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Abstract: The isotopic and geochemical evolution of tourmaline constrain the processes 
of paleo-oceanic lithosphere in ophiolites. The Brasiliano Orogen is a major structure 
of South America and requires characterization for the understanding of Gondwana 
supercontinent evolution. We made a pioneering investigation of tourmaline from a 
tourmalinite in the Ibaré ophiolite by integrating fi eld work with chemical analyses of 
tourmaline by electron microprobe (EPMA) and δ11B determinations via laser ablation 
inductively coupled plasma mass spectrometer (LA-ICP-MS). Remarkably massive 
tourmalinite (>90 vol.% tourmaline, some chlorite) enclosed in serpentinite has 
homogeneous dravite in chemical and isotopic composition (δ11B = +3.5 to +5.2‰). These 
results indicate a geotectonic environment in the altered oceanic crust for the origin 
of the tourmalinite. This fi rst δ11B characterization of tourmaline from tourmalinite 
sets limits to the evolution of the Neoproterozoic to Cambrian Brasiliano Orogen and 
Gondwana evolution. 

Key words: boron isotopes, geochemistry, Ibaré ophiolite, tourmalinite, southern 
Brasiliano Orogen.

INTRODUCTION

Tourmaline is a most useful mineral because it 
is robust and can retain a record of geological 
processes (van Hinsberg et al. 2011). The mineral 
is helpful for understanding both continental 
(Chaussidon & Albarède 1992, Trumbull et al. 
2008, Cabral et al. 2017) and oceanic (Smith et al. 
1995, Farber et al. 2015) settings. 

Most studies focused on accessory 
tourmaline in granitic and mineralized volcanic-
sedimentary rocks, including sulphide ore 
(e.g., Namaqualand, South Africa - Plimer 1987, 
Sullivan, British Columbia – Palmer & Slack 1989, 
Broken Hill, Australia – Slack et al. 1993). Fewer 
studies concentrated on oceanic lithosphere, 

including crust and mantle or on volatile transfer 
processes from the subduction setting to the 
mantle wedge and arc magmatism (Palmer 1991, 
Rosner et al. 2003, Savov et al. 2005, Boschi et al. 
2008, Yamaoka et al. 2012). In Brazil, stratiform 
tourmalinite occurs associated to mineralized 
quartz-tourmaline veins in the Calymmian Serra 
do Itaberaba (Ribeira belt, SE Brazil - Garda 
et al. 2009). Tourmaline was also described in 
pegmatites (Borborema Province, NE Brazil – 
Trumbull et al. 2013) and as platiniferous gold–
tourmaline aggregates (Gold–palladium belt of 
Minas Gerais, Brazil – Cabral et al. 2017).

Tourmaline (geochemistry, δ11B) was only 
studied in continental rocks in the continent, 
not in ophiolites. In the Brasiliano Orogen 
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Neoproterozoic ophiolites were studied with 
zircon U-Pb isotopes in the Araçuaí Belt (oceanic 
plagiogranite – Queiroga et al. 2007) and Dom 
Feliciano Belt (albitite, chloritite, tourmalinite, 
rodingite blackwall – Arena et al. 2016, 2017, 2018). 
Tourmalines from ophiolites were not studied.

We selected a massive tourmalinite (>90 
vol.% tourmaline) from southern Brazil, because 
the rock is part of the Ibaré ophiolite. The sample 
was previously investigated with zircon U-Pb-
Hf isotopes by Arena et al. (2017). Large (5-30 
m diameter) tourmalinites remain undescribed 
in the oceanic crust or ophiolites, so this is a 
pioneering investigation of mantle interaction 
with oceanic water in the Tonian.

The tourmalinite was described in the field 
and large tourmaline crystals (up to 10 cm) were 
studied by EPMA for major elements and LA-ICP-
MS for δ11B. The results indicate a remarkably 
homogeneous dravite, including boron 
isotopes (δ11B = +3.5 to +5.2‰). We interpret the 
tourmalinite as formed in the Tonian oceanic 
crust by alteration of mantle rocks in contact 
with oceanic water. This characterization of the 
geotectonic environment may have large impact 
on studies of the Early Brasiliano Orogen in the 
continent and reconstruction of Rodinia and 
Gondwana.

MATERIALS AND METHODS

Field study of the Ibaré ophiolite included 
collection of selected tourmalinite IB14 sample. 
Petrography of the tourmalinite preceded the 
determination of chemical and boron isotopic 
analyses of tourmaline. Petrography was done 
with a transmission petrographic microscope 
Olympus BX51, UC30. One polished thin section 
of the sample was studied for elemental 
mapping of tourmaline by electron microprobe 
at Laboratório de Microssonda Eletrônica, 

Universidade Federal do Rio Grande do Sul. A 
block was cut from the massive tourmalinite 
sample (Figs. 2d, e) and measures 10 cm in 
length by ~1.5 cm in width. The block was divided 
into parts and placed in 5 mounts in sequential 
order, each measuring 2 cm x 1.5 cm (Fig. 2f). 
Mounts from tablets 3 and 4 (Figs. 2f, 3a, b) 
were selected for analyses by scanning electron 
microprobe and boron isotopes at Departamento 
de Geologia, Universidade Federal de Ouro Preto 
(UFOP), Minas Gerais. All these spot analyses 
were controlled by backscattered electron 
images (Fig. 3).

Electron microprobe
Electron microprobe analyses of mounted 
tourmalines were performed at UFOP using a 
JEOL JXA-8230 Superprobe equipped with 5 
spectrometers. Operating conditions were 15 
kV accelerating voltage, 20 nA beam current 
and 10 μm beam diameter and a selection 
of measurement spots ensured that the 
stimulated volume was not contaminated by 
phases other than tourmaline. Counting times 
on the peaks/background were 10/5 s for all 
elements. Background intensities were collected 
at higher and lower energies relative to the 
corresponding Kα line. Appropriate natural and 
synthetic reference materials were used for 
calibration (Supplementary Material - Table SI). 
Tourmaline structural formulae were calculated 
by normalizing to 15 cations in the tetrahedral 
and octahedral sites (T + Z + Y) and assuming 
3 boron apfu (Henry et al. 2011) using the Excel 
spreadsheet of Tindle et al. (2002). 

Boron isotopes
Boron isotope ratio measurements were carried 
out at UFOP on a Thermo-Scientific Neptune 
Plus multi-collector ICP-MS coupled to a Photon 
Machines 193 Excimer laser ablation system. 
Samples were ablated in He atmosphere using 
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Figure 1. (a) Main tectonic 
units of southern Brazil 

and Uruguay (adapted 
from Rapela et al. 2007, 

Chemale et al. 2011); 
(b) Geological map of 

Dom Feliciano Belt and 
basement (after Philipp et 
al. 2013, Pertille et al. 2015, 
Arena et al. 2017). Location 

of Figure 2 indicated.

20 um diameter spot and 15 Hz frequency at 
7 J/cm2. In the mass spectrometer, 10B and 11B 
intensities were measured (in low resolution) 
on the L2 and H2 detectors, respectively. The 
measurements consisted of 98 cycles (or 
integration) and 0.5 s of integration time. Data 
were processed after the daily run using an in-
house spreadsheet by A. Gerdes (e.g., Devulder 
et al. 2015). The measured, background signal 
of the unknown sample was corrected for 
instrumental mass fractionation (IMF) using 

a standard-sample bracketing method and 
tourmaline B4 (schorlite, δ11B = -8.62 ‰) 
(Tonarini et al. 2003) as the primary reference 
material. The drift-corrected ratios were 
referenced to the published 11B/10B value of the 
reference material and the results are reported 
as δ11B values relative to NIST SRM 951 boric 
acid using the certified 11B/10B value of 4.04362 
± 0.00137 (Catanzaro et al. 1970). Matrix effects, 
known to occur in B isotope measurements (e.g., 
Mikova et al. 2014) and the reproducibility of 
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Figure 2. (a) Satellite image (Lansat 7) of study area; (b) Selected field of studied tourmalinite. Inset shows location 
of tourmalinite; (c) Studied tourmalinite outcrop; (d) Tourmalinite hand sample highlighting interfingering with 
chlorite; (e) Detail of tourmalinite, 10 cm long and 1.5 cm wide, cut from sample shown in Figure 2d; (f) Sectioned 
tourmalinite blocks for EPMA and LA-ICP-MS studies, shown as originally positioned in Figure 2e. Tur = tourmaline; 
Chl = chlorite. 
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the data were monitored during the analyses 
using dravite (#108796) and elbaite (#98144) 
(Leeman & Tonarini 2001) as external reference 
material (Supplementary Material - Table SII). 
The observed internal precision for individual 
analyses varied between 0.3 and 0.9‰.

Geological setting
The Brazilian Shield is composed of cratons and 
the Brasiliano Orogen, covering large extensions 
of eastern South America (e.g., Hartmann & 
Delgado 2001, Santos et al. 2019). The orogen is 
4,000 x 1,500 km and comparable in many aspects 
to the accretionary to collisional Himalaya 
orogen. The orogen (900-550 Ma) has juvenile 
and crustally-reworked terranes. An intensively 
studied section is the juvenile São Gabriel belt, 
part of the Dom Feliciano Belt in the southern 
extension of the Brasiliano Orogen. The Ibaré 
ophiolite from the São Gabriel belt is part of the 
Dom Feliciano Belt (Figs. 1a, b). The formation 
of the Dom Feliciano Belt involved the closure 
of the Adamastor Ocean (Hartnady et al. 1985, 
Basei et al. 2018). Corresponding subduction 
events resulted in the development of two intra-
oceanic arcs in the São Gabriel belt at the pre- 
collisional stage of the Brasiliano orogenic cycle 
(Machado et al. 1990, Leite et al. 1998, Remus et 
al. 1999, Gubert et al. 2016, Arena et al. 2017) with 
subsequent ophiolite emplacement (Arena et al. 
2016, 2017). The Capané ophiolite occurs in the 
eastern portion of Dom Feliciano Belt (Fig. 1b) 
and has similar age to the São Gabriel belt (e.g., 
Arena et al. 2018). This ophiolite was emplaced 
into the Porongos fold and thrust belt (Pertille 
et al. 2015, 2017).

The main geological units of the São Gabriel 
belt formed in the Brasiliano Orogen (948 Ma 
to 660 Ma; Chemale et al. 1995, Babinski et al. 
1996, Leite et al. 1998, Saalmann et al. 2005a, b, 
Hartmann et al. 2011, Lena et al. 2014, Lopes et al. 
2015, Arena et al. 2016). The studied tourmalinite 

is part of the Ibaré ophiolite (Arena et al. 2017), 
associated with volcano-sedimentary rocks 
which are remnants of a Tonian intra-oceanic 
arc. 

The Ibaré ophiolite and associated 
rocks (Figs. 1b, 2a) show evidence of regional 
greenschist facies metamorphism strongly 
overprinted by contact metamorphism caused 
by the intrusion (Naumann & Hartmann 1984, 
Naumann 1985) of the Santa Rita Granite (584.7 
± 1.9 Ma - Arena et al. 2017). Zircon U-Pb-Hf 
isotopic and geochemical characteristics of the 
Ibaré tourmalinite (Arena et al. 2017) indicate 
the beginning of metasomatism at 880 Ma, 
culminating with the ophiolite emplacement 
at 722 Ma into intra-oceanic arc in subduction-
zone setting along the margins of the Rio de la 
Plata craton.

Sample description
Within the Ibaré ophiolite, massive tourmalinite 
(>90 vol.% tourmaline) is associated with 
chloritite, serpentinite, magnesian schist, 
rodingite, and albitite (Naumann 1985, Arena et 
al. 2016, 2017). Santa Rita Granite intruded the 
ophiolite in the northern portion and a tongue 
of the Jaguari Granite intruded in the southern 
portion. The tourmalinite (2 x 5 m large) occurs 
immersed in chloritite and serpentinite (Figs. 2b, 
c). Black color of tourmalinite is distinctive and 
contrasts with serpentinite and the surrounding 
chloritite blackwall. The tourmalinite is 
composed of tourmaline, chlorite, some ilmenite 
and zircon.

RESULTS

Representative electron microprobe analyses 
of tourmaline are listed in Supplementary 
Material - Table SIII. All analyzed points (n = 60) 
in tourmaline showed chemical homogeneity. 
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Figure 3. Back-scattered electron images of tourmalinite. (a) Section of block 3 (see Figure 2f) with location 
of δ11B analyses; location of Figures 3c, d indicated; (b) Section of block 4 (Figure 2f) with location of δ11B 
analyses; location of Figure 3e indicated; (c) Cross-section of dravite crystal indicating location of EPMA 
analyses. (d) Prism section of dravite crystals indicating location of EPMA analyses; one cross-section in 
extreme right; (e) Prism section of tourmaline crystals indicating location of EPMA analyses.
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We made 21 analyses in two basal sections 
of individual tourmaline grains (Figs. 3c, d), 11 
random tourmaline analyses (Fig. 3d) and 28 
analyses along a tourmaline of approximately 
20 mm length (Fig. 3e). They show a range in 
MgO from 7.16 to 8.64 wt.%, FeO from 6.25 to 7.76 
wt.%, CaO from 0.22 to 0.49 wt.% and Na2O from 
2.54 to 2.80 wt.%. 

The basic formula of tourmaline can be 
written as XY3Z6 (T6O18)(BO3) V3W, where X = Na, Ca, 
K, vacancy; Y = Fe2+, Mg, Mn2+, Li, Al, Cr3+, V3+, Fe3+, Ti4+; 
Z = Mg, Al, Fe3+, V3+,Cr3+; T = Si, Al, (B); V = OH, O; W 
= OH, F, O (Hawthorne & Henry 1999). Chemical 
substitutions in tourmaline occur mainly in the 
X, Y and Z sites (Henry and Guidotti 1985). Some 
Al defficiency (<6 atoms per formula unit) in the 
Z site is due to Mg substitution and no Fe3+. In 
addition, the X site occupancy is predominantly 
Na. The tourmaline is dravite in composition 
(Supplementary Material - Table SIII) and shows 
no chemical zoning (e.g., Fig. 4). Tourmalines are 
of alkali group (Na + K dominant at X site) and Mg-
rich (Figs. 5a, b). The array is most consistent with 
operation of the MgFe2+

−1 substitution (Figs. 6a, b).
The studied IB14 tourmalines show 

homogenous isotopic compositions ranging 
from δ11B = +3.5 to +5.2‰ (Fig. 8b, Table I).

DISCUSSION

Dravite from Ibaré tourmalinite (IB14 sample) 
is Mg-rich and shows homogeneous chemistry 
and boron isotopic composition. Because 
tourmalinites may also form during regional 
and contact metamorphism, careful evaluation 
is necessary to determine their origin relative 
to hydrothermal, metamorphic and granitic 
process. Particular care is required for the 
identification of processes in the oceanic realm.

A previous study of metasomatic zircon 
from sample IB14 indicated positive εHf = +12.06 

to +4.54 over time, a signature interpreted as 
MORB fluid source (Arena et al. 2017). Most 
intense processes of zircon formation occurred 
at 722 Ma.

The Jaguari (569 ± 6 Ma; Gastal et al. 2015) 
and Santa Rita (584.7 ± 1.9 Ma; Arena et al. 
2017) granites (Fig. 2) were considered possible 
sources in case tourmalinization occurred in 
the continent, after the emplacement of the 
ophiolite. Our results discard this hypothesis. 
Tourmaline in most granites and pegmatites in 
the continents has δ11B values close to average 
continental crust (δ11B = −10 ±3‰; Marschall and 
Jiang 2011). Besides, tourmaline compositions 
in granitic rocks plot in fields 1 to 3 (Figs. 7a, b). 
In contrast, IB14 tourmalines plot in field 6 on 
Al–Fe–Mg(total) and Ca-Fe-Mg(total) diagrams 
(Henry & Guidotti 1985), unrelated to granitic 
rocks.

Chemistry of tourmalinite from seafloor 
volcano-exhalative activity (Beljavskis et al. 
2005) shows that distal tourmalines plot into 
field 6 and proximal tourmalines overlap fields 
2, 4 and 5 (Fig. 7a). In Figure 7b, distal tourmalines 
plot in field 7 reflecting high CaO content. Boron 
isotope compositions of tourmaline (Garda et 
al. 2009) in Ribeira belt tourmalinites previously 
studied by Beljavskis et al. (2005), showed δ11B 
= −7.51 to −14.58‰. This evidences chemical and 
isotopic differences from the Ibaré tourmalinite 
(Figs 7a, b, 8b).

 Tourmalines from Borborema pegmatites 
(Trumbull et al. 2013) overlap fields 5 and 6 on 
Al–Fe–Mg diagram (Fig. 7a); on Ca-Fe-Mg diagram 
(Fig. 7b), they overlap fields 1, 2 and 6 because of 
their preserved source chemical signature from 
surrounding rocks. The full range of δ11B is −20.2 
to +1.6‰ with main range −17 to −9‰ (Fig. 8b). 
Trumbull et al. (2013) suggest that the strong 
isotopic contrast between the main range and 
the heavy B resulted from mixing with enclosing 
marble and calc-silicate gneisses. It is significant 
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Figure 4. (a) Back-scattered electron image; (b-e) 
Characteristic X-ray map displaying the distribution of 
Si, Al, Mg, Fe in sample IB14. No compositional zoning 
observed. cps = count per second. Tur = tourmaline; 
Chl = chlorite.

that the origin of IB14 tourmaline was unrelated 
to granitic fluids. Ibaré tourmaline is Mg-rich 
but no associated sedimentary or exhalative 
rocks were identified. Tourmalines from many 
environments are strongly zoned and varied in 
trace elements and boron isotopes, but IB14 
tourmaline is chemically homogeneous (Figs. 
4, 7, 8). The uniformity in composition of IB14 
tourmalines is highlighted by comparison with 
tourmalines from tourmalinites associated with 
augen gneiss, leucogranite and garnet-micaschist 

(Figs. 7a, b) (Menderes Massif, Turkey - Yücel-
Öztürk et al. 2015).

In hydrothermal systems (Slack et al. 
1993), Mg-rich tourmalines may form either 
by pre-metamorphic replacement from 
seawater-derived fluids under high fluid/rock 
conditions, or by sulfide-silicate reactions 
during metamorphism. Our results are more 
consistent with seawater-derived fluids. The IB14 
dravite is interpreted as formed from entrained 
seawater (Slack & Trumbull 2011) (Fig. 7c) which 
caused serpentinization and subsequent 
tourmalinization. 

The IB14 dravite has boron isotope 
composition (δ11B = + 3.5 to +5.2 ‰) typical of 
blackwall metasomatism between altered 
oceanic crust and serpentinite. The tourmalinite 
formed below the seawater-sediment 
(or volcanic) interface with no exhalative 
component (closely associated or in contact 
with chemical sediments such as metachert 
and iron-formation) as described by Slack et al. 
(1993). This is in agreement with the values of 
modern bulk oceanic crust (Fig. 8a) by Farber 
et al. (2015), which range between +3.7‰ and 
+7.9‰ (Smith et al. 1995, Yamaoka et al. 2015). 
The B isotope composition of IB14 tourmalinite 
is more enriched in δ11B than the slab materials 
from which they likely originated (δ11B MORB 
= −3‰ to −14‰, average −7.1‰; Chaussidon 
& Jambon 1994, Marschall et al. 2017). This 
enrichment indicates that hydrothermal 
marine fluids altered bulk oceanic crust in the 
Ibaré tourmalinite. The boron concentration of 
fresh MORB has a δ11B value of −7‰, but when 
circulating seawater interacts with ocean crust 
at ~100 °C, then the boron is taken up into 
secondary minerals. Compilations of ocean 
cores and ophiolite sections give average boron 
contents of δ11B = +3‰ for the upper oceanic 
crust (Smith et al. 1995) and the upper mantle 
may be altered to serpentinite by circulating 
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Figure 5. Ternary diagram using electron microprobe 
data. (a) Division according to the dominant occupancy 
of the X site to give the X-site vacant, alkali and calcic 
groups; (b) Classification of alkali group tourmaline 
with dominant occupancy of the Y site, highlighting 
dravite end member. 

Table I. δ 11B results for tourmaline from tourmalinite, 
Ibaré ophiolite.

Spot d11B (‰) Spot d11B (‰)

1 4.0 ± 0.18 28 4.1 ± 0.15 

2 4.3 ± 0.18 29 4.0 ± 0.16

3 3.7 ± 0.19 30 4.0 ± 0.16

4 4.4 ± 0.18 31 3.9 ± 0.15

5 5.0 ± 0.19 32 3.7 ± 0.15

6 4.8 ± 0.19 33 4.0 ± 0.15

7 4.7 ± 0.20 34 3.6 ± 0.16

8 5.2 ± 0.14 35 3.6 ± 0.15

9 5.1 ± 0.14 36 3.6 ± 0.15

10 4.9 ± 0.14 37 3.5 ± 0.16

11 5.0 ± 0.13 38 3.6 ± 0.15

12 4.8 ± 0.14 39 3.7 ± 0.16

13 4.3 ± 0.17 40 3.7 ± 0.15

14 4.6 ± 0.14 41 4.1 ± 0.15

15 4.5 ± 0.15 42 4.1 ± 0.16

16 4.5 ± 0.15 43 4.0 ± 0.15

17 4.4 ± 0.15 44 4.5 ± 0.18

18 4.6 ± 0.14 45 4.4 ± 0.15

19 4.0 ± 0.15 46 4.5 ± 0.19

20 4.3 ± 0.14 47 4.6 ± 0.19

21 4.6 ± 0.13 48 4.7 ± 0.19

22 4.4 ± 0.14 49 4.5 ± 0.19

23 4.2 ± 0.14 50 4.5 ± 0.18

24 4.4 ± 0.13 51 4.9 ± 0.18

25 4.2 ± 0.14 52 4.9 ± 0.18

26 4.0 ± 0.15 53 4.7 ± 0.18

27 4.3 ± 0.15 54 4.3 ± 0.19

seawater, particularly at slow-spreading mid-
ocean ridges (Palmer 2017).

The boron isotopes composition of the 
oceanic crust is the result of crust interaction 
with seawater, through capture of boron during 
hydrothermal alteration (Spivack & Edmond 
1987, Smith et al. 1995). The average δ11B 
calculated for altered oceanic crust is +3.7‰ 

(Smith et al. 1995) while serpentinite shows δ11B 
values ranging between +8 (Boschi et al. 2008) 
and +15.1‰ (Benton et al. 2001). An increase 
in heavy δ11B values (+20‰; Harvey et al. 2014) 
occurs by interaction with hot hydrothermal 
fluids at low pH in deeper levels of the oceanic 
crust (Seyfried & Ding 1995). Tourmaline from 
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Figure 6. Diagrams of tourmalines from the Ibaré 
tourmalinite. (a) Mg versus Fe (total = Fe+2). The dotted 
lines represent joins between selected end members. 
The array of data is along the schorl–dravite join (more 
Mg-rich) and is most consistent with operation of the 
MgFe2+

−1 substitution; (b) Al (total) versus Fe (total). The 
data classify the tourmaline as dravite end-member.

some geological settings may carry B enriched 
in 11B (Table II). 

The range in sediments is typically negative 
(except carbonates from +13.3‰ to +31.9‰, 
Hemming & Hönisch 2007). The older marine 
sediments analyzed by Ishikawa and Nakamura 
(1993) showed δ11B values between −17‰ and 
−5.6‰, systematically lower than modern 
sediments.

 An evaluation is made of the mobility of 
boron in subduction-zone environments to test 

the hypotheses of origin of Ibaré tourmalinite. 
Boron isotopes can be used to unravel transfer 
processes from the subducting oceanic crust to 
the mantle wedge and to arc magmatism (Palmer 
1991, Ishikawa & Tera 1999, Rosner et al. 2003, 
Savov et al. 2005). Studies by Ishikawa & Tera 
(1999) suggested a central role of altered oceanic 
crust and sediments as sources of fluids and 
boron in subduction zones. Additionally, Savov 
et al. (2005) and Tonarini et al. (2007) showed 
the potential role of subducted serpentinites as 
an important source of B-rich fluids to supra-
subduction setting. Peacock & Hervig (1999) 
suggest that subduction-zone metamorphic 
dehydration reactions decrease the δ11B value 
of subducted altered oceanic crust as well as 
subducted sediments through continuous 
dehydration reactions (Table II). Boron uptake 
in oceanic rocks occurs by direct incorporation 
of boron during crystallization of structurally 
favorable, B-rich hydrothermal-diagenetic 
minerals (phyllosilicates - Williams et al. 2001) 
or by adsorption from seawater by secondary 
minerals such as clays and during low-
temperature interaction of fluids with crustal, 
mantle and sedimentary rocks (You et al. 1996). 
Chemical and boron isotopic characteristics of 
subduction-zone mobility of elements were not 
observed in Ibaré samples.

The isotopic and geochemical characteristics 
of IB14 dravite indicate parental fluid sourced 
from seawater. Lithospheric mantle was intensely 
metasomatised by large volumes of fluids 
during associated serpentinization (Fig. 8b). 
The characteristic depleted mantle composition 
of zircon contained in the tourmalinite and 
chloritite (Arena et al. 2017) supports the 
derivation of studied tourmaline from altered 
oceanic crust. 

We envisage a geological history of the Ibaré 
ophiolite starting with oceanic crust formation 
in the Tonian during initial rupturing of Rodinia. 
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Figure 7. (a), (b) Plots of tourmalines on Al–Fe–
Mg(total) and Ca-Fe-Mg(total) diagrams (after Yücel-

Öztürk et al. 2015), 1 = Li-rich granitoid pegmatite 
and aplite, 2 = Li-poor granitoid and their associated 

pegmatite and aplite, 3 = hydrothermally altered 
granite, 4 = metapelite and metapsammite coexisting 

with an Al-saturated phase, 5 = metapelite and 
metapsammite not coexisting with an Al-saturated 

phase, low-Ca metaultramafic and Cr, V-rich 
metasediment, 6 = metacarbonate, metaultramafic, 

Fe3+-rich quartz-tourmaline rock, calc-silicate rock 
and Ca-poor metapelite, 7 = Ca-rich metapelite and 

calc-silicate rock; (c) Composition of tourmaline 
from the IB14 tourmalinite, indicating dominance of 

Mg-rich seawater over Fe-rich hydrothermal fluid. DT 
= distal tourmaline; PT = proximal tourmaline from 

Garda et al. (2009); B = Borborema tourmaline by 
Trumbull et al. (2013); dotted area = Yücel-Öztürk et 

al. (2015).
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Figure 8. Histogram showing δ11B. (a) Different 
geological settings of boron sources (Farber et al. 
2015); (b) Frequency histogram for IB14 tourmaline and 
data from literature.

Table II. B isotopes from selected geological settings.

Geological setting δ11B (‰) 

Modern seawater a +40‰

Marine evaporite and carbonate a +18 to +32‰

Non-marine evaporite and  
carbonate

a -30 to +7‰

Terrigenous marine sediments a -4 to +3‰

Altered oceanic crust a 0 to +13‰

Fresh oceanic crust a -3‰

Island arc volcanic rocks a -5 to +6‰

Andes arc volcanic rocks b -7 to +4‰

Continental reservoir c -20 to -7‰

Subduction zone d -11 to -3‰

This work e +3.5 to +5.2‰

aPalmer & Slack, (1989), cRosner et al. (2003) cChaussidon & 
Albarède, (1992), dPeacock & Hervig, 1999, eThis work.

Intense alteration of oceanic crust and mantle by 
interaction with heated oceanic water produced 
an association of serpentinite, chloritite blackwall 
and massive tourmalinite. This association 
was later accreted to an island-arc with little 
additional alteration of the tourmaline, which 
remained homogeneous in chemistry and boron 
isotopes. The characterization of the paleo-
oceanic crust and mantle in the Ibaré ophiolite 
through the study of tourmalinite is most useful 

for the understanding of processes related to 
Rodinia rupturing and Gondwana assembly.

CONCLUSION

Dravite with no chemical zoning and with 
homogeneous isotopic composition (δ11B = 
+3.5 to +5.2‰) strengthens previous studies 
of mantle origin for intensely metasomatized 
Ibaré ophiolite. Tourmalines originated 
during formation of Neoproterozoic-Cambrian 
Brasiliano Orogen in oceanic altered crust 
prior to subduction and ophiolite obduction. 
Characterization of tourmalinite in Ibaré ophiolite 
is important to interpretations of geodynamic 
evolution of the southern Brasiliano Orogen.
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