z3, . . . , zn) at p such that Z ∩U = {x = y = 0} and one has three cases. In the first case, Fω

is the product of a dimension one foliation in a section transversal to Z by a regular foliation of codimension

two and j1p(ω) = xdy + ydx. In this case, it follows from (3.6) that BB(Fω, Z) = 0. In the second case

ω = xdx+ g1(y)(1 + xg2(y))dy,

where g1, g2 ∈ OC,0 and it follows from Lemma 3.9 of Cerveau and Lins Neto (2013) that

BB(Fω, Z) = Rest=0

[
(g1(t)g2(t))

2dt

g1(t)

]
= Rest=0

[
g1(t)(g2(t))

2
]
.

Since g1(y)(g2(y))
2 is holomorphic at y = 0, we get BB(Fω, Z) = 0. In the third caseFω has a holomorhic

first integral in neighborhood of p and is known that BB(Fω, Z) = 0.

The Baum-Bott formula implies the following result.

Corollary 3.4. Let ω ∈ F(n, d), n ≥ 3, be a foliation with K(ω) = ∅. Then there exists a smooth point

p ∈ S2 such that j1pω = 0.

Proof. If for all smooth point p ∈ S2 one has j
1
pω 6= 0, the above theorem shows that BB(Fω, Z) = 0 for

all irreducible components Z ⊂ S2. By Baum–Bott’s theorem, we get

0 < (d+ 2)2 =
∑
Z⊂S2

BB(Fω, Z) deg[Z] = 0

which is a contradiction. Therefore there exists a smooth point p ∈ S2 such that j
1
pω = 0.

In particular, if ω ∈ F(n, d), n ≥ 3, is a foliation with j1pω 6= 0 for any p ∈ Pn, then its Kupka set is

not empty.

4 - THE NUMBER OF NON-KUPKA POINTS

Through this section, we consider codimension one foliations on P3, but some results remain valid to

codimension one foliations on others manifolds of dimension three.
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4.1 - SIMPLE SINGULARITIES

Let ω be a germ of 1–form at 0 ∈ C3. We define the rotational of ω as the unique vector field X such that

rot(ω) = X ⇐⇒ dω = ıXdx ∧ dy ∧ dz,

moreover ω is integrable if and only if ω(rot(ω)) = 0.

Let ω be a germ of an integrable 1–form at 0 ∈ C3. We say that 0 is a simple singularity of ω if ω(0) = 0

and either dω(0) 6= 0 or dω has an isolated singularity at 0. In the second case, these kind of singularities,

are classified as follows

1. Logarithmic. The second jet j20(ω) 6= 0 and the linear part ofX = rot(ω) at 0 has non zero eigenvalues.

2. Degenerated. The rotational has a zero eigenvalue, the other two are non zero and necessarily satisfies

the relation λ1 + λ2 = 0.

3. Nilpotent. The rotational vector field X, is nilpotent as a derivation.

The structure near simple singularity is known (Calvo-Andrade et al. 2004). If p ∈ S is a simple

singularity and dω(p) = 0, then p is a singular point of S.

Theorem 4.1. Letω ∈ Ω1(C3, 0),n ≥ 3, be a germ of integrable 1-form such thatω has a simple singularity

at 0 then the tangent sheaf F = Ker(ω) is locally free at 0 and it is generated by 〈rot(ω),S〉, where S has

non zero linear part.

Proof. Let ω be a germ at 0 ∈ C3 of an integrable 1–form and 0 a simple non-Kupka singularity. Then

0 ∈ C3 is an isolated singularity of X = rot(ω). Consider the Koszul complex of the vector field X at 0

K(X)0 : 0 → Ω3
C3,0

ıX−→ Ω2
C3,0

ıX−→ Ω1
C3,0

ıX−→ OC3,0 → 0

Since ω(X) = 0, then ω ∈ H1(K(X)0) that vanishes because X has an isolated singularity at 0. Therefore,

there exists θ ∈ Ω2
C3,0 such that ıXθ = ω. The mapΘC3,0 3 Z 7→ ıZdx∧dy∧dz ∈ Ω2

C3,0 is an isomorphism,

hence

ω = ıXθ, and θ = ıSdx ∧ dy ∧ dz, implies ω = ıXθ = ıXıSdx ∧ dy ∧ dz

and then, the vector fields {X,S} generate the sheaf F in a neighborhood of 0.

Let ω ∈ F(3, d) be a foliation and Z ⊂ S2 be a connected component of S2. Assume that Z is a

local complete intersection and has only simple singularities. We will calculate the number |NK(ω)∩Z| of
non-Kupka points in Z.

Proof of Theorem 2. Let J be the ideal sheaf of Z. Since Z is a local complete intersection, consider the

exact sequence

0 → J /J 2 → Ω1 ⊗OZ → Ω1
Z → 0

Taking ∧2 and twisting by L = K−1
P3 ⊗KZ = KZ(4) we get

0 → ∧2J /J 2 ⊗ L→ Ω2
P3 |Z ⊗ L→ · · ·
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Since Z ⊂ S, the singular set, we have seen before that

dω|Z ∈ H0(Z,∧2(J /J 2)⊗ L)

Now, from the equalities of sheaves

K−1
Z ⊗KP3 ' ∧2(J /J 2), and L ' K−1

P3 ⊗KF

we have

H0(Z,∧2(J /J 2)⊗ L) = H0(Z,K−1
Z ⊗KF |Z),

the non-Kupka points of ω in Z satisfies dω|Z = 0, denoting

Dω =
∑
p∈Z

ordp(dω)

the associated divisor to dω|Z , one has

deg(Dω) = deg(KF )− deg(KZ),

as claimed.

Remark 4.2. The method of the proof works also in projective manifolds, and does not depends on the

integrability condition.

4.2 - EXAMPLES

We apply Theorem 2 for some codimension one holomorphic foliations on P3 and determine the number of

non-Kupka points.

Example 4.3 (Degree two logarithmic foliations). Recall that the canonical bundle of a degree two foliation

of P3 is trivial. There are two irreducible components of logarithmic foliations in the space of foliations of

P3 of degree two: L(1, 1, 2) and L(1, 1, 1, 1). We analyze generic foliations on each component.

ComponentL(1, 1, 2): letω be a generic element ofL(1, 1, 2) and consider its singular schemeS = S2∪S3.
By Theorem 3 of Cukierman et al. (2006), we have `(S3) = 2. On the other hand, S2 has three irreducible

components, two quadratics and a line, the arithmetic genus is pa(S2) = 2. Note that Theorem 2, implies

that the number |NK(ω) ∩ S2|, of non-Kupka points in S2 is

|NK(ω) ∩ S2| = deg(Dω) = deg(KF )− deg(KS2
) = −χ(S2) = 2.

The non-Kupka points of the foliation Fω are |NK(ω)| = `(S3) + |NK ∩ S2| = 4.

Component L(1, 1, 1, 1): let ω be a generic element of L(1, 1, 1, 1) then the tangent sheaf isO⊕O and the

singular scheme S = S2 (Giraldo and Pan-Collantes 2010), moreover consists of 6 lines given the edges of

a tetrahedron, obtained by intersecting any two of the four invariant hyperplanesHi. The arithmetic genus is

pa(S2) = 3, by Theorem 2, |NK(ω)| = |NK(ω)∩S2| = 4, corresponding to the vertices of the tetrahedron

where there are simple singularities of logarithmic type.
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Example 4.4 (The exceptional component E(3)). The leaves of a generic foliation ω ∈ E(3) ⊂ F(3, 2),

are the orbits of an action of Aff(C) × P3 → P3 and its tangent sheaf is O ⊕ O (see Calvo-Andrade et al.

2004, Giraldo and Pan-Collantes 2010). Its singular locus S = S2 has deg(S) = 6 and three irreducible

components: a line L, a conic C tangent to L at a point p, and a twisted cubic Γ with L as an inflection line

at p. Then NK(ω) = L ∩ C ∩ Γ = {p} ⊂ S.

The arithmetic genus is pa(S) = 3 and the canonical bundle of the foliation again is trivial, by Theorem

2, the number of non-Kupka points |NK(ω)| = 4. Therefore the non-Kupka divisorNK(ω)∩S = 4p. If ω

represents the foliation at p, then µ(dω, p) = µ(rot(ω), p) = 4.
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5 - APPENDIX

We prove Lemma 2.5.

Proof. First, we see that h0(F ) ≥ 1. By Riemann–Roch–Hirzebruch, we have

χ(F ) = h0(F )− h1(F ) + h2(F ) = [ch(F ) · Td(P2)]2 = 2,

then

h0(F ) + h2(F ) = [ch(F ) · Td(P2)]2 + h1(F ) ≥ [ch(F ) · Td(P2)]2 = 2

By Serre duality (Griffiths and Harris 1978, Okonek et al. 1980), we get h2(F ) = h0(F (−3)). Moreover

h0(F ) ≥ h0(F (−k)) for all k > 0, hence h0(F ) ≥ 1. Let τ ∈ H0(F ) be a non zero section, consider the

exact sequence

0 −→ O ·τ−→ F −→ Q −→ 0 with Q = F/O. (5.1)

The sheaf Q is torsion free, therefore Q ' JΣ for some Σ ⊂ P2. The sequence (5.1), is a free resolution of

the sheaf Q with vector bundles with zero Chern classes. From the definition of Chern classes for coherent

sheaves (Baum and Bott 1972), we get c(Q) = 1, in particular deg(Σ) = c2(Q) = 0, we conclude that

Σ = ∅ andQ ' O. Then F is an extension of holomorphic line bundles, hence it splits (Okonek et al. 1980,

p. 15).
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