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Abstract: In this paper, a robust approach to improve the performance of a condition
monitoring process in industrial plants by using Pythagorean membership grades is
presented. The FCM algorithm is modified by using Pythagorean fuzzy sets, to obtain
a new variant of it called Pythagorean Fuzzy C-Means (PyFCM). In addition, a kernel
version of PyFCM (KPyFCM) is obtained in order to achieve greater separability among
classes, and reduce classification errors. The approach proposed is validated using
experimental datasets and the Tennessee Eastman (TE) process benchmark. The results
are compared with the results obtained with other algorithms that use standard and
non-standard membership grades. The highest performance obtained by the approach
proposed indicate its feasibility.

Key words: Robust diagnostic approach, industrial plants, fuzzy algorithms, pythagorean
fuzzy sets.

INTRODUCTION

Nowadays, there is a marked necessity in industrial plants to produce with higher quality in order
to comply with environmental and industrial regulations (Hwang et al. 2010, Venkatasubramanian
et al. 2003a). However, the faults in equipments can have an unfavorable impact on the availability of
systems, environment and the safety of operators. For such reasons, the faults need to be detected
and isolated using an effective condition monitoring system (Isermann 2011).

Within the condition monitoring methods are those based on models (Camps Echevarría et
al. (2014a,b), Ding (2008), Patan (2008), Venkatasubramanian et al. (2003a,b)) and those based on
historical data (Bernal de Lázaro et al. 2015, 2016, Pang et al. 2014, Sina et al. 2014). In the first
approach, the use of models representing the operation of the processes is needed. The tools used
in this approach are based on the generation of residuals obtained from the difference between the
measurable signals from the real process and the values obtained from a model of this process.
This implicates a high knowledge about the characteristics of the processes, their parameters, and
operation zones. However, this knowledge is usually difficult to achieve due to the complexity of
the industrial plants. On the other hand, the approaches based on historical data do not need a
mathematical model, and they do not require much prior knowledge of the process parameters (Wang
& Hu 2009, Cerrada et al. 2016, 2018). These characteristics constitute an advantage for complex
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systems, where relationships among variables are nonlinear, and not totally known. Therefore, it is
difficult to obtain an analytical model that describes, efficiently, the dynamics of the process.

The use of techniques based on fuzzy tools has increased significantly in recent years in several
scientific areas. In image processing the works Wang et al. (2020a,b) can be cited. In Gao et al. (2019)
a new dendritic neuron model (DNM) taking into account the nonlinearity of synapses, not only for a
better understanding of a biological neuronal system, but also for providing a more useful method
for solving, is proposed. In the field of control theory, the authors of Tong et al. (2019) propose a
data-based design approach for a Networked Tracking Control System which utilizes the input-output
data of the controlled process to establish a predictive model with the help of Fuzzy Cluster Modelling
technology. In Liu et al. (2015), a new robust dataset classification approach is presented based on
neighbor searching and kernel fuzzy c-mean. The approach adopts the neighbor searching method
with the dissimilarity matrix to normalize the dataset, and the number of clusters is determined by
controlling clustering shape. In condition monitoring applications the works Rodríguez-Ramos et al.
(2017, 2018b) can be cited.

A main aspect in the use of fuzzy sets is the provision of membership grades. In order to enhance
the capability of fuzzy sets to capture and model user provided membership information, researchers
have introduced non-standard second order fuzzy sets such as intuitionistic (Atanassov 1986, 2012)
and interval type-2 fuzzy sets (Mendel et al. 2006, Mendel & Wu 2010). These non–standard fuzzy sets
allow the inclusion of imprecision and uncertainty in the specification of membership grades.

Recently, Prof. Ronald R. Yager introduced another class of non-standard fuzzy subset named
Pythagorean fuzzy subset (Yager 2014). In Yager (2014), it is shown that the space of Pythagorean
membership grades is greater than the space of intuitionistic membership grades. This allows the use
of the Pythagorean fuzzy sets in a greater set of applications than the intuitionistic fuzzy sets.

Normally, the data obtained from complex industrial processes are corrupted by noise. This
introduces uncertainties in the observations which seriously affect the performance of the condition
monitoring systems. On the one hand, this situation can cause false alarms when the fault diagnosis
system confuses the Normal Operation Condition (NOC) with a fault. In another sense, the fault
diagnosis system can present problems to correctly distinguish or classify a fault that is affecting
the process. Both situations will lead to erroneous decision making, and may cause economic losses
and affect industrial safety.

In order to overcome the problemsmentioned above, and to obtain a robust condition monitoring
scheme, an approach based on the use of Pythagorean membership grades is proposed which
constitutes the main contribution of this paper. This approach allows to obtain a new variant of the
known Fuzzy C-Means algorithm, called Pythagorean Fuzzy C-Mean algorithm (PyFCM), and it’s kernel
version (KPyFCM) in order to achieve greater separability among classes and reduce classification
errors. Both algorithms also constitute, other contributions of the paper.

The organization of the paper is as follow: in Section of Material and Methods, the general
characteristics of the tools used in the proposed methodology are presented. Also, the principal
theoretical aspects of the Pythagorean memberships grades theory are presented. In Section
Description of the proposal, a description of the classification methodology using fuzzy clustering
techniques is presented. In Section Study Cases and Experimental Design the proposed methodology
is evaluated with four synthetic datasets and with the benchmark Tennessee Eastman (TE) process.
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Next, an analysis of the results obtained and a comparison with other computational tools is
developed in Section Analysis of results. Finally, the conclusions are presented.

MATERIALS AND METHODS

In this section, a general description of Fuzzy C-Means (FCM), and Intuitionistic FCM (IFCM) algorithms
are presented first. Later, the general characteristics of the Pythagorean membership grades, the new
variant of the FCM algorithm, Pythagorean FCM algorithm (PyFCM), and its kernel version (KPyFCM) are
also presented.

Fuzzy C-Means

Different methods have been proposed for fuzzy clustering. Among them, the most common are those
based on distance. One of these methods, and the most popular, is the Fuzzy C-Means (FCM) algorithm
(Bezdek et al. 1984) which uses the optimization criterion (1) to group the data according to the
similarity between them.

JFCM =
c

∑
i=1

N
∑
k=1

(uik)
m (dik)

2 (1)

The exponent m > 1 in (1), is an important factor that regulates the fuzziness of the resulting
partition. The fuzzy clustering allows for obtaining the membership degrees matrix U = [uik]c×N where
uik represents the fuzzy membership degree of the sample k to the ith class, which satisfies:

c
∑
i=1

uik = 1, k = 1, 2, ...,N (2)

where c is the number of classes and N is the number of samples. In this algorithm, the similarity
is evaluated by using the distance function dik, represented by the Eq. (3). This function provides
a measure of the distance between the data and the center of the classes v = v1, v2, ..., vc , being
A ∈ ℜn×n the norm induction matrix, where n is the quantity of measured variables.

d2ik = (xk − vi)
T A (xk − vi) (3)

The measure of dissimilarity is the square distance between each data point and the clustering
center vi. This distance is weighted by a power of the membership degree (uik)m. The value of the
cost function J is a measure of the weighted total quadratic error and statistically, it can be seen as a
measure of the total variance of xk regarding vi.

The conditions for local extreme in Eq. (1) and Eq. (2) are derived using Lagrangian multipliers
(Bezdek 1981):

uik = 1
∑c

j=1 (dik,A/djk,A)2/(m−1) (4)

vi =
∑N

k=1 (umikxk)
∑N

k=1 u
m
ik

(5)

In Eq. (5), it should be noted that vi is the weighted average of the data elements that belong
to a cluster, i.e., it is the center of the cluster i. FCM algorithm is an iterative procedure where N data
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are grouped in c classes. Initially, the user should establish the number of classes (c). The centers of
the c classes are initialized in a random form, and they are modified during the iterative process. In a
similar way, the membership degrees matrix U is modified until the convergence, i.e. ‖Ut − Ut−1‖ < 𝜖,
where 𝜖 is a tolerance limit prescribed a priori, and t is an iteration counter.

The stopping criteria used in this algorithm are:

1. Criterion 1: Maximum number of iterations (Itrmax).

2. Criterion 2: ‖Ut − Ut−1‖ < 𝜖

Intuitionistic Fuzzy C-Means algorithm

Intuitionistic fuzzy c-means clustering algorithm (Chaira 2011) is based upon intuitionistic fuzzy set
theory. Fuzzy set generates only membership function 𝜇(x), x ∈ X, whereas intuitionistic fuzzy set (IFS)
given by Atanassov 2012 considers both membership 𝜇(x) and nonmembership 𝜐(x). An intuitionistic
fuzzy set A in X, is written as:

A = {x, 𝜇A(x), 𝜐A(x) |x ∈ X } (6)

where 𝜇A(x) ⟶ [0, 1], 𝜐A(x) ⟶ [0, 1] are the membership and non-membership degrees of an
element in the set A with the condition: 0 ≤ 𝜇A(x) + 𝜐A(x) ≤ 1.

When 𝜐A(x) = 1− 𝜇A(x) for every x ∈ A, then the set A becomes a fuzzy set. For all intuitionistic
fuzzy sets, a hesitation degree 𝜋A(x) is also indicated (Atanassov 2012). It express the lack of knowledge
in defining of whether x belongs to IFS or not and is given by:

𝜋A(x) = 1− 𝜇A(x) − 𝜐A(x); 0 ≤ 𝜋A(x) ≤ 1 (7)

A graphical representation of the meaning of 𝜋A(x) is shown in Figure 1.

Figure 1. Graphical representation of the meaning of the hesitation degree 𝝅A(x).

Intuitionistic fuzzy c-means objective function contains two terms: (i) modified objective function
of conventional FCM using Intuitionistic fuzzy set and (ii) intuitionistic fuzzy entropy (IFE). IFCM
minimizes the objective function as:

JIFCM =
c

∑
i=1

N
∑
k=1

u∗m
ik d

2
ik +

c
∑
i=1

𝜋∗
i e

1−𝜋∗ (8)
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u∗
ik = umik + 𝜋ik, where u∗

ik denotes the intuitionistic fuzzy membership and uik denotes the
conventional fuzzy membership of the kth data in the ith class. 𝜋ik is the hesitation degree, which
is defined as:

𝜋ik = 1− uik − (1− u𝛼
ik)

1/𝛼, 𝛼 > 0 (9)

and it is calculated from Yager’s intuitionistic fuzzy complement as

N(x) = (1− x𝛼)1/𝛼 , 𝛼 > 0 (10)

thus, with the help of Yager’s intuitionistic fuzzy complement, intuitionistic fuzzy set becomes:

A = {x, 𝜇A(x), (1− 𝜇A(x)𝛼)1/𝛼 |x ∈ X} (11)

and

𝜋∗
i = 1

N

N
∑
k=1

𝜋ik, k ∈ [1,N] (12)

The second term in the objective function is called intuitionistic fuzzy entropy (IFE). Initially, the
idea of fuzzy entropy was given by Zadeh in 1968 (Zadeh 1968). It is the measure of fuzziness in a fuzzy
set. Similarly in the case of IFS, intuitionistic fuzzy entropy gives the amount of vagueness or ambiguity
in a set. For intuitionistic fuzzy cases, if 𝜇A(xi), vA(xi), 𝜋A(xi) are the membership, non-membership, and
hesitation degrees of the elements of the set X = x1, x2, ..., xn, then intuitionistic fuzzy entropy, IFE that
denotes the degree of intuitionism in fuzzy set, may be given as:

IFE(A) =
n

∑
i=1

𝜋A(xi)e[1−𝜋A(xi)] (13)

where 𝜋A(xi) = 1 − 𝜇A(xi) − vA(xi) IFE is introduced in the objective function to maximize the good
points in the class. The goal is to minimize the entropy. Modified cluster centers are:

v∗
i =

∑n
k=1 u

∗
ikxk

∑n
k=1 u

∗
ik

(14)

Pythagorean Fuzzy C-Means algorithm (PyFCM)

In Yager (2014), a new class of nonstandard fuzzy sets called Pythagorean fuzzy sets (PFS) is introduced.
Hereinafter, the membership grades associated with these sets will be named as Pythagorean
membership grades. Following, the main characteristics of the Pythagorean membership grades are
presented.

For expressing the Pythagorean membership grades a pair of values r(x) and d(x) for each x ∈ X
are assigned. Both values will be called as the strength of commitment at x in the case of r(x) ∈ [0, 1]
and the direction of commitment in the case of d(x) ∈ [0, 1] . The values r(x) and d(x) are associated
with a pair of membership grades AY(x) and AN(x). These memberships grades indicate the support for
membership of x in A and the support against membership of x in A respectively. Next, it is shown that
AY(x) and AN(x) are related using the Pythagorean complement with respect to r(x). More specially,
the values of AY(x) and AN(x) are defined from r(x) and d(x) as

AY(x) = r(x)cos(𝜃(x)) (15)

An Acad Bras Cienc (2022) 94(4) e20200662 5 | 22



ADRIÁN R. RAMOS et al. ROBUST CONDITION MONITORING IN INDUSTRIAL PROCESSES

AN(x) = r(x)sin(𝜃(x)) (16)

where
𝜃(x) = (1− d(x))𝜋

2
(17)

and 𝜃(x) ∈ [0, 𝜋
2 ] is expressed in radians.

First, it is shown that AY (x) and AN(x) are Pythagorean complements with respect to r(x). Squaring
Eqs. (15) and (16)

A2Y(x) = r2(x)cos2(𝜃(x)) (18)

A2N(x) = r2(x)sin2(𝜃(x)) (19)

and, by adding both equations the following is obtained

A2Y(x) + A2N(x) = r2(x)(cos2(𝜃) + sin2(𝜃)) (20)

From the Pythagorean theorem, it is known that cos2(𝜃) + sin2(𝜃) = 1. Then

A2Y(x) + A2N(x) = r2(x) (cos2(𝜃) + sin2(𝜃))⏟⏟⏟⏟⏟⏟⏟⏟⏟
1

(21)

and hence
A2Y(x) = r2(x) − A2N(x) (22)

Thus, it is evident that AY and AN are Pythagorean complements with respect to r(x).
The direction of the strength, d(x), indicates on a scale of 1 to 0 how fully the strength r(x) is

pointing to membership. From Eq. (17) 𝜃(x) = (1 − d(x))𝜋
2 . If d(x) = 1, then 𝜃(x) = 0 , therefore,

cos(𝜃(x)) = 1 and sin(𝜃(x)) = 0. From Eq. (16), AN(x) = 0, and from Eq. (22) AY(x) = r(x). This
indicates that the direction of r(x) is completely to membership. On the other hand, performing a
similar analysis for d(x) = 0, it is obtained that AY(x) = 0 and AN(x) = r. This indicates that the
direction of the strength is completely to nonmembership. Intermediate values of d(x) indicate partial
support to membership and nonmembership.

In a general form, a Pythagorean membership grade is represented by a pair of values (a,b) such
that a,b ∈ [0, 1] and a2 + b2 ≤ 1. In this case, a = AY(x), indicates the degree of support for membership
of x in A and, b = AN(x) indicates the degree of support against membership of x in A. Taking into
account the pair (a,b), the equation (20) can be expressed as a2 + b2 = r2. The latter indicates that a
Pythagorean membership grade is a point of a circle of radius r.

An intuitionistic membership grade presented in Atanassov (2012) is also a pair (a,b) that satisfies
a,b ∈ [0, 1] and a+b ≤ 1. In Yager (2014),it was demonstrated that the set of Pythagorean membership
grades is greater than the set of intuitionistic membership grades. That result is clearly shown in Figure
2 taken from Yager (2014). Here, it is possible to observe that intuitionistic membership grades are all
points under the line x + y ≤ 1 and the Pythagorean membership grades are all points with x2 + y2 ≤
1.

Taking into account the theory of Pythagorean fuzzy sets, it can be said that the objective function
on the Pythagorean Fuzzy C-Means algorithm (PyFCM) is similar to the one obtained for the IFCM
algorithm according equation 8. In this case, a hesitation degree, 𝜋A(x), is given by:

𝜋A(x) = 1− 𝜇2A(x) − v2A(x); 0 ≤ 𝜋A(x) ≤ 1 (23)
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Figure 2. Comparison of space of Pythagorean and intuitionistic membership grades.

Therefore, in equation 8, 𝜋ik is defined as:

𝜋ik = 1− u2ik − (1− u𝛼
ik)

2/𝛼, 𝛼 > 0 (24)

The most important implication of this result is the possibility of using the Pythagorean fuzzy
sets in a larger set of situations than intuitionistic fuzzy sets. In the case of fault diagnosis, this result
allows to improve the classification process.

Pythagorean Fuzzy C-Means algorithm based on a kernel approach

KFCM represents the kernel version of FCM. This algorithm uses a kernel function for mapping the data
points from the input space to a high dimensional space, as shown in Figure 3.

Figure 3. KFCM feature space and kernel space.

In this case, a kernel version of the PyFCM (KPyFCM) is obtained in order to achieve greater
separability among classes, and reduce the classification errors. KPyFCM minimizes the objective
function:

JKPyFCM =
c

∑
i=1

N
∑
k=1

u∗m
ik ‖(xk) − (vi)‖

2 +
c

∑
i=1

𝜋∗
i e

1−𝜋∗ (25)

where u∗
ik = umik + 𝜋ik, 𝜋ik hesitation degree, which is defined according to Eq. (24) and 𝜋∗

i is defined as
the equation (12).
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Also, ‖(xk) − (vi)‖
2 is the square of the distance between (xk) and (vi). The distance in the feature

space is calculated through the kernel in the input space as follows:

‖(xk) − (vi)‖
2 = K(xk, xk) − 2K(xk, vi) + K(vi, vi) (26)

If the Gaussian kernel is used, then K(x, x) = 1 and ‖(xk) − (vi)‖
2 = 2 (1 − K(xk, vi)). Thus, Eq.

(25) can be written as:

JKPyFCM = 2
c

∑
i=1

N
∑
k=1

u∗m
ik ‖1− K(xk, vi)‖

2 +
c

∑
i=1

𝜋∗
i e

1−𝜋∗ (27)

where,

K(xk, vi) = e−‖xk−vi‖
2/𝜎2 (28)

It is possible to find many different kernel functions in the scientific literature, and the Gaussian
kernel is one of the most popular. In general, the selection of a kernel depends on the application
(Bernal de Lázaro et al. 2015, Motai 2015, Nayak et al. 2015, 2016). In this paper, several experiments
were performed using various kernel functions such as the Gaussian Kernel, the Polynomial Kernel
and the Hyper-tangent Kernel. Considering the results that were obtained, the Gaussian Kernel was
selected.

Minimizing Eq. (27) under the constraint shown in Eq. (2), yields:

u∗
ik = 1

∑c
j=1 ( 1−K(xk,vi)

1−K(xk,vj)
)
1/(m−1) (29)

vi =
∑N

k=1 (u∗m
ik K(xk, vi)xk)

∑N
k=1 u

∗m
ik K(xk, vi)

(30)

KPyFCM algorithm is presented in Algorithm 1.

Algorithm 1 Pythagorean Fuzzy C-Means algorithm based in a kernel approach (KPyFCM)
Input: data, c, 𝜖 > 0, m > 1, 𝜎, Itrmax (number of iterations)
Output: fuzzy partition U, class centers V
1. Initialize U to random fuzzy partition
2. t ← 1
3. repeat
4. Update the center of each class according to (30) for Gaussian kernels
5. Calculate the distances according to (26)
6. Update U according to (29).
7. t ← t + 1
8. until ‖Ut − Ut−1‖ < 𝜖 ∧ t ≥ Itrmax
9. return fuzzy partition U, class centers V
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DESCRIPTION OF THE PROPOSAL

The classification scheme proposed in this paper is shown in Figure 4. It presents an offline training
stage and an online recognition stage. In the training stage, the historical data of the process are used
to train (modeling the functional stages through the clusters) a fuzzy classifier. After the training, the
classifier is used online (recognition) in order to classify every new sample taken from the process.
The result intends to offer information about the system state in real-time for the operator .

Figure 4. Classification scheme using fuzzy clustering.

The clustering methods group the data in different classes based on a measure of similitude. In
the processes, the data are acquired by means of a SCADA (Supervisory Control and Data Acquisition)
system, and the classes can be associated with functional states. In the case of statistical classifiers,
each sample is compared with the center of each class by means of a measure of similitude to
determine to which class the sample belongs. In the case of the fuzzy classifiers, the comparison
is made to determine the membership degree of the sample to each class. In general, the higher
membership degree determines the class to which the sample is assigned, as it is shown in (31).

Ci = {i ∶ max {𝜇ik} , ∀i, k} (31)

Off-line training

In this stage, a historical dataset representative of the different operation states of the process
(classes) is used for training the fuzzy classifier, where the center of each class is determined.

Online recognition

In this stage, the observations obtained by the SCADA system are classified one by one. In the
classification process, the distance between the received observation and each one of the class
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centers is calculated. Next, the fuzzy membership degree of the observation to each one of the c
classes is obtained. The observation will be assigned to the class with highest membership degree
(See Algorithm 2).

Algorithm 2 Recognition
Input: data Xk, class centers V, m, 𝜎.
Output: Current State.
for k = 1 to k = N do
Calculate the distances from the observation k to class centers according to Eq. (26).
Calculate the membership degree of the observation k to the c classes according to Eq. (29).
Determine to which class belongs the observation k using Eq. (31).

end for

The general condition monitoring scheme used for all performed experiments, is shown in Fig. 5.
In this scheme, it can be seen that the on-line recognition algorithm determines the existence of a
fault if j samples representative of it are received in a window of time. Later, an abnormal situation
alarm of the process is executed. This is done with the aim of reducing false alarms in the presence
of noise or outliers. The parameter j and the dimension of the window of time are selected by the
expert operator of the plant in correspondence to the process.

STUDY CASES AND EXPERIMENTAL DESIGN

In this section the datasets shown in Figure 6 are presented to validate the performance of the
novel condition monitoring scheme proposed in this paper. These datasets were created synthetically
to have complex situations for classification despite having only two classes of two variables. The
datasets Data A, Data B and Data D have 1000 observations each one and the dataset Data C has 700
observations. These datasets will be identified in the rest of the paper as Experimental Datasets (ED).
In the training, 750 observations from the Data A, B and D were used and 250 observations were used
in the recognition stage. In the case of the Data C, 525 observations were used in the training and 175
observation were used in the recognition stage.

Several experiments (𝜎=10,20,30,40,…,100) were performed and the value of 𝜎 that gave the best
results in the classification was selected.

The values of the parameters used for the applied algorithms were: Number of iterations = 100, 𝜖
= 10−5, m = 2, 𝜎 = 10 (only used for the version kernel of the algorithms).

The second case study is the Tennessee Eastman (TE) process benchmark which has been
widely used to evaluate the performance of new control and monitoring strategies (Yin et al. 2012,
Prieto-Moreno et al. 2015, Llanes-Santiago et al. 2019). The process consists of five major units
interconnected as shown in Figure 7.

This benchmark contains 21 preprogrammed faults and one normal operating condition dataset.
The datasets of the TE are generated for 48h with the inclusion of faults after 8 hours of
simulation. The control objectives and general features of the process simulation are described
in the paper Downs & Vogel (1993). All data sets used in this paper can be downloaded from
http://web.mit.edu/braatzgroup/TE process.zip. Table I shows the faults considered to evaluate the
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Figure 5. Flowchart of the condition monitoring process.

benefits of the proposal presented in this paper. For the training, 480 observations of each fault were
used, and 960 observations in the online recognition.

Another problem of the current fuzzy clustering method is related to the correct selection of
its parameters which is decisive in obtaining a high performance. Nowadays, these issues of crucial
importance are open problems in the fault diagnosis applications and in others research fields (Wang
et al. 2020a, Filho et al. 2015, 2016). The parameters Number of iterations, 𝜖, m and 𝜎 were selected
according to the experience in previous works (Rodríguez-Ramos et al. 2019, 2018a).

An Acad Bras Cienc (2022) 94(4) e20200662 11 | 22



ADRIÁN R. RAMOS et al. ROBUST CONDITION MONITORING IN INDUSTRIAL PROCESSES

Figure 6. Datasets for experiments.

The values of the parameters used for the applied algorithms are: Number of iterations = 100, 𝜖 =
10−5, m = 2, 𝜎 = 50 (only used for the version kernel of the algorithm).

Table I. Description of faults of the TE process.

Fault Process variable Type

F1 A/C feed ratio, B composition constant step

F2 B composition, A/C ration constant step

F6 A feed loss step

F7 C header pressure loss-reduced availability step

ANALYSIS OF RESULTS

A very important step in the design of fault diagnosis systems consist in verifying the quality of the
performed task. The most used criterion for this analysis is the confusion matrix (CM). The confusion
matrix is an indicator that allows for obtaining the performance of the classifier in the classification
process. Each CMrs element of a confusion matrix for r ≠ s, indicates the number of times that the
classifier confuses a state r with a state s in a set of L experiments. The results obtained from the
application of the proposed methodology to fault diagnosis by using the experimental datasets (ED)
and in the TE process are presented next. Figure 8 illustrates a confusion matrix and the respective
interpretation.

Note that the main diagonal of the matrix CMrs represents the number of correct samples
detected/classified and the values out of this diagonal reflect the confusion between the classes
or the operation states.
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Figure 7. Piping diagram of the Tennessee Eastman process.

Figure 8. Confusion matrix interpretation for a binary classification process (Bernal de Lázaro et al. 2016).
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Results for the experimental datasets

Tables II, III, IV and V show the confusion matrix for the experimental dataset (ED) where C1: Class 1
and C2: Class 2 (C1, C2: 250 (for Data A, Data B and Data D), C1, C2: 175 (for Data C)). The main diagonal
is associated with the number of observations successfully classified. Since the total number of
observations per class is known, the accuracy (TA=correctly classified observations/total observations)
can also be computed. The last row shows the average (AVE) of TA.

Table II. CM for the experimental data set (Data A).

FCM KFCM

C1 C2 TA (%) C1 C2 TA (%)

C1 115 135 46.0 C1 207 43 82.8

C2 141 109 43.6 C2 37 213 85.2

AVE 44.8 AVE 84.0

IFCM KIFCM

C1 C2 TA (%) C1 C2 TA (%)

C1 121 129 48.4 C1 219 31 87.6

C2 132 118 47.2 C2 28 222 88.8

AVE 47.8 AVE 88.2

PyFCM KPyFCM

C1 C2 TA (%) C1 C2 TA (%)

C1 129 121 51.6 C1 231 19 92.4

C2 118 132 52.8 C2 13 237 94.8

AVE 52.2 AVE 93.6

Figure 9 shows the classification results by using the FCM, IFCM, PyFCM, KFCM, KIFCM and KPyFCM
algorithms. That shows a global classification percentage obtained for each algorithm.

Results for TE process

Table VI shows the confusion matrix for experimental dataset where F1: Fault 1, F2: Fault 2, F6: Fault 6
and F7: Fault 7.

Figure 10 shows the classification results for the faults 1, 2, 6 and 7 by using the FCM, IFCM, PyFCM,
KFCM, KIFCM and KPyFCM algorithms for TE process. A summary of the results can be seen in Figure 11,
that shows a global classification percentage obtained for each algorithm.

All experiments were performed on a computer with the following characteristics: Intel Core
i7-6500U 2.5 - 3.1GHz, memory: 8GB DDR3L. The Table VII shows that the average time delayed each
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Table III. CM for the experimental data set (Data B).

FCM KFCM

C1 C2 TA (%) C1 C2 TA (%)

C1 128 122 51.2 C1 199 51 79.6

C2 135 115 46.0 C2 47 203 81.2

AVE 48.6 AVE 80.4

IFCM KIFCM

C1 C2 TA (%) C1 C2 TA (%)

C1 134 116 53.6 C1 214 36 85.6

C2 126 124 49.6 C2 34 216 86.4

AVE 51.6 AVE 86.0

PyFCM KPyFCM

C1 C2 TA (%) C1 C2 TA (%)

C1 139 111 55.6 C1 233 17 93.2

C2 124 126 50.4 C2 22 228 91.2

AVE 53.0 AVE 92.2

Figure 9. Classification for experimental datasets

algorithm to perform an execution. When comparing these execution times with the time constant of
the TE process, it can be seen, that they are very small and therefore show the feasibility of applying
these algorithms in the classification scheme.
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Table IV. CM for the experimental data set (Data C).

FCM KFCM

C1 C2 TA (%) C1 C2 TA (%)

C1 80 95 45.71 C1 135 40 77.1

C2 92 83 47.4 C2 33 142 81.4

AVE 46.6 AVE 79.1

IFCM KIFCM

C1 C2 TA (%) C1 C2 TA (%)

C1 84 91 48.0 C1 141 34 80.6

C2 86 89 50.9 C2 26 149 85.1

AVE 49.4 AVE 82.9

PyFCM KPyFCM

C1 C2 TA (%) C1 C2 TA (%)

C1 89 86 50.9 C1 169 6 96.6

C2 84 91 52.0 C2 7 168 96.0

AVE 51.4 AVE 96.3

Figure 10. Faults classification (%) for the TE process.

As several algorithms are presented, it is necessary to analyze if there are significant differences
among the results of them. To achieve this, it is necessary to apply statistical tests (García & Herrera
2008, García et al. 2009, Luengo et al. 2009).
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Table V. CM for the experimental data set (Data D).

FCM KFCM

C1 C2 TA (%) C1 C2 TA (%)

C1 116 134 46.4 C1 216 34 86.4

C2 129 121 48.4 C2 31 219 87.6

AVE 47.4 AVE 87.0

IFCM KIFCM

C1 C2 TA (%) C1 C2 TA (%)

C1 121 129 48.4 C1 223 27 89.2

C2 122 128 51.2 C2 22 228 91.2

AVE 49.8 AVE 90.2

PyFCM KPyFCM

C1 C2 TA (%) C1 C2 TA (%)

C1 131 119 52.4 C1 237 13 94.8

C2 116 134 53.6 C2 8 242 96.8

AVE 53.0 AVE 95.8

Figure 11. Global classification (%) obtained for each algorithm for the TE process.

Statistical tests

First, the non-parametric Friedman test is applied in order to demonstrate that there is at least
one algorithm whose results have significant differences with respect to the results of the others.

An Acad Bras Cienc (2022) 94(4) e20200662 17 | 22



ADRIÁN R. RAMOS et al. ROBUST CONDITION MONITORING IN INDUSTRIAL PROCESSES

Table VI. CM for the TE process (F1: 960, F2: 960, F6: 960, F7: 960).

FCM KFCM

F1 F2 F6 F7 TA (%) F1 F2 F6 F7 TA (%)

F1 495 211 109 145 51.56 F1 862 40 25 33 89.79

F2 153 551 77 179 57.40 F2 30 871 22 37 90.73

F6 225 68 530 137 55.21 F6 49 21 867 23 90.31

F7 244 115 92 509 53.02 F7 55 40 34 831 86.56

AVE 54.30 AVE 89.35

IFCM KIFCM

F1 F2 F6 F7 TA (%) F1 F2 F6 F7 TA (%)

F1 668 153 47 92 69.58 F1 892 28 17 23 92.92

F2 129 701 55 75 73.02 F2 19 895 14 32 93.23

F6 138 62 689 71 71.77 F6 21 12 908 19 94.58

F7 140 107 89 624 65.00 F7 37 16 21 886 92.29

AVE 69.84 AVE 93.26

PyFCM KPyFCM

F1 F2 F6 F7 TA (%) F1 F2 F6 F7 TA (%)

F1 695 163 56 100 72.40 F1 937 14 0 9 97.60

F2 134 730 69 85 76.04 F2 0 100 0 0 100.0

F6 148 72 717 79 74.69 F6 6 0 950 4 98.96

F7 145 127 101 651 67.89 F7 18 9 0 933 97.19

AVE 72.74 AVE 98.44

Table VII. Analysis of computational time.

Algorithm Time (seconds)

FCM 0.1678

IFCM 0.2203

PyFCM 0.2758

KFCM 0.6082

KIFCM 0.6634

KPyFCM 0.7005
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Afterward, if the null-hypothesis of the Friedman test is rejected, it is necessary to make a comparison
in pairs to determine the best algorithm(s). For this, the non-parametric Wilcoxon test is applied.

Friedman Test

In our case, for six experiments (k = 6) and 10 datasets (N = 10), the value of statistical Friedman FF =
340 was obtained. With k = 6 and N = 10, FF is distributed according to the F distribution with 6−1 = 5
and (6 − 1) × (10 − 1) = 45 degrees of freedom. The critical value of F(5,45) for 𝛼 = 0.05 is 2.4221, so
the null-hypothesis is rejected (F(5,45) < FF) which means that at least the average performance of
at least one algorithm is significantly different from the average value of the performance of other
algorithms.

Wilcoxon Test

Table VIII shows the results of the comparison in pairs of the algorithms (1: FCM, 2: IFCM, 3: PyFCM, 4:
KFCM, 5: KIFCM, 6: KPyFCM) using the Wilcoxon test. The first two rows contain the values of the sum
of the positive (R+) and negative (R−) rank for each comparison established. The next two rows show
the statistical values T and the critical value of T for a level of significance 𝛼 = 0.05. The last row
indicates which algorithm was the winner in each comparison. The summary in Table IX shows the
number of times that each algorithm was the winner.

Table VIII. Results of the Wilcoxon test.
1 vs 2 1 vs 3 1 vs 4 1 vs 5 1 vs 6 2 vs 3 2 vs 4 2 vs 5 2 vs 6 3 vs 4 3 vs 5 3 vs 6 4 vs 5 4 vs 6 5 vs 6

∑R+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

∑R− 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T𝛼=0.05 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Winner 2 3 4 5 6 3 4 5 6 4 5 6 5 6 6

Table IX. Result of the comparison between the experiments.

Algorithm No.Wins Ranking

FCM 0 6

IFCM 1 5

PyFCM 2 4

KFCM 3 3

KIFCM 4 2

KPyFCM 5 1

As can be seen, among the FCM, IFCM and PyFCM algorithms, the PyFCM algorithm obtains the
better results. In the analysis with the Kernel algorithms, the KPyFCM algorithm obtains the better
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results. Taking into account all algorithms, it is shown that the KPyFCM algorithm obtains the best
results.

CONCLUSIONS

The main contribution of this paper is the development of a robust scheme for condition monitoring
in industrial systems by using Pythagorean membership grades. The fundamental motivation for this
proposal is based on the fact that the space of Pythagorean membership grades is greater than
the space of the standard and intuitionistic membership grades. In the classification process, an
observation is assigned to the class in which it achieves the highest membership degree. Pythagorean
membership functions allow for the use of a larger set of numeric values for assigning themembership
degree to an observation; and that a subset of them have a numeric value greater than those allowed
by institutionistic membership functions. In the classification process, the membership degree to a
class is maximized. If there is a greater number of values in the search space and these values are
greater than the institutionistic case, then this allows for the improvement of the classification process
as can be seen in two case studies in the paper .

In the proposal, the FCM algorithm is modified by using Pythagorean fuzzy sets, and a new variant
of that algorithm called Pythagorean Fuzzy C-Mean (PyFCM) algorithm is obtained. In addition, a kernel
version of the PFCM algorithm (KPyFCM) is obtained in order to achieve greater separability among the
classes, for reducing the classification errors. The approach proposed was validated using synthetic
datasets and the TE process benchmark. The promising results obtained indicate the feasibility of the
proposal.
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