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ABSTRACT
The use of native trees is necessary for land restoration and the sequestration of carbon that is stored in forest 
biomass production in Indonesia. Meanwhile, the biomass prediction model used for native tropical lowland trees of 
Indonesia is limited to only specific locations and focuses on aboveground biomass (AGB). This study aimed to select 
and evaluate potential native tree species for high biomass and to develop the best allometric model for estimating 
tree biomass production (AGB, belowground/BGB, and total/TB) in lowland ecosystems in Indonesia. Trees were 
selected using the following five criteria: nativeness, ecosystem type, morphological appearance, multipropagation 
ability, and economic value. Biomass content was quantified for 102 sample trees (56 trees aged 4 years and 46 trees 
aged 8 years), using the destructive method. Effective growth biomass and species ecological data indicated five 
species as potential trees for land restoration in tropical lowlands of Indonesia: Litsea garciae, Terminalia bellirica, 
Pterospermum javanicum, Anisoptera marginata, and Cananga odorata. The best allometric model of this study is 
highly recommended for implementation with native trees of tropical lowlands in Indonesia, especially those in 
early stages (less than 8 years). 
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Introduction
Indonesia was the world’s largest emitter of greenhouse 

gases in 2019, contributing 54% of world carbon dioxide 
(CO2) emissions, mainly due to the conversion of lands and 
forests (Land-Use Change and Forestry/LUCF) (Climate 
Watch 2022). CO2 emissions due to LUCF accounted for 
about 58% of the annual total in Indonesia, followed by 
the energy sector through the use of fossil fuels at about 
40%, and the industrial sector at 2.2%. From 2010 to 2020, 
Indonesia had the world’s third highest average annual 
forest loss at about 0.75 million hectares (ha), after Brazil 
with 1.5 million ha and the Democratic Republic of the 
Congo with 1.1 million ha (FAO 2020). This problem has 
persisted because recovery capability through forest and 
land rehabilitation was only 32% of annual forest loss 
(MoEF 2020).

Since the ‘One Man One Tree’ campaign initiated in 
2008 (Peraturan Presiden 2008), the Indonesia Government 
has integrated the forest and land rehabilitation program 
with national action to reduce greenhouse gas emissions. 
The government provided one million seedlings of Samanea 
saman (Jacq.) Merr. to each province following Forestry 
Minister regulation (letter number S.86/Menhut-V/2009). 
In addition, a number of tree species were recommended 
for growing, including Falcataria falcata (L.) Greuter & 
R.Rankin, Tectona grandis L.f., Swietenia mahagoni (L.) Jacq., 
Gmelina arborea Roxb. ex Sm., Neolamarckia cadamba (Roxb.) 
Bosser, Santalum album L., Melaleuca arcana S.T.Blake, 
Aleurites moluccanus (L.) Willd., Magnolia champaca (L.) 
Baill. ex Pierre, Pinus merkusii Jungh. & de Vriese, and 
Aquilaria malaccensis Lam. (Peraturan Menteri Lingkungan 
Hidup dan Kehutanan 2018).

Restoration could be one of the most important ways 
of improving ecosystem quality and enhancing carbon 
sequestration capacity (Locatelli et al. 2015; Vásquez-
Grandón et al. 2018; Indrajaya et al. 2022). Previous studies 
in tropical regions found the use of native trees to have 
slightly higher productivity compared to exotic species 
(Davis et al. 2012; Lu et al. 2017). One prerequisite of 
restoration on a large scale is the use of native trees (Tang 
et al. 2007; Ong 2012). In fact, Indonesia has a high level 
of plant biodiversity with about 30,000–40,000 species, 
representing 15.5% of all plant species worldwide, including 
ferns and Gymnospermae, which makes choosing trees for 
restoration easier (Widjaja et al. 2014; Britannica 2022). 

Analysis and planning for land restoration and carbon 
sequestration in the tropics, and especially in Indonesia, 
involves many uncertainties. Some researchers have 
recommended native trees for land rehabilitation based 
on species abundance at a certain location, such as in 
degraded secondary forests (Kartawinata 1994), lowland 
dry forests (Rochmayanto et al. 2021), riparian forests and 

peatlands (Partomihardjo 2020). Meanwhile, biomass and 
carbon estimates in Indonesia have been highly variable, 
with only a few studies controlling for age (even-aged 
plantation) and growth characters of native trees. Biomass 
allometric models have been available for almost every 
forest ecosystem in Indonesia, but not for all locations, 
and most only focused on aboveground biomass (AGB) 
(Krisnawati et al. 2012). Some AGB allometric models 
for mixed forests have become references, such as for 
secondary forests (Ketterings et al. 2001), dipterocarp 
forests (Basuki et al. 2009), and pioneer trees of secondary 
forests (Hashimoto et al. 2004).  

To simultaneously halt forest degradation and enhance 
carbon sequestration capacity, restoration with native 
trees of each ecosystem is required. In addition, more 
comprehensive studies are needed to address the lack 
of AGB, belowground biomass (BGB) and total biomass 
(TB) estimation models for native trees of lowland forest 
ecosystems in Indonesia. Therefore, this study aimed 
to select and evaluate potential native tree species for 
high biomass and to select the best allometric model for 
estimating biomass production in these ecosystems. The 
selected tree species serve as a basis for selecting native 
trees for land restoration and carbon sequestration in the 
region. Furthermore, the selected allometric models and 
detailed information about biomass proportion (AGB, BGB 
and TB) will be useful for scientific purposes (such as carbon 
sequestration studies) in Indonesia.

Materials and methods
Study sites

The study was conducted at the Bogor Botanic Gardens 
(BBG) and the Cibinong Botanic Gardens (CBG) (Fig. 1). 
Seedlings were produced in the BBG nursery, and after one 
year they were planted in demonstration plots (demplots) 
of CBG. 

The climate type of the two study locations is very wet 
(Type A according to Schmidt-Ferguson). During 2015–
2019, the average annual rainfall was 3606.74 mm, the 
average temperature was 26.04 °C, the average humidity was 
81.28%, and the average irradiation time was 57.2% (BMKG 
2022). The soils of BBG and CBG have relatively similar 
chemical and physical properties (Purnomo et al. 2023). 
BBG soil had a pH of 5.27, C-organic content of 1.59%, 
P-available of 4.15 ppm, cation exchange capacity (CEC) of 
19.83 cmol/kg, base saturation of 65%, and sand, dust and 
clay fractions of 12.25%, 38% and 49.75%, respectively. CBG 
soil had a pH of 5.10, C-organic content of 1.89%, P-available 
of 5.05 ppm, CEC of 16.44 cmol/kg, base saturation of 
61.25%, sand, dust and clay fractions of 12.5 %, 39.75% 
and 47.75%, respectively (Available at Table S1).
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Data collection
This research uses the living plant collection of BBG, 

which is a rigorously documented and reliable source of 
research material (Jackson & Sutherland 2017). The reliable 
plant collection data of BBG facilitates the selection of 
potential high biomass native tree species. Tree species of 
the BBG living collection were filtered by five criteria: 1. 
nativeness (distribution range in Malesia region); 2. wet 
lowland habitat with an altitude of 0 – 1000 m above sea 
level (m asl); 3. large size (adult stage capable of reaching 
diameter at breast height (dbh) >20 cm, height >20 m, and 
age >20 years); 4. seed availability (annual seed production); 
and 5. supporting factors to attract public interest (such 
as wood, medicine, food, and ornamental potential) 
(Purnomo et al. 2023). Large trees with greater longevity 
store more biomass and play an important role in forest 
ecosystems (Slik et al. 2013; Mildrexler et al. 2020). Seed 
availability, i.e., abundantly available throughout the year, 
is a prerequisite for restoration programs (McCormick 
et al. 2021). Supporting factors that attract public interest 
are needed for wide planting of the selected tree species 
involving the community and not only the government 
(Meli et al. 2014).

Thus, 16 native tree species and three exotic species 
(reported as invasive in some countries) were selected for 
multi-propagation and growing treatment (App. 1). All seeds 
(a total of 1900 seeds comprising 19 species i.e., 100 seeds 

for each species) were germinated under the same treatment 
until they reached the height of 1 – 1.5 m (age ± one year) 
and were ready to be planted in demplots. Seedlings were 
planted (10 seedlings for each species) with respect to the 
amount of light. During the first two years, surrounding 
trees were pruned and weeds removed. The seedlings were 
subsequently allowed to grow until they were ready to be 
harvested for biomass measurements (destructive method) 
at ages of 4 and 8 years.

Three individuals, between 4 and 8 years of age, per 
species were randomly selected for harvest. Biomass was 
divided into four components: stem (including bark), branch 
(secondary stem that grows from a primary stem, including 
twig), leaf (leaflet and petiole) and root (stumps and coarse 
root diameter > 2 mm). Dry weight was measured using 
three samples of each biomass component, which were 
placed in an oven at a temperature of 105 °C (for stem, 
branch and root samples) or 70 °C (for twig and leaf samples) 
until they reached an equilibrium dry mass. Biomass was 
calculated as: BM = (DWs x FW)/FWs. Where BM=biomass 
(kg), DWs= sample dry weight (gr), FW= total component 
fresh weight (kg), and FWs= sample fresh weight (gr). 

Wood density (wood density/ρ=gr/cm3) is another 
important factor that affects biomass and was measured 
by taking three samples of wet wood for each species. 
Furthermore, wet sample volume was measured using 
the water-displacement method (Pérez-Harguindeguy 
et al. 2013).

Figure 1. Study sites
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Data analysis
Biomass among species and components

The Duncan test was used to compare the means of 
various variables, including those related to tree growth 
(height, diameter and biomass), between species and 
biomass proportion between diameter classes. The means 
of goodness of fit criteria (Adj.R2, RMSE, MAE, AIC and 
BIC) between models in a 10-fold cross validation were 
also compared by the Duncan test. The proportion of each 
biomass component was calculated after mixing all samples 
(regardless of species) grouped by diameter class. 

Model development

Correlations between biomass variables (AGB, BGB, and 
TB) and measured variables (diameter, height, and wood 
density) were analyzed. All variables were log transformed 
to normalize residuals and heteroscedasticity of variances 
(Chave et al. 2014; Djomo & Chimi 2017; Nath et al. 2019). 
The following four allometric models were chosen according 
to the type of tropical lowland forest and because they have 
often been used to generate correlations between biomass 
and predictors: 

Model 1: Ln(BM)= Ln(a)+bLn(D) (Brown 1997)
Model 2: Ln(BM)= Ln(a)+bLn(D2H) (Brown et al. 1989)
Model 3: Ln(BM)= Ln(a)+bLn(ρD2H) (Chave et al. 2014)
Model 4: Ln(BM)= Ln(a)+bLn(D)+cLn(H)+dLn(ρ) (Nath et al. 2019)

where BM = biomass (kg), D = dbh (cm), H = tree height 
(m), ρ = wood density (gr/cm3), a = intercept, and b, c and 
d are coefficients.

There were 102 samples in total, consisting of 90 from 
native tree species and 12 from exotic tree species. All 90 
native samples were used for model training and validation. 
An allometric model was developed for three categories: 
aboveground biomass (ABG), belowground biomass (BGB), 
and total biomass (TB). Log-linear regression analysis was 
used to show the relationship between total biomass and 
the three categories (formulated into four models), using 
PAST 4.03 software (Hammer et al. 2001). 

Model validation

Cross validation is a highly recommended method for 
estimating the accuracy of model performance (Yuen et al. 
2016; Nath et al. 2019; Annighöfer et al. 2022). Five-fold or 
10-fold validations are commonly used to obtain a balance 
between bias and variance (Nath et al. 2019). A 10-fold 
cross validation was implemented here for the 90 samples 
of tropical lowland native trees. The goodness of fit criteria 
calculated in the training model and the 10-fold cross 
validation consisted of five units: 1) Adjusted Coefficient 
of Determination (Adj.R2), an adjustment of the Coefficient 
of Determination that takes into account the number 

of variables in the data set; 2) Root Mean Square Error 
(RMSE), the standard deviation of the residuals (prediction 
errors); 3) Mean Absolute Error (MAE), measure of the 
average magnitude of errors in a set of predictions, without 
considering their direction; 4) Akike Information Criterion 
(AIC), a mathematical method for evaluating how well a 
model fits the data and model parsimony, and 5) Bayesian 
Information Criterion (BIC), a criterion for model selection 
among a finite set of models (Chave et al. 2005; Nath et al. 
2019). Adj.R2, AIC and BIC were calculated using IBM SPSS 
Statistics 25, while RMSE and MAE were calculated using 
the following mathematical formulas, respectively: 

where Mo = observed biomass from sampled trees, Mp = 
predicted biomass from model, and n = number of trees. 
The best model was determined from the average of the 
goodness of fit values for the 10-fold cross validation. The 
Duncan test was implemented to ensure average value 
discrimination.  

Best model vs. generic model 

To understand model performance, the best model 
resulting from this study was compared to a selected generic 
allometric model. The selected generic model was chosen 
based on habitat type suitability and biomass component 
classification (AGB, BGB, and TB) (App. 2). 

The best R2, RMSE, MAE, AIC, and BIC values of the 
resulting model were compared to those of a generic 
model. Model performance was evaluated by comparing 
model predictions for the 102 samples, visualized on a 
quadratic function graph consisting of the relationship 
among diameter, observed biomass, and predicted biomass 
for each model. 

Results
Growth and biomass for each tree species

Pterospermum javanicum (6.19 kg), Terminalia bellirica 
(5.59 kg), and Litsea garciae (4.84 kg) were the top three 
species in biomass at the 4th year (Fig. 2, App. 3), while L. 
garciae (123.89 kg) T. bellirica (117.38 kg), and Anisoptera 
marginata (73.60 kg) were the top three after the 8th year 
(Fig. 2, App. 4). Terminalia bellirica and L. garciae exhibited 
consistent growth with the highest biomass gain, far 
exceeding that of Castilla elastica (an exotic species). 
However, C. elastica had the greatest diameter growth at 4 
years (6.70 cm), but its vertical growth (5.63 m) was not 
the highest. Cananga odorata and A. marginata had greater 
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biomass growth at 8 years than did C. elastica. All individuals 
of Bombax anceps, Cassia grandis, and Samanea saman died 
after the 8th year of growth (no individuals remaining), 
due to their inability to compete with other trees. Like C. 
elastica, C. grandis and S. saman are introduced species that 
were used as exotic tree species in this study.

Diameter and height growth commonly affected the 
biomass of each tree species. In addition, wood density at 8 
years was relatively greater than at 4 years (App. 3, App. 4). 
In some cases, such as for A. marginata, wood density had 
a strong influence on increasing biomass. Height and stem 
diameter growth of A. marginata were lower than those 
for C. odorata and C. elastica, but A. marginata had high 
wood density so its biomass was relatively higher. Wood 
density did not differ significantly between 4 and 8 years 
for Pongamia pinnata (0.89 vs. 0.89, respectively), Canarium 
vulgare (0.75 vs. 0.76), and Litsea garciae (0.71 vs. 0.72).

Proportion of biomass allocation per diameter class 

The proportion of BGB across all diameter classes was 
14.48% (3.33±6.67 kg) of total individual tree biomass 
(22.9±44.01 kg). The largest AGB allocation was for stems 
(57.46%), followed by branches (19.92%) and leaves 
(8.18%) (Fig. 3). Changes in biomass proportions among 
components occurred after 8 years of growth, with stems 
and branches increasing and leaves and roots decreasing. 
Biomass of the >15 cm diameter class was significantly 
higher (P<0.05) than that of the other diameter classes 

(Table S2). Increasing stem diameter consistently affected 
the proportion of leaf biomass, but not the proportions 
of the other components.

Allometric model development

All allometric models were considered good models due 
to having adjusted R2 (Adj.R2) values ranging 0.815 – 0.906 
in model training (Table 1). Model 4 had the highest Adj.R2 
value for all biomass components and the lowest values for 
RMSE, MAE, AIC and BIC. However, this did not correctly 
predict biomass because the wood density variable (ρ) was 
not significant at P<0.05.

There was a log-linear relationship between total biomass 
(TB) and four predictor variables, namely: diameter (D), 
diameter-height (D2H), wood density-diameter-height 
(ρD2H) (Fig. 4) and an unstandardized predicted value 
from a triple variable (D+H+ρ). All variables in this study 
met the assumption of linearity (e.g., scatter plot of TB 
model prediction, Fig. 4), with the value of each predicted 
variable not deviating far from the principal axis. On the 
other hand, the scatter plot of residuals showed a randomly 
dispersed pattern, indicating no heteroscedasticity for 
the TB model prediction. Similar results were also found 
for AGB and BGB, with the predictor variable meeting the 
assumption of linearity. The Adj.R2 value reached 0.882 
when the correlation of biomass with diameter and height, 
formulated by (D2H), was included, which was higher than 
the Adj.R2 of 0.844 when only diameter was used.

Figure 2. Trends for: a. biomass, b. diameter, and c. height. Species are listed from highest biomass above to lowest biomass below.
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Figure 2. Cont.
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Model validation

Cross validation showed that training and testing had 
slightly different RMSE and MAE values, indicating adequate 
model biomass prediction (Table 2). In general, Model 4 
had the highest Adj.R2 value and the lowest error value. 
However, Model 2 was preferable for selection because it 
had a high Adj.R2 value and a significant variable affecting 
biomass. Model 3 had slightly lower MAE error values for 
AGB and TB than did Model 2, but means did not differ 
significantly at P<0.05.  

Best model vs. generic model 

AGB predictions by the models of Chave et al. (2014) and 
Nath et al. (2019) have better trustworthiness compared 
to the models of the present study (Table 3).  The present 
study tended to have small error considering RMSE and 
MAE. Even though they overestimate biomass prediction at 
small diameters (D<10cm), the AGB models of Chave et al. 
(2014) and Nath et al. (2019) consistently approached the 
observed value at larger diameters (D>10cm) (Fig. 5). The 
model prediction of BGB in the present study seemed to 

Figure 3. Proportion of biomass per component of native tropical lowland tree species in Indonesia 

Table 1. Allometric model of aboveground biomass, belowground biomass, and total biomass 

Model a b c d Adj.R2 RMSE MAE AIC BIC
Aboveground Biomass (ABG)

1 -1.3799 1.8205 0.845 0.690 0.536 194.675 202.174

2 -2.0695 0.7198 0.881 0.604 0.477 170.573 178.073

3 -1.7133 0.7320 0.878 0.612 0.454 173.085 180.584

4 -2.926 0.7467 1.9294 0.3811* 0.906 0.531 0.412 147.633 155.132

Belowground Biomass (BGB)

1 -2.5936 1.5952 0.798 0.710 0.538 201.458 208.991

2 -3.1991 0.6310 0.833 0.645 0.503 184.291 191.824

3 -2.8615 0.6360 0.815 0.679 0.530 193.108 193.384

4 -4.0788 0.6459 1.6671 0.0069* 0.852 0.600 0.474 171.317 171.593

Total Biomass (TB)

1 -1.1117 1.7798 0.844 0.676 0.520 192.567 200.100

2 -1.7857 0.7037 0.881 0.591 0.467 168.662 176.194

3 -1.4326 0.7145 0.875 0.606 0.449 172.548 180.080

4 -2.6423 0.7324 1.8744 0.3084* 0.904 0.525 0.409 147.286 154.818

Note: Model 1: Ln(TB) = Ln(a)+bLn(D); Model 2: Ln(TB) = Ln(a)+bLn(D2H); Model 3: Ln(TB) = Ln(a)+bLn(ρD2H); and Model 4: Ln(TB) 
= Ln(a)+bLn(D)+cLn(H)+dLn(ρ). D: dbh (cm), H: height (m), ρ: wood density (gr/cm3), a: intercepts, b, c, d: coefficients. All models 
were significant (P<0.001). *not significant at P<0.05. Adj.R2 = Adjusted Coefficient of Determination; RMSE = Root Mean Square 
Error; MAE = Mean Absolute Error; AIC = Akike Information Criterion; BIC = Bayesian Information Criterion.
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Figure 4. Relationship between total biomass (Ln(TB)) and variables a. Ln(D) (Adj.R2 = 0.844); b. Ln(D2H) (0.881); c. Ln(ρD2H) 
(0.875); d. Ln(D)+Ln(H)+Ln(ρ) (0.904). D: dbh (cm), H: height (m), ρ: wood density (gr/cm3), TB: total biomass (kg), Adj.R2: Adjusted 
Coefficient of Determination
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be superior to another generic model, especially regarding 
error value (RMSE and MAE) and compliance level of AIC 
and BIC. The BGB model of Djomo and Chimi (2017), using 
only diameter (D), was actually better than the addition of 
wood density (ρ). The predictive value of the BGB model 
of Kenzo et al. (2009) was closer to that of the BGB model 
of the present study than to the two models (1 and 2) of 

Djomo and Chimi (2017). The model of the present study 
and model 2 of (Djomo & Chimi (2017) revealed similar 
goodness of fit values for TB, which were also better than 
those of other generic models. These models have the highest 
R2 values and the lowest AIC and BIC values. In addition, 
the model of the present study had the lowest RMSE and 
MAE values. 

Table 2. The result of 10-fold cross validation of four models of aboveground biomass, belowground biomass, and total biomass

Model Adj.R2 RMSE MAE AIC BIC
Aboveground Biomass (AGB)

1 0.845 ± 0.008c 0.711 ± 0.064a 0.553 ± 0.080a 21.400 ± 3.796a 21.991 ± 3.796a

2 0.881 ± 0.007b 0.622 ± 0.064a 0.490 ± 0.065ab 19.172 ± 3.049ab 19.764 ± 3.049ab

3 0.878 ± 0.008b 0.622 ± 0.092a 0.464 ± 0.080b 19.537 ± 4.086ab 20.128 ± 4.086ab

4 0.906 ± 0.006a 0.568 ± 0.100b 0.443 ± 0.095b 16.454 ± 4.113ab 17.046 ± 4.113b

Belowground Biomass (BGB)

1 0.798 ± 0.013d 0.724 ± 0.137a 0.555 ± 0.103a 21.763 ± 3.934a 21.354 ± 4.617a

2 0.833 ± 0.011b 0.660 ± 0.116a 0.519 ± 0.094a 20.104 ± 4.196a 20.695 ± 4.196a

3 0.815 ± 0.012c 0.664 ± 0.100a 0.528 ± 0.078a 21.666 ± 3.821a 22.258 ± 3.821a

4 0.852 ± 0.010a 0.723 ± 0.220a 0.599 ± 0.219a 18.821 ± 4.624a 19.413 ± 4.624a

Total Biomass (TB)

1 0.844 ± 0.009c 0.696 ± 0.076a 0.537 ± 0.086a 20.892 ± 3.771a 20.484 ± 3.763a

2 0.881 ± 0.007b 0.610 ± 0.069b 0.482 ± 0.063ab 18.684 ± 3.011ab 19.276 ± 3.011ab

3 0.875 ± 0.008b 0.616 ± 0.099b 0.463 ± 0.079b 19.394 ± 3.920ab 19.966 ± 3.917ab

4 0.904 ± 0.006a 0.545 ± 0.072b 0.424 ± 0.066b 16.081 ± 4.274b 16.673 ± 4.274b

Note: Model 1: Ln(TB) = Ln(a)+bLn(D); Model 2: Ln(TB) = Ln(a)+bLn(D2H); Model 3: Ln(TB) =  Ln(a)+bLn(ρD2H); and Model 4: 
Ln(TB) = Ln(a)+bLn(D)+cLn(H)+dLn(ρ). D: dbh (cm), H: height (m), ρ: wood density (gr/cm3). Adj.R2 = Adjusted Coefficient of 
Determination; RMSE = Root Mean Square Error; MAE = Mean Absolute Error; AIC = Akike Information Criterion; BIC = Bayesian 
Information Criterion. Values are means and standard deviation (mean ± sd). Values in the same column followed by different 
superscript letters differ significantly at P<0.05.

Table 3. Comparisons between the best model of the present study and other generic models

Model Forest Type Range of D Observed (kg) Predicted (kg) R2 RMSE MAE AIC
Aboveground Biomass (AGB)

Present study moist 0.9–17.7 1947.77 1396.96 0.897 0.613 0.494 193.72

Hashimoto et al. (2004) moist 3.2–20.3 1947.77 2156.71 0.867 0.870 0.627 220.13

Chave et al. (2014) pan tropical 10–158 1947.77 2846.71 0.899 0.803 0.593 191.94

Nath et al. (2019) pan tropical 10–90 1947.77 2730.24 0.899 0.922 0.786 191.94

Belowground Biomass (BGB)

Present study moist 0.9–17.7 321.81 231.94 0.857 0.643 0.504 204.15

Kenzo et al 2014 moist 0.1–20.4 321.81 423.62 0.831 0.943 0.727 221.29

Djomo & Chimi 1 (2017) moist 4–121 321.81 514.64 0.831 0.913 0.736 221.29

Djomo & Chimi 2 (2017) moist 4–121 321.81 550.99 0.810 0.993 0.761 233.51

Total Biomass (TB)

Present study moist 0.9–17.7 2269.57 1642.28 0.897 0.600 0.483 189.41

Brown (1997) moist 5–148 2269.57 3999.27 0.867 0.956 0.706 215.20

Djomo & Chimi 1 (2017) moist 4–121 2269.57 2835.04 0.867 0.788 0.592 215.20

Djomo & Chimi 2 (2017) moist 4–121 2269.57 2290.49 0.897 0.642 0.512 189.41

Note: Fit of models for 102 samples, according to the relationship between observed and predicted biomass: D: dbh (cm); R2 = Coef-
ficient of Determination; RMSE = Root Mean Square Error; MAE = Mean Absolute Error; AIC = Akike Information Criterion.
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Figure 5. Comparison of the best biomass prediction model of the present study with a generic model based on diameter: a. Aboveground 
biomass (AGB) model, b. Belowground biomass (BGB) model, and c. Total biomass (TB) model
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Discussion
Native trees with high biomass accumulation

Overall, of the selected and sampled tree species, 
Litsea garciae, Terminalia bellirica, Pterospermum javanicum, 
Anisoptera marginata, and Cananga odorata produced high 
biomass accumulation. Both L. garciae and T. bellirica are able 
to adapt to various type of habitats, which allowed these 
species to have superior growth (Lim 2011; Kumari et al. 
2017). These two species achieved greater biomass than 
Castilla elastica because they had proportionately greater 
diameter and height growth. Litsea garciae is commonly 
found in sandy soil of disturbed mixed dipterocarp forest 
along river margins to sloping hills of 200 m asl (Lim 2011). 

Terminalia bellirica is another potential biomass 
producing tree that consistently grows higher than C. 
elastica. It is able to adapt to a wide variety of habitat 
types, such as seasonal forest, deciduous-mixed forest 
and deciduous dried-leaf dipterocarp forest at 2000 m asl 
(Kumari et al. 2017). Terminalia bellirica has been reported 
to have high carbon sequestration in India (Aggarwal & 
Chauhan 2014; Dhyani et al. 2021). It also has above-
average carbon sequestration capacities among naturally 
growth vegetation in a mining recovery project in Indonesia 
(Purnomo et al. 2022).

Cananga odorata was able to reach a height of 40 m in its 
natural habitat (App. 1). This tropical tree species possesses 
several characteristics, such as the following: moderate to 
high growth, occurrence as a pioneer, ability to grow in 
various soil textures and types, and ability to compete when 
growing in densely mixed forest (Parrotta 2009). Cananga 
odorata is the dominant tree species in the Tangkoko Natural 
Reserve, Indonesia, where it responsible for a high biomass 
contribution (Langi 2023). The species has the highest carbon 
sequestration capacity among naturally growing vegetation 
in a mining recovery project in Indonesia (Purnomo et al. 
2022). Surprisingly, A. marginata has better growth than 
C. elastica, even though its diameter and height are less. 
Belonging to the family Dipterocarpaceae, A. marginata is 
tolerant of various environmental conditions, yet it grows 
better under sufficient shade and is adapted to savanna 
ecosystems (Otsamo 1998).  

The biomass potential of P. javanicum is only slightly 
below that of C. elastica and Canarium vrieseanum. However, 
based on secondary data records and the stature of the 
sample of the BBG collection (App. 1), the species is highly 
recommended as a potential high biomass tree. It is recorded 
as having the highest carbon storage in agroforestry 
(Ariyanti et al. 2018). Even though in the case of the tropical 
abandoned land, the species exhibits instability in biomass 
growth (Karyati et al. 2019). 

All ten individuals of Bombax anceps, Cassia grandis, 
and Samanea saman in the present study died after 8 years 
of growth. Further study is needed into why these young 

individual trees died when competing with other individual 
trees. Specific studies on the growth of B. anceps, either in 
plantations or in natural conditions (forest), are very limited. 
It has been reported that seedlings of C. grandis require 
regular pruning for optimal growth during the early stage 
(Orwa et al. 2009). Although S. saman is very dominant in 
the adult phase, it requires more sunlight (light demanding) 
in the juvenile phase (Staples & Elevitch 2006). 

Based on the results of the present study, five tree 
species are recommended for potential use in restoration 
in tropical lowlands of Indonesia: Litsea garciae, Terminalia 
bellirica, Pterospermum javanicum, Anisoptera marginata, and 
Cananga odorata. Better biomass growth, and the availability 
of information about their ecology, make these species 
reasonable selections. There are five criteria that species 
need to meet to be considered for restoration purposes: 
dominance, natural regeneration ability, habitat area, social 
value and simple cultivation (Meli et al. 2014). These criteria 
are in accordance with Indonesian Government policy about 
how to rehabilitate forests and lands (Peraturan Menteri 
Lingkungan Hidup dan Kehutanan 2020). Thus, the plant 
species used for intensive reforestation of conservation and 
protected forests should be long-lived local species that are 
beneficial to the local community.  

Proportion of biomass per component for every diameter class

The biomass proportion of each tree component  is an 
important finding of the present study, as information 
related to under ground biomass is very limited (Krisnawati 
et al. 2012; Yuen et al. 2016; Annighöfer et al. 2022). The 
division into stem (including branches), leaf, and root 
components was able to better describe the dynamics of 
tree growth compared to shoot:root ratio (Poorter & Nagel 
2000). The dynamic proportions of the biomass components 
of several age and diameter classes indicated that the trees 
were continuously growing and competing at carbon dioxide 
and nutrient absorption, which was subsequently converted 
to biomass (Kuyah et al. 2013; Li et al. 2018).  

Biomass allocation was greatest for stem (57%), followed 
by branch (20%), root/BGB (15%), and leaf (8%). These 
values were similar those found for a tropical Amazon 
Forest: stem (62%), branch (22%), root (11%), and leaf 
(4%) (Woortmann et al. 2018). The native tropical lowland 
trees of Indonesia had a 15% higher BGB proportion than 
did the trees from tropical Amazon (Woortmann et al. 2018), 
but lower than total tree in tropical agricultural landscapes 
(21%) (Kuyah et al. 2013). 

Biomass proportions change after 4 years of growth, 
with that of stem and branch increasing and that of leaf and 
root decreasing. At 8 years of age, canopy growth caused a 
decrease in incoming light intensity. Furthermore, plants 
respond to a lack of nutrients in the soil surface by allocating 
growth to shoots (Poorter & Nagel 2000; Poorter et al. 2011). 
Branch development then became faster than stem mass 
increase, similar to what Poorter et al. (2011) reported with 
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the stem mass fraction increasing at a lesser extent than 
specific stem length. 

The >15 cm diameter class had significantly greater 
biomass (P<0.05) than did the other size classes for all 
categories of biomass components. This indicates optimum 
growth in all components of the tree. Meanwhile, the 
proportion of leaf biomass gradually decreased as that of 
stem diameter increased. This occurred because the tree 
adapted to strengthen stem, branch and root components 
for supporting (biomechanical) growth (Kuyah et  al. 
2013). The leaf is a beneficial organ for photosynthesis and 
respiration and is faster to dry and fall to become litter. The 
process of losing biomass from part of a tree is considered 
a mechanism of adaptation to the availability of resources 
in the environment (Chapin et al. 2002). 

The best allometric model

An allometric model of tropical lowland trees developed 
in Indonesia (Ketterings et al. 2001; Hashimoto et al. 2004; 
Basuki et al. 2009), was based on a sample from a natural 
forest that has uncertainty in its biophysical environment. 
Tree biomass in a forest is affected by biotic (vegetation 
density) and abiotic (temperature, precipitation, light, water 
and nutrient) factors in its surrounding (Poorter & Nagel 
2000; Chen et al. 2021). The present study used samples 
of even-aged trees obtained by controlled planting (with 
germination, acclimatization, and growth in demplots) 
under uniformly controlled environmental conditions. 
However, a drawback of the present model was that it was 
based on a limited period of growth (only 8 years, with 
a resulting diameter range of 5.28 – 17.73 cm).  Further 
studies are needed to complete optimum growth for samples 
of trees > 15 cm in diameter.  

The selection of predictors for the allometric model 
followed several previous studies, confirming that, in 
addition to tree diameter, height and wood density should 
also be considered (Chave et al. 2014; Djomo & Chimi 2017; 
Nath et al. 2019). Consideration must also be given to the 
selected mathematical formulas to obtain simple variables 
for ease of model implementation and validation (Sileshi 
2014). In addition to the selection of relevant predictors, the 
method for validating the model also needs to be considered. 
A 10-fold cross validation was used here to avoid bias in 
biomass prediction and reduce the problem of over-fitting 
(Sileshi 2014). The use of k-fold cross validation has been 
reliably used in the building of several allometric models 
(Yuen et al. 2016; Nath et al. 2019; Annighöfer et al. 2022). 
The 10-fold cross validation used here resulted in an average 
value (from 10 calculations) for each of the five goodness 
of fit criteria used, thereby facilitating decision making for 
choosing the best model. 

The allometric model that resulted from this study 
is ideal because it had an Adj.R2 value greater than 70% 
(Djomo & Chimi 2017). The use of the single variable of 

diameter (D) alone produced less prediction accuracy than 
the combination of tree diameter and height (D2H). This 
situation was a consistent result of cross validation, with 
the use of a combination variable (D2H) giving a model 
with greater prediction accuracy and lower error. However, 
when the wood density variable was added (ρD2H), accuracy 
decreased. The use of the wood density variable with the 
triple variable (D+H+ρ), gave a model with higher prediction 
accuracy and lower error. However, this model was not 
chosen because wood density was not significantly affecting 
biomass prediction. These findings differed from that of 
another study that integrated some variables (diameter, 
height, and wood density) and obtained the best model for 
predicting biomass (Chave et al. 2014; Nath et al. 2019). 
Other studies also found an inconsistent relationship 
between forest biomass and wood density (Basuki et al. 
2009; Stegen et al. 2009; Kachamba et al. 2016). These 
studies used several species and trees of different ages, 
resulting in inconsistency in the simultaneous effects of 
wood type density to diameter and height. Good wood type 
density data are required, either by measuring more samples 
across species and ages (>3 samples for each individual at 
the same age) or using reliable literature data. 

Comparison of generic models

All models of the present study tended to have low error 
values because they were fitted to sample characters used 
(Nath et al. 2019; Djomo & Chimi 2017). Although their 
error values were not as good as those of the best model 
of the present study, the models of Chave et al. (2014) and 
Nath et al. (2019) for predicting AGB had a higher R2 and 
lower AIC values than the best model developed here. The 
models of Chave et al. (2014) and Nath et al. (2019) were 
developed for all tropical ecosystem types (pan-tropical), 
which required more samples. 

Although the two AGB models of Chave et al. (2014) 
and Nath et al. (2019) were comparable, the model from 
Chave et al. 2014 was more favorable (lower RSME and 
MAE values) and could be implemented in this study. The 
model of Hashimoto et al. (2004) was not adequate for use 
with the sample of this study even though it was built based 
on the same ecosystem type (moist tropical ecosystem) of 
Indonesia. This was because the Hashimoto et al. (2004) 
model was built using standing pioneer samples that tend 
to grow quickly in the early growth phase. 

A BGB model from Djomo and Chimi (2017) (model 1) 
that only used diameter was actually better than adding 
the wood density variable. This contrast was likely due two 
factors: wood density had no effect on the BGB component 
and the effect of the uncertainty value of wood density. A 
BGB model from Djomo and Chimi (2017) (model 1) is more 
properly implemented with large native trees (D>20cm) 
from tropical lowlands, compared to the model of Kenzo 
et al. (2009) (D=0.1–20.4cm).  
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A TB model from Djomo and Chimi (2017) (model 2), 
integrating diameter variable and height, as done in 
the present study (D2H), provided much better biomass 
prediction, and so can be implemented for native trees 
of tropical lowlands of Indonesia. Tree height has a high 
correlation with adding total tree biomass (Chave et al. 
2014; Djomo & Chimi 2017; Nath et al. 2019). Although 
there were many alternative recommendations for selecting 
an allometric model with a single variable, the use of two 
variables (D and H) was not burdensome and still acceptable 
(Sileshi 2014). 

Conclusion
The native tree species of Litsea garciae, Terminalia 

bellirica, Pterospermum javanicum, Anisoptera marginata, 
and Cananga odorata have effective biomass growth and so 
are recommended for land restoration in tropical lowlands 
of Indonesia. Biomass allocation was highest for stem 
(57%), followed by branch (20%), root/BGB (15%), and 
leaf (8%), whereas stem and branch (as opposed to root and 
leaf) increased after 4 years of growth. The best allometric 
model of the present study is highly recommended for 
implementation with native trees of tropical lowlands, 
especially for early stages (less than 8 years). For large 
trees (D>20cm), we recommended three models for tropical 
lowland forests in Indonesia, namely the AGB model of 
Chave et al. (2014), the BGB model (model 1) of Djomo and 
Chimi (2017) (with D variable), and the TB model (model 2) 
of Djomo and Chimi (2017) (with D2H variable). 
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Appendix 1. Native tree species selected for land restoration and carbon sequestration  enhancement in tropical lowlands of Indonesia.

Species name/Local name/Family
Reference Data (PROSEA 2019; POWO 2022) Samples of BBG’s Collection

Native distribution A up to
(m asl)

Tree size up to
GR (%)

Major economic values
N Ar (yr) Dr (cm)

H (m) D (cm) Tc Ed Md Or Of
Anisoptera marginata Korth./ Mersawa/Dipterocarpaceae BR, ML, SM 1200 45 135 80 – 90 v 4 3 – 107 5.6 – 195.5

Artocarpus altilis (Parkinson) Fosberg/Sukun/Moraceae CI, LSI, MK, MRN, NG, PH, SOL, SL 600 30 180 90 – 95 v 5 19 – 29 27.4 – 168.0

Bombax anceps Pierre/Randu hutan/Malvaceaea CAM, JW, LO, LSI, ML, MY, SM, TH, VIE 750 45 400 90 v 6 81 – 91 37.3 – 174.5

Cananga odorata (Lam.) Hook. f. & Thomson/ Kenanga/
Annonaceace

BR, JW, LSI, ML, NG, PH, QS, SO. SL, SM, TH, 
VIE

1200 40 75 n/a v v v 7 39 – 80 47.5 – 85.2

Canarium decumanum Gaertn./Kenari/Burseraceace BIS, BR, MK, NG, SL 450 60 200 25 – 100 v v 3 28 – 90 23.0 –149.6

Canarium vrieseanum Engl./Kenari/Burseraceace PH, SL 500 31 45 25 – 100 v v v 2 40 53.0 – 65.0

Canarium vulgare Leenh./Kenari/Burseraceace LSI, JW, LSI, MK, NG, SOL, SL 1200 45 70 25 – 100 v v v 2 12 – 12 16.3 – 28.3 

Diospyros frutescens Blume/ Ki gentel/Ebenacaeae BR, JW, ML, SL, SM, TH 700 25 40 45 – 95 v 4 39 – 87 13.7 – 44.9

Inocarpus fagifer (Parkinson ex F.A.Zorn) Fosberg/
Gayam/Fabaceae

BIS, CHR, FJ, JW, LSI, ML, NG, PH, ST, SI, 
SOL, SL, SM, TG, TB, VAN, WAL

500 30 65 n/a v v v v 7 8 – 85 18.0 – 144.1

Intsia bijuga (Colebr.) Kuntze/Merbau/Fabaceae TZ, MD, SIB, ME, NAU, PN 600 50 250 n/a v v 6 94 – 118 53.5 – 119.7

Litsea garciae Vidal Count Kalangkala Lauraceae PH, TW, INA, MAL n/a 20 50 n/a v v v 8 14 – 36 28.6 – 61.5

Pometia pinnata J.R. Forst. & G. Forst./Matoa/
Sapindaceae SL, AI, SEA, TW, FJ, SM 1700 47 140 85 – 95 v v v 6 19 – 118 22.9 – 115.6

Pongamia pinnata (L.) Pierre/Malapari/Fabaceae PK, IND, SL, SEA, NAS, FJ, JP 1200 25 80 n/a v v v v 6 18 – 59 16.3 – 46.3

Pterospermum javanicum Jungh. Count/Bayur/
Sterculiaceae JW, LSI, SM, SR, SB, CEK 600 59 54 45 – 100 v 7 5 – 41 7.7 – 70.2

Terminalia bellirica (Gaertn.) Roxb. Count/ Jaha/
Combretaceae

ASS, BLD, BR, CAM, CSC, EH, IND, JW, LO, 
LSI, ML, MK, MY, NP, PK, SL, SL, SM, TH, VIE

600 50 300 85 – 100 v v v 2 93 59.4 – 90.3

Ormosia calavensis Azaola ex Blanco/Kacang mata kuda/
Fabaceae BR, CI, JW, MK, NG, PH, SL 1800 30 100 50 v v v 4 46 – 52 20.9 – 92.2

Samanea saman (Jacq.) Merr.*/Trembesi/Fabaceae BL, COL, CR, EC, EL, HO, NI, PN, VE 1000 40 200 90 v v 2 58 – 94 144.3 – 145.6

Cassia grandis L.f.*/Johar/Fabaceae CMX, TA n/a 25 60 70 v v v 2 n/a 47.9 – 59.8

Castilla elastica subsp. costaricana (Liebm.) C.C.Berg*/
Karet Panama/Moraceae CUS, COL 850 30 90 n/a v 2 28 – 81 33.5 – 95.2

Note: Reference Data according PROSEA (2019) and POWO (2022): Native distribution: BR: Borneo (Kalimantan, Brunei, Sabah, Sarawak), ML: Malaya, SM: Sumatra, CI: Caroline Is, LSI: Lesser 
Sunda Is, MK: Maluku, MRN: Marianas, NG: New Guinea, PH: Philippines, SOL: Solomon Is, SL: Sulawesi, CAM: Cambodia, JW: Jawa, LO: Laos, TH: Thailand, VIE: Vietnam, QS: Queensland, BIS: 
Bismarck Archipelago, CHR: Christmas Is, FJ: Fiji Is, ST: Santa Cruz Is, SI: Society Is, TG: Tonga, TB: Tubuai Is, VAN: Vanuatu, WAL: Wallis-Futuna Is, TZ: Tanzania, MD: Madagascar, SIB: Southern 
India and Burma, MLS: Malesia, NAS: Northern Australia, PL: Polynesia, TW: Taiwan, INA: Indonesia, MAL: Malaysia, SL: Sri Lanka, AI: Andaman Is, SEA: Southeast Asia, SM: Samoa, PK: Paki-
stan, IND: India, JP: Japan, SR: Sarawak, SB: Sabah, CEB: Central and East Borneo, ASS: Assam, BLD: Bangladesh, CSC: China South-Central, EH: East Himalaya, NP: Nepal, BL: Belize, COL: Co-
lombia, CR: Costa Rica, EC: Ecuador, EL: El Salvador, HO: Honduras, NI: Nicaragua, PN: Panamá, VE: Venezuela, CMX: Central Mexico, TA: Tropical America, CUS: Central America. A: altitude, H: 
height, D: diameter, GR: germination rate, and economic. Several GR was determined by the same genus. Major economic values: Tc: timber construction/furniture; Ed: edible fruit, seed or other; 
Or: ornamental or shading tree; Of: other materials function as oil, resin, dye, rubber, handicraft, firewood, or cattle feeding. *Introduced species as a control: Samanea saman invasive in Fiji, Hawai, 
Brazil, Madagascar, Cuba; Cassia grandis invasive in Australia, India and Ecuador; Castilla elastica invasive in Pacific. Samples of BBG’s Collections (observed in 2012): N: sample number of BBG’s 
collection, Ar: age range, Dr: diameter range. n/a: not available in this reference/collection data.



Potential species for high biomass production and allometric modelling  
of even-aged native tropical lowland trees of Indonesia

17

Template: Editora Letra1 | www.editoraletra1.com.br

Acta Botanica Brasilica, 2024, 38: e20230073

 

Appendix 2. The generic model (aboveground biomass, belowground biomass, and total biomass) selected for comparison with the best model of the present study.

Model Equation Reference
Aboveground Biomass (AGB)

Model AGB 1: Ln(AGB)= -2.510 + 2.44Ln(D) (Hashimoto et al. 2004)
Model AGB 2: Ln(AGB)= -2.699 + 0.976Ln(ρD2H) (Chave et al. 2014)
Model AGB 3: Ln(AGB)= -1.139 + 0.750Ln(ρD2H) (Nath et al. 2019)

Belowground Biomass (BGB)

Model BGB 1: Ln(BGB)= -3.844 + 2.33Ln(D) (Kenzo et al. 2009)
Model BGB 2: Ln(BGB)= -2.883 + 2.039Ln(D) (Djomo & Chimi 2017 (1))
Model BGB 3: Ln(BGB)= -2.267 + 1.042Ln(ρD2) (Djomo & Chimi 2017 (2))

Total Biomass (TB)

Model TB 1: Ln(TB)= -2.134 + 2.530Ln(D) (Brown 1997)
Model TB 2: Ln(TB)= -1.475 + 2.153Ln(D) (Djomo & Chimi 2017 (1))
Model TB 3: Ln(TB)= -1.942 + 0.768Ln(D2H) (Djomo & Chimi 2017 (2))

Note: D: dbh (cm), H: height (m), ρ: wood density (gr/cm3)

Appendix 3. Tree species, height, diameter, wood density, and biomass component at 4 years of age for native tropical lowland trees in Indonesia.

Species N H (m) D (cm) WD (gr/cm3)
AGB (kg)

BGB/Roots (kg) TB (kg)
Stem Branches Leafs Total

Pterospermum javanicum Jungh. Count 3 6.55 ± 0.97ab 4.55 ± 1.39bc 0.53 ± 0.10e 3.26 ± 1.17a 0.78 ± 0.31ab 0.37 ± 0.12abc 4.41 ± 2.68ab 1.78 ± 1.18a 6.19 ± 3.85a

Terminalia bellirica (Gaertn.) Roxb. Count 3 6.07 ± 0.64abc 4.45 ± 1.31bc 0.53 ± 0.00e 3.34 ± 1.07a 0.94 ± 0.20a 0.40 ± 0.10abc 4.69 ± 2.27a 0.91 ± 0.67bc 5.59 ± 2.88ab

Litsea garciae Vidal Count 2 5.30 ± 0.45abcde 4.67 ± 2.35bc 0.31 ± 0.00h 2.31 ± 1.48abc 0.95 ± 0.80a 0.83 ± 0.56ab 4.10 ± 4.03abc 0.75 ± 0.78bc 4.84 ± 4.80abc

Castilla elastica subsp. costaricana (Liebm.) C.C.Berg 3 5.63 ± 0.57abcd 6.70 ± 0.84a 0.42 ± 0.00g 2.90 ± 0.31ab 0.40 ± 0.07ab 0.26 ± 0.05abc 3.56 ± 0.74abcd 0.97 ± 0.32b 4.53 ± 0.91abcd

Intsia bijuga (Colebr.) Kuntze 3 5.42 ± 1.59abcd 4.05 ± 1.78bcd 0.72 ± 0.00b 2.19 ± 1.20abcd 0.94 ± 0.61a 0.43 ± 0.27abc 3.56 ± 3.60abcd 0.89 ± 0.86bc 4.46 ± 4.46abcde

Cananga odorata (Lam.) Hook. f. & Thomson 3 6.68 ± 0.74a 5.24 ± 1.76ab 0.28 ± 0.00h 2.29 ± 0.89abc 0.40 ± 0.22ab 0.29 ± 0.10abc 2.98 ± 2.09abcde 0.68 ± 0.53bc 3.67 ± 2.61abcdef

Canarium vrieseanum Engl. 3 5.00± 1.21bcde 3.08 ± 1.26cdef 0.48 ± 0.02f 1.44 ± 0.70abcd 0.35 ± 0.25ab 0.90 ± 0.63a 2.69 ± 2.72abcde 0.48 ± 0.35bc 3.17 ± 3.06abcdef

Artocarpus altilis (Parkinson) Fosberg 3 6.08 ± 0.64abc 3.70 ± 0.86bcde 0.41 ±0.00g 1.97 ± 0.48abcd 0.22 ± 0.15ab 0.18 ± 0.06bc 2.37 ± 1.18abcde 0.70 ± 0.27bc 3.07 ± 1.41abcdef

Diospyros frutescens Blume 3 4.37 ± 0.49de 2.06 ± 0.38efg 0.71 ± 0.00b 1.05 ± 0.20bcd 0.70 ± 0.28ab 0.52 ± 0.20abc 2.28 ± 1.13abcde 0.44 ± 0.28bc 2.72 ± 1.38abcdef

Anisoptera marginata Korth. 3 4.95 ± 0.50bcde 2.90 ± 0.91cdef 0.59 ± 0.00d 0.96 ± 0.36bcd 0.35 ± 0.11ab 0.36 ± 0.15abc 1.67 ± 1.07abcde 0.41 ± 0.24bc 2.08 ± 1.32bcdef

Bombax anceps Pierre 3 4.87 ± 1.20cde 3.90 ± 1.04bcde 0.41 ± 0.00g 1.07 ± 0.40bcd 0.14 ± 0.01b 0.05 ± 0.00c 1.25 ± 0.69bcde 0.64 ± 0.38bc 1.89 ± 1.07bcdef

Pongamia pinnata (L.) Pierre 3 4.99 ± 0.62bcde 1.18 ± 0.16fg 0.89 ± 0.00a 1.04 ± 0.30bcd 0.15 ± 0.06b 0.09 ± 0.03c 1.28 ± 0.65bcde 0.31 ± 0.12bc 1.58 ± 0.78bcdef

Canarium vulgare Leenh. 3 3.77 ± 0.88ef 2.41 ± 0.81defg 0.75 ± 0.01b 0.68 ± 0.26cd 0.25 ± 0.17ab 0.36 ± 0.15abc 1.29 ± 1.00bcde 0.23 ± 0.18bc 1.51 ± 1.18bcdef

Pometia pinnata J.R. Forst. & G. Forst. 3 2.63 ± 0.29fg 1.96 ± 0.36efg 0.65 ± 0.00c 0.54 ± 0.07cd 0.07 ± 0.03b 0.17 ± 0.06bc 0.73 ± 0.25de 0.38 ± 0.21bc 1.11 ± 0.46cdef

Inocarpus fagifer (Parkinson ex F.A.Zorn) Fosberg 3 2.84 ± 0.33fg 1.55 ± 0.38fg 0.55 ± 0.00e 0.42 ± 0.06cd 0.11 ± 0.05b 0.36 ± 0.09abc 0.89 ± 0.34cde 0.21 ± 0.11bc 1.10 ± 0.44cdef

Ormosia calavensis Azaola ex Blanco 3 2.08 ± 0.27g 0.89 ± 0.35g 0.61 ± 0.02d 0.27 ± 0.13abcd 0.12 ± 0.05b 0.10 ± 0.05c 0.49 ± 0.40de 0.16 ± 0.10bc 0.65 ± 0.51def

Samanea saman (Jacq.) Merr. 3 4.65 ± 1.40cde 1.33 ± 0.26fg 0.42 ± 0.00g 0.23 ± 0.09cd 0.04 ± 0.03b 0.01 ± 0.00c 0.27 ± 0.20de 0.06 ± 0.03bc 0.33 ± 0.23ef

Cassia grandis L.f. 3 1.75 ± 0.39g 1.16 ± 0.49fg 0.67 ± 0.00c 0.14 ± 0.06d 0.01 ± 0.00b 0.00 ± 0.00c 0.16 ± 0.10e 0.06 ± 0.04bc 0.22 ± 0.15f

Canarium decumanum Gaertn. 3 1.93 ± 0.64g 1.28 ± 0.45fg 0.59 ± 0.00d 0.08 ± 0.01d 0.00 ± 0.00b 0.02 ± 0.01c 0.12 ± 0.05e 0.04 ± 0.04c 0.16 ± 0.08f

Note: N = number of samples; H = tree height; D = diameter (dbh); WD = wood density, AGB = aboveground biomass; BGB = belowground biomass; TB = total biomass. Values are mean 
and standard deviation (Mean ± SD). Values in the same column followed by different superscript letters differ significantly at P<0.05.
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Appendix 4. Tree species, height, diameter, wood density, and biomass components at 8 years of age for native tropical lowland trees in Indonesia.

Species N H (m) D (cm) WD (gr/cm3)
AGB (kg)

BGB/Roots (kg) TB (kg)
Stem Branches Leafs Total

Litsea garciae Vidal Count 3 13.24 ± 0.47a 17.73 ± 3.71a 0.32 ± 0.00j 65.97 ± 15.59a 35.61 ± 16.89a 8.42 ± 2.88ab 110.00 ± 58.52a 13.9 ± 6.15ab 123.89 ± 64.56a

Terminalia bellirica (Gaertn.) Roxb. Count 3 13.87 ± 1.88a 17.25 ± 3.84a 0.57 ± 0.01g 60.98 ± 24.94ab 29.61 ± 19.54ab 11.82 ± 4.31a 102.40 ± 84.47ab 14.98 ± 14.87ab 117.38 ± 99.34ab

Anisoptera marginata Korth. 3 12.73 ± 2.61a 14.96 ± 4.24ab 0.62 ± 0.01e 47.40 ± 30.44abc 10.98 ± 5.81abc 4.57 ± 2.28bc 62.96 ± 66.69abc 10.64 ± 12.43ab 73.6 ± 79.11abc

Cananga odorata (Lam.) Hook. f. & Thomson 3 13.62 ± 1.75a 17.41 ± 2.12a 0.3 ± 0.01k 33.39 ± 15.48abc 15.08 ± 8.66abc 5.31 ± 2.22abc 53.79 ± 45.61abc 19.12 ± 18.26a 72.91 ± 63.86abc

Castilla elastica subsp. costaricana (Liebm.) 
C.C.Berg 3 13.26 ± 1.37a 17.39 ± 1.30a 0.44 ± 0.01i 48.67 ± 17.65abc 3.50 ± 1.15bc 3.11 ± 1.17bc 55.28 ± 34.28abc 6.33 ± 3.10ab 61.61 ± 36.41abc

Canarium vrieseanum Engl. 3 9.97 ± 2.22ab 10.61 ± 4.18bcde 0.50 ± 0.00h 34.58 ± 24.65abc 12.67 ± 8.55abc 6.09 ± 3.70abc 53.34 ± 63.91abc 7.32 ± 8.92ab 60.65 ± 72.83abc

Pterospermum javanicum Jungh. Count 3 12.57 ± 2.50a 14.87 ± 1.94ab 0.59 ± 0.01fg 43.43 ± 21.55abc 6.41 ± 2.69bc 0.37 ± 0.19c 50.21 ± 40.90abc 6.45 ± 5.71ab 56.67 ± 46.36abc

Intsia bijuga (Colebr.) Kuntze 3 12.28 ± 3.29a 13.18 ± 4.32abc 0.78 ± 0.02bc 29.98 ± 11.69abc 6.82 ± 2.98bc 2.25 ± 0.81bc 39.05 ± 26.74abc 5.03 ± 2.96ab 44.08 ± 29.7abc

Artocarpus altilis (Parkinson) Fosberg 2 10.35 ± 5.02ab 11.75 ± 3.83abcd 0.44 ± 0.00i 23.19 ± 15.32abc 1.53 ± 1.18c 1.38 ± 0.94bc 26.1 ± 24.67bc 3.51 ± 2.66b 29.61 ± 27.32abc

Pometia pinnata J.R. Forst. & G. Forst. 2 6.88 ± 2.51bc 7.72 ± 2.77cde 0.76 ± 0.01bc 10.98 ± 5.82bc 3.97 ± 3.06bc 2.35 ± 1.52bc 17.30 ± 14.70c 3.44 ± 2.57b 20.74 ± 17.27bc

Diospyros frutescens Blume 3 7.45 ± 0.65ab 7.60 ± 1.97cde 0.75 ± 0.02c 8.14 ± 2.97bc 4.39 ± 2.87bc 3.60 ± 1.51bc 16.13 ± 12.73c 1.95 ± 1.18b 18.08 ± 13.80c

Canarium vulgare Leenh. 3 6.73 ± 2.75bc 9.46 ± 2.04bcde 0.76 ± 0.01bc 7.51 ± 5.43bc 2.95 ± 1.93c 3.28 ± 2.35bc 13.73 ± 16.82c 1.82 ± 2.26b 15.55 ± 19.07c

Inocarpus fagifer (Parkinson ex F.A.Zorn) 
Fosberg 3 7.36 ± 1.14bc 9.27 ± 3.65bcde 0.66 ± 0.01d 8.72 ± 4.19bc 1.98 ± 0.72c 1.52 ± 0.65bc 12.22 ± 9.62c 2.84 ± 2.87b 15.06 ± 12.47c

Canarium decumanum Gaertn. 3 8.11 ± 0.82bc 6.93 ± 1.70de 0.61 ± 0.01ef 6.57 ± 1.58bc 0.31 ± 0.11c 0.70 ± 0.13c 7.58 ± 3.15c 1.17 ± 0.62b 8.75 ± 3.74c

Ormosia calavensis Azaola ex Blanco 3 4.93 ± 0.96c 5.28 ± 3.27e 0.65 ± 0.02d 2.63 ± 1.03c 0.49 ± 0.28c 0.62 ± 0.32c 3.74 ± 2.78c 0.77 ± 0.54b 4.51 ± 3.27c

Pongamia pinnata (L.) Pierre 3 5.13 ± 0.80c 7.76 ± 0.83cde 0.89 ± 0.00a 2.02 ± 0.08c 0.34 ± 0.05c 0.12 ± 0.02c 2.48 ± 0.24c 0.48 ± 0.08b 2.96 ± 0.32c

Note: N = number of samples; H = tree height; D = diameter (dbh); WD = wood density, AGB = aboveground biomass; BGB = belowground biomass; TB = total biomass. Values are mean 
and standard deviation (Mean ± SD). Values in the same column followed by different superscript letters differ significantly at P<0.05.


