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ABSTRACT
We investigated the influence of Quaternary climate fluctuations on the current distribution of three species of 
Leguminosae (Fabaceae) occurring in the Chaco. Potential distribution models of Bauhinia hagenbeckii, Muellera 
nudiflora and Neltuma rubriflora with a supposed endemism area were generated. The Last Interglacial, Last Glacial 
Maximum, Holocene Middle and current scenarios were used. The species showed a potential distribution according 
to the South American biogeographic history regarding the glacier regression and the formation of the Dry Diagonal. 
The models for each Quaternary event exhibited a tolerable AUC ≥ 0.9 for the validations. The LGM was the event 
that favoured the current species establishment areas in the Dry Diagonal. Quaternary climatic events were related 
to the current Leguminosae distribution. Bauhinia hagenbeckii and Neltuma rubriflora present similar areas of 
environmental suitability. Muellera nudiflora models with areas of environmental suitability were larger for the LIG 
and Holocene than for areas from other periods. All scenario models (LGM, HM and current scenario) highlighted 
the potential distribution of the three species concomitant with the glacier regression events and were consistent 
with the history of formation of South American dry areas.
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Introduction
On a global scale, Leguminosae serve as a model for 

studies based on phytogeographic approaches since they are 
a highly successful group occupying most of the terrestrial 
habitats such as dry, humid and temperate rainforests, 
savannas, fields, and deserts, thereby representing the 

protagonists of the global (Schrire et al. 2005) and regional 
biota, mainly in the Neotropics (Simon & Proença 2000; 
Flores & Miotto 2005; Flores & Tozzi 2008; Cardoso & 
Queiroz 2011; Werneck 2011; Morales et al. 2019). The 
Chaco, the largest continuous area of dry forests in South 
America, has a high richness and endemism when compared 
to other dry areas (Dryflor 2016). This aspect is favoured by 
the climatic seasonality of the domain, with hotter summers 
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reaching high temperatures, which may explain the greater 
richness of Leguminosae species, since the family is highly 
adapted to hot and dry environments (Lima et al. 2015; 
Bueno et al. 2017; Hoyos et al. 2018).

A number of f loristic studies have shown the 
Leguminosae richness in the Chaco (Adámoli et al. 1972; 
Ortega-Torres et al. 1989; Lewis 1991; Spichiger et al. 1991; 
Navarro et al. 2006; Noguchi et al. 2009; Torrela et al. 2011; 
Gimenez et al. 2011; Giorgis et al. 2011; Freitas et al. 2013; 
Neves et al. 2015; Souza-Lima et al. 2017; Sartori et al. 
2018; Morales et al. 2019; Sinani et al. 2019). In addition, 
species such as Bauhinia hagenbeckii, Muellera nudiflora and 
Neltuma rubriflora, of restricted distribution, suggest areas 
of endemism in the Chaco wet sector (Wunderlin 1968; 
Burkart 1969; 1976; Vaz et al. 2010).

Data about the high Leguminosae diversity in the Chaco 
(Lima et al. 2015; Morales et al. 2019), together with the 
geographic distribution records of the group have been 
reported in several studies (Morales et al. 2019), provide 
support for the biogeographic hypotheses of the Chaco 
formation, important for the understanding of historical 
relationships and the evolution of the Dry Diagonal flora 
(Prado 2000; Cardoso & Queiroz 2011; Mogni et al. 2015; 
Neves et al. 2015).

The evolution and distribution of the South American 
species occurring in dry areas was shaped by the Quaternary 
climatic fluctuations, with expected events of population 
expansion following the expansion of suitable habitats 
and population extinctions in response to the retraction 
of habitat suitability, as well as populations restricted to 
refuges (Haffer 1969; Haffer & Prance 2001; Graham et 
al. 2006; Bueno et al. 2017; Rezende et al. 2018). The Last 
Interglacial (between 120,000 and 140,000 years before 
the present) was characterized by warmer temperatures, 
greater summer insolation, prominent thawing, sea level 
rise, and forest expansion (Otto-Bliesner et al. 2006). In the 
Last Glacial Maximum (ca. 22,000 years before the present), 
the climate became drier and cooler, with a decrease of some 
area of the Amazon rainforest replaced by native fields 
leading to an intense landscape change (Behling 2002). 
The end of this scenario was marked by the glacier retreat 
approximately 8,000 years ago and the return of the rains. 
In contrast, in the Middle Holocene (ca. 6,000 years before 
the present) the climate became warmer and entered a phase 
called the climatic optimum, when the earth was about 2 to 
3° C warmer and had greater precipitation than currently 
(Souza et al. 2005).

The Chaco was probably formed more recently than the 
other Dry Diagonal areas, with the current composition 
of Chaco biota being influenced by external sources to a 
greater extent. The areas of the Seasonally Dry Tropical 
Forests (SDTF) and the Chaco were considered distinct 
and there is an intercalation between the biomes of South 
America, especially the dry diagonal in Brazil (Silva de 
Miranda et al. 2018). In addition, it is possible that low 

elevation Chaco regions were more affected by Quaternary 
climatic fluctuations than other open ecoregions located 
at higher elevations, so that interglacial rises in sea level 
may have been sufficient to inundate many Chaco areas 
(Werneck 2011). The Pleistocene climate was arid during 
the dry periods, with extended scrub vegetation and even 
steppe through at least the western Chaco. During more 
wet periods the vegetation was lusher than currently 
in the western Chaco, particularly along water courses. 
Large swamps and extensive palm savannas fringed with 
forest probably characterized the eastern Chaco during 
wet periods. Embayment of the lower Parana River during 
interglacial periods may have occurred in conjunction with 
high ground water and extensive swamps from Central-
Western Brazil to the delta of the Paraná. Full glacial periods 
were probably characterized by very dry conditions, at least 
in the western Chaco (Short 1975). This suggests that the 
Chaco has undergone the greatest boundary shifts, and its 
ecologically generalist fauna could easily find refuge in open 
vegetation formations at higher elevation (e.g. surrounding 
Cerrado and SDTF remnants). As a result, these supposedly 
less stable Chaco areas across climatic fluctuations have been 
considered to shelter a less differentiated fauna, with lower 
levels of intraspecific genetic diversity when compared to 
populations from the other two open dry areas. Phylogenetic 
studies of a Leguminosae group (Caesalpinia) carried out 
in the pantropical region and in the Chaco have shown 
phylogenetic conservatism in the biome (Gagnon et al. 
2019). However, the Chaco’s central location is strategically 
placed in a very active ecotonal region, where many different 
vegetation types meet, possibly representing a region of 
‘current evolutionary history’ crucial to the dynamics of 
many species. Ecotonal areas are potentially important 
regions of differentiation and speciation, thus having a 
great evolutionary potential (Werneck 2011).

Consequently, paleodistribution modelling provides a 
method for the production of spatially explicit models of 
landscape dynamics over recent time scales (e.g. Quaternary) 
(Pennington et al. 2000; Werneck et al. 2011; Bueno et al. 
2017). The Ecological Niche Modelling (ENM) has become 
a popular tool in phylogeography, evolutionary biology 
and conservation biology for the inference of potential 
geographic distributions of species in past, present and 
future climatic conditions (Chan et al. 2011). In this regard, 
modelling can produce models of potential distribution in 
biogeographic analyses conducted for different purposes. 
Thus, the use of models generated by modelling can support 
actions for the conservation of rare or endangered species, 
reintroduction of species, detection of biodiversity loss, 
assessment of the impacts of climate change, invasive 
potential of exotic species, and conservation priorities 
(Giannini et al. 2012). In this context, the aim of this study 
was to determine the effects of the Quaternary climatic 
fluctuation on the current distribution of three endemic 
Leguminosae species occurring in the Chaco based on the 
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following questions: i) whether there was an expansion or 
contraction of the occurrence of Leguminosae species in 
the Chaco during the Last Glacial Maximum (LGM) and/or 
Last Interglacial (LIG); ii) whether the LGM was the event 
that favoured the current species establishment areas in 
the Dry Diagonal, as also highlighted in previous studies.

Materials and methods
Study site

The study covered the Chaco region including the areas 
of occurrence of the studied species (Fig. 1). The Chaco 

occurs in the south-central region of South America, with 
an area of more than 800,000 km² extending from the 
northern and central regions of Argentina, eastern Paraguay 
and south-east Bolivia to the extreme west of the Mato 
Grosso do Sul state, Brazil (Hueck 1972; Prado & Gibbs 
1993). This domain is located in a lowland characterized to 
a sedimentary basin of thin, wind-blown soils (loess) deep 
and compacted, almost without rocks, which impair water 
infiltration, usually leaving the water table out of reach of 
the roots of the plants (Zanella 2011). The climate has a 
strong seasonality, with maximum summer temperatures as 
high as 49° C, the highest temperatures recorded in South 
America, and severe winter frosts (Pennington et al. 2000). 
Rainfall ranges from over 1000 mm/year to the east to less 

Figure 1. Map of South America with the Chaco and Cerrado delimitation and places of occurrence of Bauhinia hagenbeckii (green), 
Muellera nudiflora (blue) and Neltuma rubriflora (yellow).
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than 500 mm/year to the west, with a dry season in winter 
and spring and a rainy season in the summer. The dry season 
has a longer duration from east to west (Pennington et al. 
2000). Vegetational formations or open arboreal vegetation 
commonly grow in the Chaco, the latter characterized by 
spinous, deciduous species with small leaves and xerophytic 
characteristics (Hueck 1972).

Species data and delimitation
Data from CGMS (Brazil), FCQ (Paraguay) and PY 

(Paraguay) herbaria and digitized herbarium data were 
used to obtain the geographic location of the species 
studied (biotic data) and later species distribution modelling 
available at GBIF (Global Biodiversity Information Facility, 
http://www.gbif.org/) and SpeciesLink (http://inct.splink.
org.br/) (Tab. S1).

In this study, we selected species with areas of endemism 
in the Chaco region such as Bauhinia hagenbeckii Harms, 
Muellera nudiflora (Burkart) M.J. Silva & A.M.G. Azevedo 
and Neltuma rubriflora (Hassl.) C. E. Hughes & G. P. Lewis. 
Bauhinia hagenbeckii occurs in the wet areas of the Chaco in 
Paraguay and Brazil (Wunderlin 1968). Muellera nudiflora 
is found mainly in the areas of Bolivia, Paraguay and Brazil 
(Burkart 1969) (Fig. 1). In Brazil there are records only for 
the Mato Grosso do Sul state (Silva & Tozzi 2015). Neltuma 
rubriflora is an important indicator of Chaco wet areas and 
occurs in Paraguay (Burkart & Simpson 1977) and Brazil 
(Souza-Lima et al. 2017).

Data analyses
Environmental predictors consisted of bioclimatic 

variables interpolated from climate data between 1950 
and 2000 obtained from the Worldclim dataset (Hijmans 
et al. 2005; http://www.worldclim.org). The 19 standard 
variables at 2.5 arc‐min (approximately 5 km) resolution 
reflect various aspects of temperature, precipitation, and 
seasonality, which are likely to be important in determining 
species distributions. The bioclimatic layers were cropped 
covering all South America. We used a stepwise procedure 
implemented in the R sdm package (Naimi & Araújo 2016) 
in R 3.6.3 (R Development Core Team 2021) to test the issue 
of multicollinearity among the environmental variables by 
estimating the variance inflation factor (VIF) and retained 
only the variables with VIF < 10 (Graham 2003). This 
reduced our number of environmental predictors to eight.

To verify the palaeodistribution of Bauhinia hagenbeckii, 
Muellera nudiflora and Neltuma rubriflora in the late 
Quaternary climatic changes, we produced suitability 
projections of occurrence during the Current (0 ka pre‐
industrial), Mid‐Holocene (6 000 BP), Last Glacial Maximum 
(LGM – 22 BP), and Last Interglacial (LIG ~ 130 BP) time 
periods, based on climatic simulations (Hijmans et al. 2005). 
For the Last Glacial Maximum (21 LGM) and Holocene (6 
BP time periods) we employed the Community Climate 
System Model - CCSM4 (Gent et al. 2011) and MIROC-ESM 

(Watanabe et al. 2011) which represents downscaled climate 
data from simulations with Global Climate Models (GCMs) 
based on the Coupled Model Intercomparison Project Phase 
5 (CMIP5; Taylor et al. 2012). We summed the projections of 
the species for each time period, which together represent 
the probability of occurrence during that time period. The 
paleo‐climatic model for the Last Interglacial (120 ka, LIG) 
data were obtained from of Otto‐Bliesner et al. (2006).

We fitted ENMs for each species using four modelling 
algorithms implemented in the sdm package in R (Naimi 
& Araújo 2016). These were maximum entropy (MaxEnt) 
(Phillips et al. 2006); random forests (rf) (Breiman 2001); 
generalised linear models (glm) (McCullagh & Nelder 1989), 
and BIOCLIM (bioclim.dismo) (Hijmans & Graham 2006). 
These methods were used to link the current environmental 
conditions to the species presence and absence data, and 
subsequently to predict and map the spatial distribution of 
the species for the current and paleoclimatic projections. All 
models were calibrated with presence only data combined 
with 1,000 randomly selected pseudo-absence records for 
each species across the study area, generated with the R sdm 
package (Naimi & Araújo 2016). We built ensemble models 
combining multiple replicates of several different modelling 
algorithms (Araújo & New 2007). Due to their combined 
power, ensemble models are widely accepted to provide more 
accurate results than single models (Forester et al. 2013).

To assess the predictive capacity of the models, we 
divided the data for each species into a training set (70 % of 
occurrence) and a test or validation set (30 % of occurrence) 
performed with the ten replicate subsampling method. We 
measured the accuracy of the models using the area under the 
Receiver Operating Characteristic (ROC) curve (AUC) and 
the True Skill Statistics (TSS) value (Bradley 1997). Models 
with values above 0.75 are considered to be potentially 
useful (Elith et al. 2011). Several statistical indicators can 
be used as metrics to evaluate model performance (Fielding 
& Bell 1997). To validate the produced models, we used 
the Area Under Curve (AUC) as a threshold-independent 
measure and the True Skill Statistic (TSS) as threshold-
dependent accuracy measures (Allouche et al. 2006; Liu et 
al. 2009) and produced the binary maps.

Results
The model performance for three species was better than 

random, with a mean training AUC value ranging from 0.94 
to 0.99 and a TSS value ranging from 0.89 to 0.99, indicating 
that the model performed well in predicting the suitable 
habitat area for the species. The relative contributions of 
the most important environmental variables determining 
the distribution of Bauhinia hagenbeckii, Muellera nudiflora 
and Neltuma rubriflora according to the models were: 
Bio10 (Mean Temperature of Warmest Quarter) (74 %) 
and Bio19 (Precipitation of Coldest Quarter) (26 %), Bio3 

http://www.gbif.org/
http://inct.splink.org.br/
http://inct.splink.org.br/
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(Isothermality), Bio15 (Precipitation Seasonality) with 25 %, 
and Bio18 (Precipitation of Warmest Quarter) with 8 %. 
These were the most important environmental variables 
determining the distribution of Bauhinia hagenbeckii, 
Muellera nudiflora and Neltuma rubriflora.

The models of B. hagenbeckii (Figs. 1, 2, 3) showed 
the smallest areas of environmental adequacy at present 
compared to the other periods. The present models suggest 
areas of possible environmental suitability with a continuous 
area of occurrence for the species located in the area of 

current occurrence records. The LIG models suggest areas of 
disjointed environmental suitability of Colombia, Venezuela, 
Guiana and Suriname, occupying areas of the Forests and 
regions of Bolivia and Argentina. The models also suggest 
southern occupation of Chile throughout the past. The 
variations of the LIG, LGM and Holocene models suggest 
the favouring of endemism since there was a suggestion of 
a decrease in the areas from the past to the present time.

Muellera nudiflora models with areas of environmental 
suitability were larger for the LIG and Holocene than for 

Figure 2. Models of the distribution of Bauhinia hagenbeckii Harms, Muellera nudiflora (Burkart) M.J. Silva & A.M.G. Azevedo and 
Neltuma rubriflora  (Hassl.) C.E.Hughes & G.P.Lewis in the Chaco and Cerrado, Last Interglacial Maximum (LGM) (green), Late Middle 
Glacial (LGM) (blue), Holocene (yellow), and WorldClim 2.0 (red) at present.
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areas from other periods (Figs. 1, 2, 3). During the LIG, the 
areas of environmental suitability were separated mainly in 
two wide areas in the southern and northern. LGM models 
suggest larger areas than those of other times, suggesting 
areas of environmental suitability in Colombia, Guiana, 
Peru, coastal Chile, the central area of Bolivia and Paraguay, 
in the Northeast, Central-West, Southeast and South regions 
of Brazil, in Uruguay, and in southern Argentina. Models 
for the past three periods suggest discontinuous areas in 
some regions of Peru, Chile and Argentina. Models for the 
present time suggest areas of environmental suitability in 
the Chacoan region of Bolivia, Paraguay and Brazil.

The models of N. rubriflora (Figs. 1, 2, 3) suggested 
similar areas of environmental suitability when compared 
to B. hagenbeckii. LIG’s environmental suitability areas have 
shown possibilities in Colombia, Ecuador, Venezuela, Guiana 
and Suriname, and other disjoint areas in Paraguay, Bolivia, 
Argentina and Brazil. The model suggests larger areas during 
the Holocene period than during the LIG period in central 
Bolivia, southeast Peru and in the Central-West, Southeast 
and South regions of Brazil. For the present time there are 
models indicating a reduction in the areas of environmental 
suitability compared to past times, suggesting this endemic 
situation to the Paraguayan and Brazilian Chaco.

The overlapping of the areas with environmental 
suitability of the four periods, LIG, LGM, HM and present 
(Fig. 3), indicate that there is a small area of overlap, that 
is, refuge areas suggesting that climatic variations can 
cause a total loss of the environments for B. hagenbeckii, 
M nudiflora and N. rubriflora. It is also important to point 
out that the distribution of the species B. hagenbeckii and 
M. nudiflora should be carefully monitored since the refuge 
areas suggest a process of extinction in the near future.

Discussion
Climatic f luctuations of the Quaternary were 

determinant and consistent regarding the distribution of 
the three species, demonstrating cycles of retraction and 
expansion in the scenarios analysed. Climate variability as 
demonstrated by paleoclimatic and paleoenvironmental 
studies (Bissa et al. 2013; Correa-Metrio 2014; Arruda et al. 
2018; Blonder et al. 2018; Vale & Pires 2018) suggests that 
the proposed variations in the HM, LGM and LIG models 
are possible regarding environmental suitability.

Areas with a high probability of occurrence were pointed 
out by the models due to the fact that climatic conditions 
were similar to those of the occurrence records. Thus, 
temperature and humidity were the main climatic factors 
altered during the past periods, as also reported in other 
studies (Urrego et al. 2016; Oliveira-Jr. et al. 2017; Arruda 
et al. 2018). However, some extrapolations of the models 
include potential areas exceeding the known distribution 
of the selected species even at present, without considering 
geographical and pedological barriers (Nascimento et al. 
2013; Arruda et al. 2018).

The largest and fragmented expansion in the Last 
Interglacial (LIG) (Otto-Bliesner et al. 2006) of suitable 
areas of the analysed species coincided with the expansion 
of suitable areas in the north-eastern and southern regions 
of South America and along the coast of Brazil. The 
fragmentation of suitable habitats in the LIG is expected, 
given that a warmer and wetter climate is more suitable for 
forest expansion (Otto-Bliesner et al. 2006). This is due to 
the fact that the species analysed occur in the wet areas of 
the Chaco in Paraguay and Brazil (Wunderlin 1968; Burkart 

Figure 3. The overlapping of the areas of environmental suitability indicating the stable areas of the four periods, Last Interglacial 
Maximum (LGM), Late Middle Glacial (LGM), Holocene, and at present of Bauhinia hagenbeckii, Muellera nudiflora and Neltuma rubriflora.
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& Simpson 1977; Souza-Lima et al. 2017). Consequently, 
Bauhinia hagenbeckii and Prosopsi rubriflora, following this 
expansion, fragmented mainly in the north-western and 
southern regions of South America and along the coast of 
Brazil, considered regions of higher wetness during the LIG 
(Carnaval & Moritz 2008; Carnaval et al. 2009; Cheng et al. 
2013; Carnaval et al. 2014). On the other hand, Muellera 
nudiflora occurred mainly in larger areas of the northwestern 
region of South America, which is considered to have had 
higher humidity and climatic stability over the Quaternary 
(Colinvaux & De Oliveira 2000).

In contrast, in the LGM model, suitable areas retracted 
toward their current areas of occurrence, with a general 
picture of cooler temperatures and greater aridity in almost 
every region of South America (Markgraf 1993; Clapperton 
1993). Rainfall is considered a key ecological factor for 
determining the distribution of taxa in the Chaco (Rezende 
et al. 2020). Thus, it is evident that changes in this variable 
in the past, as the supposed increase in aridity during the 
periods of Pleistocene glaciers (Zanella 2011), must have 
resulted in modifications of its distribution pattern. In 
addition, a dry, sparse tundra was present in the southern 
region of South America and the Andean temperate forest 
was reduced to scattered remnants on the western side of 
the Cordillera (Markgraf 1993). However, some species 
that commonly occur in the Brazilian Pantanal, such as 
Mauritia flexuosa and Tabebuia aurea , were reduced in 
the present environmental suitability areas in relation 
to the LGM (Sciamarelli & Torgeski 2019) possibly due 
to favourable environments for the expanded occurrence 
of the two species throughout the Pantanal and Chaco. 
Also, Monttea aphylla (Plantaginaceae), an endemic plant 
of Argentina, showed variations during the glacial periods 
of the past, and in the present the areas of environmental 
suitability should be larger (Baranzelli et al. 2017), whereas 
in fact, during the LGM there was a drastic retraction in 
the occurrence of tropical forests (Bush & Silman 2004; 
Carnaval et al. 2009; 2014). Genetic analysis of populations 
and distribution modelling of Tabebuia roseoalba, in South 
America, have suggested that their distribution during the 
LGM may have been lower than durig warmer periods and 
during the LIG, HM and present (Melo et al. 2016). These 
variations of the distribution models of the studied species 
over the different periods showed the same behaviour as 
the areas of environmental suitability.

According to Iriondo & Garcia (1993), the climate may 
also have remained in a relatively cold, arid mode compared 
to its later Holocene state, with desert-like conditions in 
the Chaco region. Thus, the general temperatures resembled 
those of the present day, only slightly cooler (global annual 
cooling less than -0.1°C), with more significant changes 
recorded regionally and seasonally (Otto-Bliesner et al. 
2006).

There is evidence of complexity in the evolutionary 
history of South American deserts. A comparative 

phylogeographic analysis was carried out in a plant 
community in the southernmost areas of Diagonal Arid 
South America, providing relevant information for the 
preservation of the Chaco, suggesting which species to study 
that may have been affected by variations in abiotic factors 
and in the intrinsic characteristics of plant populations 
(Baranzelli et al. 2020).

The final climate switch to ‘optimum’ conditions for 
the occurrence of the species analysed (the moistest and 
warmest) may have occurred at around 8,000 BP and may 
have lasted until about 5,000 BP, after which there was a 
return to rather arid conditions. However, according to 
Prieto (1996), the initial switch to moister-than-present 
conditions in the region and elsewhere began considerably 
earlier, at the start of the Holocene. In the extreme south, 
the temperate evergreen forests had returned on the western 
side of the Andes but had not yet spread through the eastern 
side (Markgraf 1993).

Bauhinia hagenbeckii, with current distribution in both 
Chaco and Cerrado, should be related to variations of 
vegetation formations (Zanella 2011; Arruda et al. 2015; 
2018; Bueno et al. 2017). According to Arruda et al. (2018), 
vegetation formations are not altered by climatic variations 
alone, but rather by joint climate and soil actions. The 
occurrence of B. hagenbeckii was always associated with 
the typical Chaco areas (Vaz & Tozzi 2005, Sartori et al. 
2018, Morales et al. 2019). There are gaps in the records of 
B. hagenbeckii occurrence in Paraguay, a fact that requires 
a larger sampling effort in data collection for this species.

The restricted occurrence of N. rubriflora suggests its 
endemism for the Chaco (Fig. 3), an aspect already reported 
by Morales et al. (2019). It is worth mentioning that the 
occurrence of Neltuma rubriflora, like that of Muellera 
nudiflora and Bauhinia hagenbeckii, is restricted to the Chaco 
region. However, it would be interesting if collections were 
planned according to the guidelines suggested by the models 
regarding Neltuma rubriflora. It is worth mentioning that 
there are no records of this species for Bolivia in some 
herbaria and in others the collections have not yet been 
digitized.

Recent studies have revealed the impact of climatic 
oscillations (e.g. glacial/interglacial cycles, sea level changes) 
as a driver of speciation and distribution in Solanaceae and 
Passifloraceae grassland species of the Pampa and Chaco 
domains (Moreno et al. 2018; Köhler et al. 2020). Other 
species that occur in the Pampas and Chaco region such 
as Petunia, showed similar results mainly in the LGM and 
HM, highlighting areas of environmental suitability larger 
than at present in a study of phylogeography and modeling 
(Giudicelli et al. 2019).

Temperature and precipitation may be the determining 
factors for the distribution patterns of Chaco species 
(Rezende et al. 2017; 2018). Thus, it was possible to delimit 
refuge areas according to the patterns of suitability areas 
for the species. Since there is a lack of priority preservation 
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in the whole Chaco, the overlapping of models during the 
different periods studied suggests that species may totally 
lose the environments favourable to their existence by losing 
areas that they could explore, also because these areas have 
been explored in agro-pastoral activities over recent decades.

The present distribution of the Leguminosae species of 
this study is related to the climatic events of the Quaternary, 
based on retraction and expansion. All the models of 
the scenarios (Last Interglacial, Last Glacial Maximum, 
Medium Holocene and the current scenarios) highlighted 
the potential distribution of these species concomitant with 
the events of glacier regression and were consistent with the 
history of the formation of the dry areas of South America. 
The present potential distribution of the legumes of this 
study is consistent with the history of the Dry Diagonal 
formation (Werneck et al. 2011).

A phylogenetic study highlighted that Leguminosae 
species tolerate drier regions, explaining their dominance. 
For this reason, the group may be increasingly important 
in the restoration of the Chaco vegetation (Maza-Villalobos 
et al. 2020). The present study and others suggest that 
environmental conditions during past periods may justify 
certain current distributions of plant species in South 
America.
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