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Abstract
Atherosclerosis is the most common cause of cardiovascular 

disease globally, associated with a high incidence of clinical 
events. Accumulating evidence has elucidated that long 
non-coding RNAs (lncRNAs) as a novel class of transcripts 
with critical roles in the pathophysiological processes of 
atherosclerosis. In this review, we summarize the recent 
progress of lncRNAs in the development of atherosclerosis. 
We mainly describe the diverse regulatory mechanisms of 
lncRNAs at the transcriptional and post-transcriptional levels. 
This study may provide helpful insights about lncRNAs as 
therapeutic targets or biomarkers for atherosclerosis treatment. 

Introduction
Cardiovascular diseases (CVDs) are regarded as a global 

health problem that accounts for 17.9 million deaths every 
year.1 Atherosclerosis (AS), the principal driver of CVDs 
worldwide, is a lipid-driven chronic inflammatory process with 
endothelial dysfunction, foam cells formation and final plaque 
buildup.2 This process is accompanied by cells proliferation, 
apoptosis, and the release of pro-inflammatory factors3 (Figure 
1). These can trigger plaque rupture and thrombosis formation, 
leading to acute clinical events, such as stroke and acute 
coronary syndrome.4

In the mammalian genome, the encoded protein RNAs 
are only < 3%.5 That fraction of the coding gene makes, 
therefore, hard to explain the complex regulatory mechanism 
of the organism. In recent years, accumulating studies have 
revealed the important role of non-coding protein RNAs 
in the pathophysiological processes of various diseases.6,7 
According to the length, the non-coding RNAs (ncRNAs) 
can be divided into long non-coding RNA (lncRNA, >200 
nucleotides) and small non-coding RNA (<200 nucleotides, 
such as miRNAs, piRNAs and siRNAs).8 In many researches, 

some small ncRNAs’ regulatory functions and biological 
effects have been demonstrated.9-11 The function of many 
lncRNAs is unknown, but an increasing number of lncRNAs 
have been characterized. 

The biosynthesis of lncRNA is similar to that of mRNA. 
LncRNAs are transcribed by RNA polymerase II but lack 
open reading frames, and they are in a lower expression than 
protein-coding genes.8 LncRNAs are mainly located within 
the nucleus and cytoplasm.12 In the cytoplasm, lncRNAs can 
bind with ribosomes13 or originate from the mitochondrial 
genome.14 Early reports show that many lncRNAs can’t encode 
proteins because they lack open reading frames (ORFs) or 
contain few ORFs. But emerging evidence suggests that 
some lncRNAs contain small ORFs encoding small proteins or 
micropeptides, which are regarded as key regulators in various 
biological processes.8,15,16 Studies demonstrate that lncRNAs 
play critical roles in the function of endothelial and vascular 
smooth muscle cells (VSMC), macrophage activation, lipid 
metabolism and inflammatory response.17,18 In this review, we 
mainly discuss the regulation of lncRNAs are involved in the 
pathophysiologic process of atherosclerosis at transcriptional 
and post-transcriptional levels.

The pathogenesis of atherosclerosis is accompanied by cell 
dysfunction, such as proliferation, apoptosis, and migration. 
The result is foam cells formation and plaque buildup.

The classifications and regulatory mechanism of LncRNAs
According to the correlation between the genomic 

location and protein-coding genes, lncRNAs can be divided 
into (1) intergenic lncRNAs (lincRNAs) that express protein-
coding genes as an independent unit. (2) intronic lncRNAs 
that derive from the introns of protein-coding genes. (3) 
antisense lncRNAs transcribed from the opposite direction 
of protein-coding genes. (4) sense lncRNAs that overlap 
with exons of protein-coding genes on the same strand. (5) 
enhancers that originate in the enhancer of protein-coding 
genes. (6) bidirectional lncRNAs that are transcribed from 
the divergent bidirectional promoters.19,20 The criteria of 
classification also include the various functions in local 
gene regulation: cis- (regulating proximal genes expression) 
and trans- (regulating distant genes expression).21 Besides, 
lncRNAs transcripts can also be categorized into linear  
or circular.22

The mechanism of lncRNAs functioning has not been 
completely elucidated, but it can be classified roughly into 
several groups: 1. transcriptional regulation is embodied 
in transcriptional interference, chromatin remodeling and 
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promotion of transcription; 2. post-transcriptional levels 
manifest in mRNAs splicing regulation translational control 
and even as sponges for miRNAs; 3. Others contain protein 
localization, telomere replication, and RNA interference, 
etc. Furthermore, their targeting mechanisms for regulating 
gene expression are summarized as the following: signals, 
decoys, guides and scaffolds.22,23

Transcriptional regulation
LncRNAs can exert their transcriptional regulation 

through cis-acting and trans-acting mechanisms. (Table 1) 
LncRNAs regulate neighboring genes expression in cis via 
transcriptional interference or chromatin remodeling.24 
Trans-acting lncRNAs can interact with RNA polymerases 
and transcription elongation factors or serve as a scaffold 
for chromatin modification complexes to regulate the 
distant genes.24,25

The Wellcome Trust Case Control Consortium (WTCCC) 
study and the genome-wide association studies found that 
a region on chromosome 9p21 (Chr9p21) was strongly 
associated with coronary artery disease strongly.26 The 
region is adjacent to a lincRNA named antisense non-
coding RNA in the INK4 locus (ANRIL, also known as 
CDKN2BAS).27 Holdt LM et al.28 had revealed that ANRIL 

expression was correlated with atherosclerosis severity by 
affecting mRNAs’ transcription, and the ANRIL was also 
detected in atherosclerotic plaques in their study.28

Two protein-coding genes, cyclin-dependent kinase 
inhibitors(CDKN2A, CDKN2B) and the alternative 
reading frame (ARF) on chromosome 9p21, are tied to 
ANRIL inextricably, which are tumor suppressors.27 The 
polycomb repressive complex-1 (PRC-1) and polycomb 
repressive complex-2 (PRC-2) are two kinds of polycomb 
group proteins involved in maintaining chromatin state.29 
Their subunits CBX7 and SUZ12 bind ANRIL separately 
to silence CDKN2A/B locus through H3 lysine27 (K27H3) 
trimethylation.30,31 Yet, the repression of CDKN2A/B 
may be related to cell proliferation and apoptosis in the 
atherosclerosis process.32

Holdt et al.28 found that ANRIL was in a position to 
exert a regulatory function in distant gene expression in 
trans. Alu element, marking the promoter of the ANRIL 
trans-regulated genes, is decisive for linear ANRIL trans-
regulation. PcG proteins, triggered by binding with ANRIL, 
were highly abundant downstream of the Alu motifs.33 The 
recruitment of PcG proteins could regulate the expression 
of the target genes (TSC22D3、COL3A1) and attenuate 
ANRIL-mediated pro-atherogenic functions, such as cell 
adhesion, proliferation, and apoptosis.3,33 Furthermore, 
ANRIL plays a pivotal role in the inflammatory processes 
through TNF-α/NF-kB-ANRIL/YY1-IL6/8 pathway. PRC-
associated proteins Yin Yang 1 (YY1), a transcriptional 
factor, form a functional complex with ANRIL.33 ANRIL-
YYI complex binds to IL6/8 promoter loci and stimulates 
their recruitment in the TNF-α/NF-κB signaling, leading to 
vascular inflammation.34

MALAT1, located on chromosome 11q13, is first 
described as lncRNA associated with metastasis of 
lung tumors.35 MALAT1 expression is downregulated 
in atherosclerotic plaques in comparison to non-
atherosclerotic arteries.36 Michalik et al.37 found that 
silencing of MALAT1 inhibited a switch from a promigratory 
to a proliferative state of the endothelial cells, resulting in 
the reduction of vessel growth.37 And MALAT1 also acts 
as a molecular scaffold to interact with unmethylated 
Polycomb 2 (Pc2); the expression of Pc2 promotes E2F1 
SUMOylation and regulates histone modifications to 
increase cell proliferation.38

In a control experiment, Gast et al.39 observed that 
the serum levels of TNF, IL-6, and IFN-γ were increased 
in the MALAT1-deficient ApoE-/- mice, causing immune 
dysfunction and aggravated atherosclerosis.39 MALAT1 may 
be involved in the LPS‐induced inflammatory response via 
LPS/TLR4/NF-κB signaling. MALAT1 interacts with NF-κB 
subunits p65/p50, inhibiting p65/p50 binding to target 
promoters such as TNF-α and IL-6, then attenuating an 
excessive inflammation.40

In lipid metabolism, MALAT1 may be upregulated in 
macrophages during ox-LDL stimulation.41 CD36, a class 
B scavenger receptor, is required for lipid uptake of ox-
LDL.42 MALAT1 overexpression induces the recruitment 
of β-catenin on the CD36 promoter to enhance CD36 

Figure 1 – The pathogenesis of atherosclerosis.
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Table 1 – The role of lncRNAs in the pathologic process of atherosclerosis

lncRNAs Mechanism Effect References

Cells function Proliferation Apoptosis

Endothelial cells (ECs) MALAT1 MALAT1-Pc2 (CBX4)-E2F1 + 38

GAS5 GAS5 - ceRNA (miR-21) - + 75

HOTTIP TNF-α/PDGFBB-HOTTIP-β-catenin + 47

MALAT1 ceRNA (miR-22-3p) - 60

TUG1 ceRNA (miR-26a) + 71

Macrophages、
Smooth muscular cells

ANRIL Bind with CBX7 and SUZ12 + - 32

NEAT1 NEAT1-WDR5-SM-specific genes + 44

LincRNA-p21 lincRNA-p21-MDM2/ p300-p53 + - 45

HAS2 remodeling chromatin structure + 49,50

RP11-714G18.1 upregulate LRP2BP expression - 53

H19 ceRNA (miR-148b) + - 66

MIAT ceRNA (miR-181b) + - 69

lncRNAs Mechanism Effect References

Lipid accumulation MALAT1 MALAT1-CD36-lipid uptake + 45

NEAT1 NEAT1-CD36-lipid uptake - 41

MeXis LXR-MeXis-Abca1 - 46

H19 ceRNA (miR-130b) - 65

TUG1 ceRNA (miR-133a) + 72

lncRNAs Mechanism Effect References

Inflammatory response

ANRIL TNF-α/NF-kB-ANRIL/YY1-IL6/8 + 34

MALAT1 MALAT1-p65/p50-TNF-α and IL-6 - 40

MALAT1 ceRNA (miR-503 or miR-155) - 61,62

H19 ceRNA (miR-130b) -

NEAT1 ceRNA (miR-342-3p) + 70

TUG1 ceRNA (miR-133a) + 72

(+) represents prompt or increase, and (-) represents prevent or decrease.

transcription, promoting lipid uptake in macrophages and 
accelerating the foam cell formation in atherosclerotic 
plaques.41

NEAT1, an adjacent transcript of MALAT1, can enhance 
the paraspeckles formation in oxLDL‑induced macrophage, 
which suppresses lipid uptake by binding CD36 mRNA 
to inhibit CD36 expression and stimulates inflammatory 
response via phosphorylating p65 to promote TNF‑α 
secretion.43 Besides, Ahmed ASI et al.44 found that NEAT1 
expression was upregulated in vascular smooth muscle 
cells (VSMCs) after vascular injury in vivo and in vitro, 
leading to an inactive chromatin state in SM-specific genes 
through binding with the chromatin modifier WDR5. The 
repression of SM-specific genes expression switched VSMCs 
to proliferative phenotype, promoting VSMCs proliferation 
and migration and thereby neointima formation.44

The expression of lincRNA-p21 was downregulated 
in the atherosclerotic plaques. LincRNA-p21 decreased 
MDM2/p53 interaction and increased p300/p53 interaction 
to facilitate the transcriptional activity of p53, leading to the 
repression of neointimal formation, the inhibition of cell 
proliferation and the enhancement of apoptosis in VSMCs 
and mononuclear macrophage cells in vitro and vivo.45

Also, some other lncRNAs are involved in the AS process 
at the transcriptional level, but the descriptions are limited. 
The overexpression of lncRNA-MeXis in macrophages may 
facilitate macrophage reversing cholesterol transport via the 
LXR-MeXis-Abca1 axis, suggesting that lncRNA-MeXis plays 
a protective role in the development of atherosclerosis.46 
Ectopic expression of lncRNA-HOTTIP, induced by TNF-α 
or platelet-derived growth factor (PDGFBB), increases 
proliferative markers cyclin D1 and PCNA expression 
through the Wnt/β-catenin pathway, subsequently 
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prompting the endothelial cell proliferation and migration.47 
The O-GlcNAcylation modulates HAS2-AS1 promoter 
activation, HAS2-AS1 natural antisense transcript can 
regulate HAS2 transcription in cis through remodeling 
chromatin structure,48 HAS2 may be related to VSMCs 
proliferation,49,50 macrophages recruitment,50 VSMCs 
migration and neointima formation,51,52 inflammatory 
response.50,52 The expression of lncRNA RP11-714G18.1 
in atherosclerotic plaque is low. Still, it can upregulate 
nearby gene LRP2BP expression to impair cell migration, 
suppress the adhesion of ECs to monocytes, reduce 
the neoangiogenesis, decrease VSMCs apoptosis and 
promote nitric oxide production. Furthermore, the serum 
LRP2BP was positively related to high-density lipoprotein 
cholesterol.53

HOXC-AS1 may suppress the cholesterol accumulation 
in macrophages via promoting HOXC6 expression at 
mRNA levels.54 LEENE can improve endothelial function 
by enhancing eNOS initial RNA transcription.55 Lethe Lin 
et al.56 acts as a decoy lncRNA to interact with the NF-
κB subunit RelA and inhibits RelA binding to target genes 
DNA, such as IL6, SOD2, IL8, attenuating the inflammatory 
response.56 LncRNA-TSLP induces HOTAIR transcription 
through PI3K/AKT-IRF1 pathway, promoting endothelial 
cell proliferation and migration in atherosclerosis.57 Besides, 
ox-LDL induced TSLP may bind to dendritic cells (DCs) to 
activate the Th17 inflammation,58 which is related to the 
severity and progression of AS.59

Post-transcriptional regulation
LncRNAs mainly act as competing endogenous RNAs 

(ceRNAs) or miRNAs “sponge” interacting with miRNAs 
in the process of atherosclerosis at the post-transcriptional 
regulation level. (Table 1) Furthermore, they are also 
involved in translational control, splicing regulation and small 
interfering RNA (siRNA) mechanism.24

MALAT1 acts as ceRNA in ox-LDL-induced cells injury and 
plays a protective role in atherosclerosis disease. MALAT1 
could compete with miR-22-3p for endogenous RNA and 
upregulate the target genes CXCR2 and AKT of miR-22-3p 
to inhibit endothelial cells apoptosis and promote the ECs 
migration and angiogenesis.60 Cremer S et al.61 found that 
MALAT1 “sponged” miR-503 to reduce the release of pro-
inflammatory cytokines, attenuating plaque inflammation.61 
Besides, the suppressor of cytokine signaling 1 (SOCS1) is 
the target protein of miR-155 that negatively regulates Janus 
activated kinase (JAK)-signal transducer and activator of 
transcription (STAT) signaling. MALAT1 could downregulate 
miR-155 and increase the expression of SOCS1 to alleviate 
the inflammation and apoptosis in atherosclerosis.62 Thus, 
MALAT1 may play a protective role via interacting with 
miRNAs in the pathogenesis of atherosclerosis.

The expression of lncRNA H19 was up-regulated in 
ox-LDL treated macrophages. MiR-130b regulates the 
inflammatory response by decreasing the translational 
levels of TNF-α, Sp1, NF-κB with lipid stimulation63 and 
inhibits adipogenesis by targeting PPAR-g.64 Silencing of H19 
significantly increases the expression of miR-130b, which 

ameliorates inflammation and lipid synthesis in ox-LDL-
treated Raw264.7 cells.65 H19 can accelerate proliferation 
and impede apoptosis in ox-LDL-stimulated VSMCs by 
directly suppressing miR-148b expression and enhancing 
miR-148b target gene WNT1 expression.66

LncRNA-MIAT may be involved in atherosclerotic plaque 
progression. MIAT is mainly expressed in the macrophages 
of advanced atherosclerotic plaques. With the ox-LDL 
treatment, the expression of MIAT is upregulated. Anti-
phagocytic molecule CD47, a target gene of miR-149-
5p, is related to apoptotic cell clearance and necrotic 
cores.67 MIAT interferes with miR-149-5p pathways to 
increase the CD47 level in macrophages, promoting 
plaque vulnerability.68 The formation of the MIAT/miR-
181b/STAT3 axis plays a critical role in ox-LDL induced 
human aorta vascular smooth muscle cells (HA-VSMCs) 
and human mononuclear cells (U937). MIAT up-regulates 
signal transducer and activator of transcription 3 (STAT3) 
protein level through sequestering miR-181b, subsequently 
promoting proliferation, facilitating cell cycle arrest and 
inhibiting apoptosis in HA-VSMCs and U937 cells.69

NEAT1 was also involved in the atherosclerotic 
process as ceRNA except for remodeling chromatin at the 
transcriptional level. Lei Wang et al.70 found that NEAT1 
was significantly upregulated in the presence of ox-LDL and 
served as a sponge to repress the expression of miR-342-3p, 
increasing the serum level of IL-6, IL-1β, COX-2, and total 
cholesterol leading to accelerating inflammation process 
and the formation of foam cells.70 LncRNA-TUG1 could 
down-regulate the expression of miR-26a and increase 
the mRNA and protein level of TRPC6 to facilitate the 
endothelial cells apoptosis.71 Lei Zhang et al.72 revealed 
that TUG1 sponged miR-133a and up-regulated fibroblast 
growth factor 1 (FGF1) expression, resulting in increased 
hyperlipidemia and excessive inflammatory response 
aggravated atherosclerotic lesion.72

In addition, more and more studies have demonstrated 
that plenty of atherosclerosis-related lncRNAs plays a 
crucial role in the pathogenesis of AS by interacting with 
miRNAs at the post-transcriptional level. LINC00305 
acts as an endogenous sponge for miR-136 and inhibits 
miR-136 expression to suppress the vascular endothelial 
cells proliferation and enhance apoptosis.73 LincRNA-p21 
functions as ceRNA to promote ECs apoptosis and induces 
cell cycle progression by targeting the miR-130b.74 LncRNA-
GAS5 negatively regulates miR-21 expression to enhance 
programmed cell death 4 (PDCD4) expression, suppressing 
ECs proliferation and triggering ECs apoptosis.75

Others
LncRNAs may function through protein localization, 

telomere replication and RNA interference in some 
processes,24 such as localizing RNP particles in legume plants, 
extending telomere during DNA replication in eukaryote,76 
reducing Dicer-generated siRNA and affecting the expression 
of Dicer-regulated genes.77 While their underlying molecular 
mechanism related to the development of atherosclerosis 
remains unknown.
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