Sports in Covid-19 Times: Heart Alert

Marcos Perillo Filho,1,4 Ricardo Contesini Francisco,1,4 Thiago Ghorayeb Garcia,1,4 Mateus Freitas Teixeira,2,4 Bruno Bassanez,4 Lorena Christine Araújo de Albuquerque,4 Rodrigo Otávio Bouleux Aló,1,4 Clea Colombo,4 Nabil Ghorayeb1,4

Instituto Dante Pazzanese de Cardiologia,1 São Paulo, SP - Brazil
Universidade Federal Fluminense,2 Niterói, RJ - Brazil
Clube de Regatas Vasco da Gama,3 Rio de Janeiro, RJ - Brazil
Hospital do Coração,4 São Paulo, SP - Brazil
Hospital Geral de São Mateus,4 São Paulo, SP - Brazil
Faculdade de Medicina São Leopoldo Mandic,6 Campinas, SP - Brazil

Introduction

Sports competitions were taking place everywhere in 2019, but the novel coronavirus (SARS-CoV-2) has changed the sports scenario around the globe lately. In March 2020, the World Health Organization (WHO) declared COVID-19 (a disease caused by the SARS-CoV-2 virus) pandemic and social isolation was adopted by several governments, prohibiting sporting events. Whereas public authorities have started the process of relaxing social isolation, medical experts have been discussing the best way to evaluate athletes who had COVID-19 aiming a safe return to sports practice. The lack of clinical and epidemiological data regarding cardiac involvement in COVID-19 cases, especially for the oligosymptomatic, non-hospitalized ones, and the unknown consequences of potential cardiac injury, turn this task into a challenge. According to the amount of time passed by, a better understanding of the outcomes and these recommendations may change.

Heart and COVID-19

One of the main characteristics of COVID-19 is its high contagion power and rapid spread, in addition to the potential cardiovascular involvement, seen in up to 22% of hospitalized patients,1 with a mortality rate of up to 4.5 times greater in cardiac patients.2 After respiratory complications and Sepsis, cardiovascular disease is the 3rd leading cause of death associated with COVID-19.3,4 Comparing with other viral infections that cause myocarditis, these have much lower rates (<1%) of cardiovascular involvement.5 A study with rabbits found the development of biventricular dilated cardiomyopathy, hypertrophy, myocardial fibrosis and myocarditis through histopathology.6 In humans, the viral RNA was found in the cardiac muscle in up to 35% of the cases of a series of autopsies.7

Myocarditis

There is a great concern about the occurrence of myocarditis in athletes and, without proper specialized cardiological evaluation, they might be exposed to high volume and intensity of exercise during the subacute or chronic phase of the disease and, at this stage, malignant arrhythmias may occur during or even after exertion. It is estimated that 7 to 20% of sudden deaths in young athletes are due to myocarditis,13 and its diagnosis often requires complementary exams, besides clinical and electrocardiographic examination. Studies report a high rate of cardiac events in athletes with COVID-19, being identified as independent prognostic factor of mortality.8 The mechanisms of injury can be common to any severe infection, such as increased inflammatory response, but also by direct action of the virus in the cardiac tissue. Some studies call into question the ability of the virus to generate direct damage to myocytes by not detecting the virus in these cells, leading to the belief that its aggression results from the combination of several factors, such as exacerbated inflammatory response and microvascular involvement,9-11 generating disseminated intravascular coagulation, thrombosis and infarction of large and small vessels.12 The SARS-CoV-2 infects human cells binding to the angiotensin-converting enzyme 2 (ECA2), consequently increasing angiotensin-II levels and its deleterious effects, where ECA2 receptor expression is greater (cardiomyocytes, fibroblasts and pericytes, cells located in the external part of the capillary and venular endothelium), playing an important role in myocardial microcirculation damage.9

Myocardial Injury

Signs of myocardial injury, such as increased cardiac biomarkers, mainly troponin, are present in 8 to 12% of cases in general and in up to 33% of critically ill patients,6 being identified as independent prognostic factor of mortality.8 The mechanisms of injury can be common to any severe infection, such as increased inflammatory response, but also by direct action of the virus in the cardiac tissue. Some studies call into question the ability of the virus to generate direct damage to myocytes by not detecting the virus in these cells, leading to the belief that its aggression results from the combination of several factors, such as exacerbated inflammatory response and microvascular involvement,9-11 generating disseminated intravascular coagulation, thrombosis and infarction of large and small vessels.12 The SARS-CoV-2 infects human cells binding to the angiotensin-converting enzyme 2 (ECA2), consequently increasing angiotensin-II levels and its deleterious effects, where ECA2 receptor expression is greater (cardiomyocytes, fibroblasts and pericytes, cells located in the external part of the capillary and venular endothelium), playing an important role in myocardial microcirculation damage.9

COVID-19 might manifest itself in several ways, asymptomatic, mildly symptomatic (not debilitating), moderately symptomatic (debilitating) or severely symptomatic (hospitalized).8 Thus, the clinical presentation of athletes diagnosed with COVID-19 in their assessment to return to play may not raise suspicion of cardiovascular involvement.

Keywords

COVID-19, Betacoronavirus/complications; Cardiovascular Diseases/complications; Sport; Athlete; Myocarditis.

Mailing Address: Marcos Perillo Filho • Instituto Dante Pazzanese de Cardiologia - Cardiologia do Esporte - Av. Dr. Dante Pazzanese, 500. Postal Code 04012-909, Vila Mariana, São Paulo, SP – Brazil
E-mail: perillo.m@cardiol.br
Manuscript received June 23, 2020, revised manuscript June 24, 2020, accepted July 01, 2020

DOI: https://doi.org/10.36660/abc.20200652
Editorial

Perillo Filho et al.
Sports in Covid-19 Times: Heart Alert

16 Infection. Data from an analysis of 150 patients in Wuhan in China, indicates a probable incidence of 7% of myocarditis in patients with COVID-19. At the chronic phase of myocarditis between the 2nd and 12th week, lymphocytic infiltration occurs, perpetuating myocyte damage by the humoral immune response and the interstice receives intense collagen deposit, leading to the formation of fibrosis, which may lead to dilation, dysfunction and myocardial insufficiency.

Sports Return

When potential myocardial damage by COVID-19 is not considered, athletes recovered from COVID-19 with positive IgG serology may be eligible to return to their activities, according to institutional protocols. However, as well described in the literature, it is recommended that individuals diagnosed with myocarditis do not practice intense physical activity for at least 3 to 6 months. Therefore, even after recovery, life-threatening pro-arrhythmic sequelae may exist in the athlete’s heart. Systematic assessment is crucial for adequate risk stratification to avoid unexpected outcomes and an unnecessary period of absence with consequent loss of performance and skills, as well.

The kinetics of viral clearance of COVID-19 has been studied and its remaining period in the human body is still unknown. Detection of SARS-CoV-2 RNA for more than 2 months after the first symptoms and signs may occur, despite antibodies being detected on the 10th day. Thus, although it is postulated that this delayed detection is due to remnants of viral RNA, it is still unknown whether athletes with positive IgG antibodies, firstly considered immune, could be transmitting the virus to their contacts and for how long. Based on that, a minimum period of 14 days of isolation after infection is necessary, being prudent to evaluate the athlete for resumption only after 7 days without symptoms.

Sports organizations from numerous countries have started to resume collective training and even competitions, such as football, despite limited evidence, proposing wide testing protocols, periods of absence and exams to be performed in case of proven contact with SARS-CoV-2. Among the various protocols, there is no consensus on the mandatory and ideal way of post-infection cardiovascular evaluation. The WHO highlights five risk factors to sporting events organization: (1) whether the event will be based in a country with local transmission of COVID-19; (2) whether there will be a single or multiple headquarters; (3) whether athletes and spectators will be from countries with active transmission of the disease; (4) whether a large number of participants belong at-risk groups (e.g.: older than 65 years or with comorbidities); (5) whether the competition involves modalities with high risk of COVID-19 spread (e.g.: contact sports). Figure 1 illustrates the measures proposed to minimize the risk of dissemination at sporting events.

Cardiac Assessment

Assessment limited to clinical examination, ECG and biomarkers might be insufficient for myocarditis diagnosis, because the athletes could be oligosymptomatic without new ECG findings and presenting high baseline troponin levels due to training, showing no correlation with LGE on CMR. In the evaluation of 670 patients with suspected myocarditis, the presence of LGE was not necessarily accompanied by

Figure 1 – Measures to minimize the risk of dissemination of COVID-19 at sporting events. Carmody S, Murray A, Borodina M, et al. When can professional sport recommence safely during the COVID-19 pandemic? Risk Assessment and factors to consider, posted April 30, 2020. BJSM.
electrocardiographic abnormalities. The use of imaging methods is essential in this assessment, giving information about ventricular dysfunction, segmental contractility abnormalities and pericardial effusion by echocardiogram evaluation, and in addition to these, LGE and edema by CMR (Table 1).

For accurate diagnosis, risk stratification and better follow-up, CMR should be used in the suspicion of myocarditis, because in addition to a better assessment of ventricular function, it is also able to identify abnormalities of cardiac tissue, detecting the presence of edema and fibrosis. By this method, special attention should be paid to the presence of LGE, associated with a two-fold higher probability of major cardiac events (MACE), as well as their location, distribution and pattern. A greater association with MACE was demonstrated with the pattern of septal and midwall fibrosis.

CMR with T1 and T2 mapping technique is promising while assessing edema and extracellular expansion at different stages of the disease, improving accuracy of the method, especially after 2 weeks when T2 could normalize in isolation. The expansion of cellular volume, assessed by T1 mapping, when greater than 10%, was associated with a four times greater risk of death, but it is still challenging to differentiate active inflammation from chronic fibrosis by this technique.

Proposal of Cardiac Evaluation of Athletes Affected by Covid-19

Implementing or not this protocol is the responsibility of organizations, federations, clubs and medical entities, while assessing the feasibility will take into account the local and institutional reality, in terms of accessibility and costs. The proposed flowchart (figure 2) systematizes the evaluation from serological testing to the management of suspected cases of myocarditis by COVID-19, which must be evaluated according to updated recommendations about myocarditis in athletes. This article defines as mildly symptomatic those treated out of hospital without debilitating symptoms, dyspnea, chest pain or pneumonia. In this case, due to the absence of severe symptoms, it is considered that there was no significant inflammatory response and its potential deleterious effects, which makes the occurrence of myocarditis unlikely. Individuals who had pneumonia or other debilitating symptoms, but were also treated out of hospital, are considered moderately symptomatic, and those treated in hospital are considered severely symptomatic. Both profiles require evaluation for signs of myocarditis, as well in cases with a prior history or persistence of cardiovascular symptoms.

Only athletes without evidence of contact with SARS-CoV-2 (negative RT-PCR, IgM and IgG) are considered eligible...
Table 1 – Suggestive findings of myocarditis

<table>
<thead>
<tr>
<th>SUGGESTIVE FINDINGS OF MYOCARDITIS</th>
<th>Electrocardiogram</th>
<th>Stress Test</th>
<th>Echocardiogram</th>
<th>24-hour Holter</th>
<th>Cardiac Magnetic Resonance Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>New ECG findings: low voltage, AV block, arrhythmia, PR deviation, bundle branch block, ST deviation, T wave inversion beyond V1-V2 in Caucasians and V1-V4 in Afro-Caribbeans</td>
<td>ST deviation, arrhythmia, inadequate chronotropic/ hemodynamics response, exercise intolerance, loss of functional capacity, symptoms</td>
<td>Ventricular disfunction, wall motion abnormalities, pericardial effusion, dilatation</td>
<td>Arhythmia, AV block, ST deviation</td>
<td>Ventricular disfunction, wall motion abnormalities, myocardial edema, late gadolinium enhancement</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 – Symptoms profile

<table>
<thead>
<tr>
<th>SYMPTOMS PROFILE OF ATHLETES WITH PREVIOUS COVID-19</th>
<th>Asymptomatic</th>
<th>Mild Symptoms</th>
<th>Moderate/Severe Symptoms</th>
<th>Myocarditis Suspcion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory finding during protocol testing</td>
<td>Non-hospitalized, without debilitating symptoms</td>
<td>Hospitalized or without debilitating symptoms</td>
<td>Cardiovascular symptoms or suggestive findings in complementary exams</td>
<td></td>
</tr>
<tr>
<td>Detailed clinical evaluation and physical examination in search of cardiovascular signs and symptoms</td>
<td>Comprehensive clinical and laboratory evaluation by a specialist, including ECG, stress test, transthoracic echocardiogram; cardiac magnetic resonance imaging and 24-hour Holter should be considered in the suspicion of myocarditis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrocardiographic evaluation comparing to previous exam</td>
<td>Cardiac evaluation according to updated recommendations about myocarditis in athletes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress test in search of suggestive findings of cardiac involvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References


