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these individuals (lower water content and high C:N ratio) 
and high protection by phenols, tannins and alkaloids. The 
presence of phenolic compounds in plants of the restinga was 
found to be negatively related to herbivory (Silva & Medeiros 
2005) and tannins have high anti-nutritional potential and 
reduce palatability after binding to salivary and mucous 
proteins (Salminen & Karonen 2011).

Phenols presence in various tissues of mesophyll in all 
S. casarettoi populations occurs due to low resources in the 
restinga that results in the production of carbon metabolites 
(Bryant et al. 1983). On the other hand, the populations 
of Raa and Ft presented greater investment in alkaloids 
(nitrogen compounds) as expected by HBCN.

Symphyopappus casarettoi had the highest rates of 
herbivory at the two extremes of the edaphic gradient of 
the restinga. Such a pattern of herbivory may be related to 
the high population density of this species in Rh, which 

facilitates herbivore access to plants (Feeny 1976), while in 
the forest the high rate of herbivory may be related to the 
greater abundance of herbivores due to the environment 
being more favorable for the occurrence of insects (Basset 
et al. 2003), beyond of absence of tannins in Rh and Ft, 
associated to high water content of this species.  

The gradual change in the rate of herbivory on V. 
curassavica among the restinga communities seems to result 
from lower values of SLA associated with a high density 
of glandular trichomes, as evidenced by the lower rate of 
herbivory in Rh, despite having high nitrogen and water 
content in the leaves of this population. The importance of 
trichomes in antiherbivory defense was demonstrated in 
experiments with Aristolochia californica (Aristolochiaceae) 
and Liabum mandonii (Asteraceae), in which predation and 
oviposition were negatively correlated with trichome density 
(Fordyce & Agrawal 2001; Molina-Montenegro et al.  2006). 

Figure 3. Coverage of glandular trichomes (black arrow) and non-glandular trichomes (white arrow) of the abaxial surface of leaf 
blades of the study species from four restinga formations in Parque Estadual Acaraí, São Francisco do Sul, SC. Scale bar = 200 µm.  
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Other studies have shown that herbivory is an inducing 
agent, causing an increase in the density of trichomes after 
defoliation (Traw & Dawson 2002; Abdala-Roberts & Parra-
Tabla 2005).

In Ra, V. curassavica is an abundant species, which means 
a lower cost for locomotion to herbivores (Schuldt et al.  
2010). A lower level of nitrogen may have also contributed 
to the high rate of herbivory in this population, because 
herbivores consume the amount of leaves necessary to 
acquire sufficient nitrogen for their development (Lavoie 
& Oberhauser 2004; Gonçalves-Alvim et al.  2011). On the 
other hand, in Raa and Ft, the high level of nitrogen, lower 
C:N ratio and low density of trichomes favor the action of 
herbivores (Silva & Batalha 2011). 

The lower SLA did not prevent the herbivory in Raa and 
Ft, due the higher nutritional quality of these populations. 
These results corroborate the study of fifteen tropical species 
that showed that individuals with greater water content 
experienced higher rates of herbivory, even with low SLA, 
indicating that the nutritional quality of plant tissue can 
be more important than leaf toughness to certain species 
of herbivores (Poorter et al.  2004).

In V. curassavica, the uniform distribution of secondary 
metabolites showed that secondary metabolites are defenses 
less important than the high density of trichomes. Moreover, 
it is possible to conclude that the insects that prey on this 
species have high resistances to secondary metabolites 
(Cornell & Hawkins 2003). Although little variation, phenols 
and tannins present differences in distribution among 

populations, being present in more mesophyll tissues in 
Rh individuals corroborating HBCB (Bryant et al. 1983).

Observing the anatomical characteristics of V. curassavica, 
it is important to note that the lower rates of herbivory 
occurred in populations with thicker palisade parenchyma. 
Due to compaction of this tissue, leaves becomes more 
resistant to breakage as compared to leaves with more 
developed spongy parenchyma, which has more intercellular 
spaces that facilitate the breakage of the leaf blade by 
herbivores (Silva et al.  2005). Therefore, the isobilateral 
organization of the mesophyll in S. casarettoi may explain 
the lower rates of herbivory in this specie.

In general, the high leaf nitrogen concentrations, in 
this species, may occur as a result of the stressful abiotic 
conditions of the restinga, corroborating the Plant Stress 
Hypothesis (PSH, White 1984) (Oliveira & Cortez 2015). 
However, the nutritional quality is balanced by the amount 
of carbon and the presence of secondary metabolites in 
the mesophyll. For this reason S. casarettoi presents lower 
nutritional quality.

 The rates of herbivory observed among the tree 
species of the restinga of PEA - Parque Estadual Acaraí 
are, in general, low in comparison to 20.86 % and 18.23 % 
for Myrcia bergiana (Myrtaceae) and Tetracera breyniana 
(Dilleniaceae), respectively in Ipojuca, Pernambuco (Corrêa 
2007), which are two to three times the rates found in the 
present study (Tab. 4). The low rates of herbivory may be 
a result of the higher plant diversity at PEA (Melo Jr. & 
Boeger 2015), because greater diversity reflects a greater 
availability of food resources for leaf herbivores (Unsicker 
et al.  2006). Another factor to consider is the low density 
of the species studied along the environmental gradient at 
the PEA - Parque Estadual Acaraí (except V. curassavica in 
shrub restinga and S. casarettoi in herbaceous restinga) (Melo 
Jr. & Boeger 2015), which, according to the appearance 
hypothesis, decreases the possibility of a species being 
encountered by herbivores (Feeny 1976). 

Conclusions

Together, the results obtained in this study suggest that 
S. casarettoi shows characteristic of the Low Nutritional 
Quality Syndrome, which is characterized by low nutritional 
value and harder leaves (reduced SLA). On the other hand, 
D. viscosa and V. curassavica have the characteristics of the 
Nutrition and Protection Syndrome, which is characterized 
by higher nutritional quality (water and nitrogen) with 
investment in defenses (thick leaves and high density of 
trichomes, respectively).

The broad standard deviations for the mean consumed 
areas of the three studied species suggests that insect 
herbivores have generalist feeding habits, and resist the 
different defense strategies presented by each plant species. 
The absence of a pattern in the production of antiherbivory 
defenses among the studied species may indicate that these 

Figure 4. Principal components analysis (PCA) showing the 
difference between the three species of study in the restinga 
formations of the Parque Estadual Acaraí, São Francisco do Sul, SC, 
Brazil, in relation to the foliar attributes of defense and nutrition. 
The explanation and eigenvalues of the first two main components 
are shown in the figure.
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defense mechanisms are associated with attributes that 
are related to conserving resources.  
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