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Abstract
Adiponectin is an insulin-sensitizing adipokine possessing multiple beneficial effects on obesi-
ty-related medical complications. This adipokine is secreted from adipocytes into the circulation 
as three oligomeric isoforms, including trimer, hexamer and the high molecular weight (HMW) 
oligomeric complex. Each oligomeric isoform of adiponectin possesses distinct biological pro-
perties and activates different signaling pathways in various target tissues. The hepato-protec-
tive activities have been demonstrated by many clinical and experimental studies. The decre-
ased level of serum adiponectin represents an independent risk factor for nonalcoholic fatty 
liver disease (NAFLD) and liver dysfunctions in humans. In animals, elevation of circulating 
adiponectin by either pharmacological or genetic approaches leads to a significant alleviation 
of hepatomegaly, steatosis and necro-inflammation associated with various liver diseases. In 
adiponectin knockout mice, there is a pre-existing condition of hepatic steatosis and mitochon-
dria dysfunction, which might contribute to the increased vulnerabilities of these mice to the se-
condary liver injuries induced by obesity and other conditions. This review aims to summarize 
recent advances on delination of the structural, molecular and cellular mechanisms underlying 
the hepato-protective properties of adiponectin. Arq Bras Endocrinol Metab. 2009;53(2):201-212.
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Resumo
A adiponectina é uma adipocitocina com ação insulino-sensibilizadora com múltiplos efeitos 
benéficos sobre as complicações clínicas da obesidade. Essa adipocitocina é secretada pelos 
adipócitos na circulação sistêmica em três isoformas oligoméricas, incluindo as formas em 
trímeros, hexâmeros e complexas de alto peso molecular (HMW). Cada forma oligomérica da 
adiponectina apresenta propriedades biológicas distintas e ativam diferentes vias de sinali-
zação celular em diversos tecidos. Suas atividades hepatoprotetoras têm sido descritas em 
vários estudos clínicos e experimentais. Em humanos, os níveis reduzidos da adiponectina sé-
rica, características da obesidade, representam um fator de risco independente para a doença 
hepática gordurosa não-alcoólica (NAFLD), incluindo variados graus de disfunções hepáticas. 
Em animais, a elevação dos níveis circulantes de adiponectina, por manipulações genéticas ou 
farmacológicas, conduz a uma atenuação da hepatomegalia, da esteatose e da necroinflama-
ção usualmente associadas a várias doenças hepáticas. No animal sem o gene da adiponec-
tina (knockout), existe uma condição preexistente de esteatose e disfunção mitocondrial que 
contribui para a vulnerabilidade desses animais aos processos de lesões teciduais hepáticos 
induzidos pela obesidade e outras condições. Esta revisão sumariza os recentes avanços na 
compreensão e caracterização dos mecanismos celulares, moleculares e estruturais das ações 
hepatoprotetoras da adiponectina. Arq Bras Endocrinol Metab. 2009;53(2):201-212.
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Adiponectina; NASH; esteatose hepática; resistência à insulina
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the 
most common type of chronic liver injury in 

many countries (1,2). NAFLD includes a spectrum of 
syndromes ranging from simple steatosis, nonalcoholic 
steatohepatitis (NASH) to fibrosis, cirrhosis and he-
patocellular carcinoma (3). The overall prevalence of 
NAFLD is 15%-40% in Western countries and 9%-40% 
in the Asian population (4), and has dramatically in-
creased over the past 15 years, mainly as a consequence 
of its close association with two major worldwide epi-
demics, obesity and type 2 diabetes mellitus (T2DM) 
(5). Mortality in patients with NAFLD is significantly 
higher than that in the age and gender-matched gen-
eral population (6). Disease progression to NASH and 
cirrhosis appears to be very slow, and only a few pa-
tients develop life-threatening advanced liver disease. 
In many cases of NAFLD, the risks of developing meta-
bolic and cardiovascular morbidities are much higher 
than of hepatic diseases (7, 8). In fact, NAFLD is con-
sidered as the hepatic manifestation of the metabolic 
syndrome, which refers to a cluster of cardiovascular 
risk factors associated with insulin resistance, including 
central obesity, hypertension, dyslipidemia and T2DM 
(9). The association between NAFLD and metabolic 
syndrome has been established in many cross-sectional 
and prospective studies (8). NAFLD significantly in-
creases the risk of diabetes and is a better predictor of 
the development of metabolic disorders than obesity 
itself (10). Recent studies have reported an association 
of NAFLD with multiple classical and non-classical 
risk factors for cardiovascular diseases (7). NAFLD 
predicts future cardiovascular events independently 
of other prognostic factors, including the component 
of metabolic syndrome. In summary, NAFLD is asso-
ciated with a future high incidence of metabolic and 
cardiovascular complications and should be considered 
beyond a hepatic disease confined to classical boundar-
ies. Understanding the disease and its management is a 
vital issue in nowadays clinical practice.

Pathogenesis of NAFLD 

Although the pathogenesis of NAFLD remains largely 
unknown, insulin resistance, oxidative stress and in-
flammation play important roles in the development 
and progression of NAFLD (11,12). Fatty liver itself is 
a status of insulin resistance. Hepatic fat accumulation 

can lead to hepatic insulin resistance, which may occur 
before the alterations in peripheral insulin actions and 
may induce peripheral insulin resistance (13,14). Insu-
lin regulates the uptake, oxidation and storage of fuel 
within insulin-sensitive tissues including the liver, skel-
etal muscle and fat. Peripheral insulin resistance impairs 
glucose uptake from blood into skeletal muscle and adi-
pose tissue; serum non-esterified fatty acid (NEFA) lev-
els may also be elevated due to the failure of insulin to 
suppress lipolysis (15,16). In the liver, insulin resistance 
is associated with increased cellular contents of fatty ac-
ids and their metabolites (fatty acyl-CoAs, diacylglycer-
ides and ceramides) (17-19). Hyperinsulinemia caused 
by insulin resistance, in the presence of increased circu-
lating levels of NEFA, enhances the hepatic uptake of 
fatty acid and promotes lipogenesis (1,20). In addition, 
defects in mitochondrial β-oxidation, enhanced fatty 
acid synthesis and impaired secretion of triacylglycer-
ide (TG)-rich very low density lipoproteins (VLDL) 
also contribute to hepatic steatosis (21-23). A grow-
ing body of evidence from animal models suggests a 
“two-hit” hypothesis responsible for the development 
of NAFLD (24-26). With this theory, the first hit is 
the occurrence of fatty liver (steatosis), followed by a 
second event leading to the development of NASH. 
The potential secondary hits include endotoxin expo-
sure, alcohol consumption and virus infections etc., 
which expand hepatic lipid stores, cause hepatocellu-
lar injury, promote oxidative stress and inflammation 
in the liver. Lipotoxicity and the release of cytokines 
and other pro-inflammatory mediators play important 
roles during this process. Moreover, inflammation in 
the development of NASH can further impede insulin 
signaling (27). Histologically, NASH is manifested by 
hepatocyte nuclear ballooning, hepatocyte apoptosis, 
Mallory’s hyaline and inflammation foci (28). NAFLD 
patients have a high circulating FFAs level correlating 
with the severity of liver disease. Overloaded FFAs may 
exhibit lipotoxicity by inducing the expression of proin-
flammatory cytokines such as tumor necrosis factor al-
pha (TNF-α) (29).

Visceral obesity, adipokines and NAFLD

Obesity, especially visceral obesity, is frequently associ-
ated with NAFLD and their coexistence in the same 
individual increases the likelihood of having more ad-
vanced forms of liver disease (30,31). NAFLD occurs 
in 60% ~95% of people with obesity (32). Visceral fat is 

Adiponectin and fatty liver diseases
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a key mediator of NASH and is strongly associated with 
alanine aminotransferase (ALT) levels in the nondia-
betic obese population  (31, 33, 34). The importance 
of visceral fat in the pathogenesis of NAFLD has also 
been shown in many animal models including fa/fa 
obese rats. In these animals, surgical resection of intra-
abdorminal fat depots reverses hepatic insulin resistance 
and steatosis (35). 

Recent evidence suggests that visceral adipose tis-
sue is a metabolic and inflammatory organ that signals  
and modulates the action and metabolism of the brain, 
liver, muscle and cardiovascular system (36,37). The 
imbalanced production of pro- and anti-inflammatory 
adipokines secreted from fat contributes to the patho-
genesis of NAFLD (38). Modulation of endocrine/
immune/inflammatory interactions of adipose tissue 
may provide novel therapeutic (pharmacologic) targets 
for the treatment of NAFLD. For example, in patients 
with severe lipodystrophy, injection with leptin reverses 
nonalcoholic fatty liver diseases (39,40). However, in 
cases of NAFLD associated with obesity, serum levels 
of leptin are increased and the liver becomes refractory 
to the “anti-steatotic” effects of leptin (41-43). Leptin 
infusion is therefore unlikely to be of therapeutic val-
ues for patients with NAFLD. Tumor necrosis factor α 
(TNFα), a pro-inflammatory adipokine, interferes with 
insulin signaling and favors steatosis, and may play a 
casual role in the pathogenesis of NASH (38). Circu-
lating levels of TNFα and hepatic expression of its type 
1 receptor are increased in NASH, but could not dis-
criminate steatohepatitis from steatosis (44-46). Neu-
tralization of TNFα activity improves fatty liver disease 
in animals (47). Conversely, nutritional steatohepatitis 
can still be produced experimentally in both TNFα and 
TNFα type 1 receptor knockout mice, suggesting that 
this adipokine might not be an essential mediator of 
NAFLD (48,49). 

In contrast to leptin and TNFα, adiponectin is 
more closely implicated in the pathogenesis of NA-
FLD/NASH. Unlike other adipokines, serum levels of 
adiponectin are decreased in obesity and its associated 
medical complications (50). A negative association be-
tween serum levels of adiponectin and liver enzyme lev-
els has been shown in healthy subjects (51). Numerous 
epidemiological investigations in diverse ethnic groups 
have identified lower adiponectin level as an indepen-
dent risk factor for non-alcoholic fatty liver diseases and 
liver dysfunctions (37). Compared with healthy con-
trols, adiponectin levels are lower by more than 50% 

in NASH patients (52). Adiponectin expression is de-
creased by 20%~40% during the development of NA-
FLD, from simple steatosis to NASH (52,53). More-
over, NASH patients with lower levels of adiponectin 
show higher grades of inflammation, suggesting that 
adiponectin deficiency is an important risk factor for 
the development of fatty liver, steatohepatitis and other 
forms of liver injuries (52-55). In patients with T2DM, 
plasma adiponectin concentrations are inversely related 
to hepatic fat content (56). Hui and cols. have shown 
a direct relationship between hypoadiponectinemia and 
NASH independent of insulin resistance (52). Animal-
based studies have demonstrated that adiponectin pos-
sesses potent protective activities against various forms 
of liver injuries, including those induced by carbon tet-
rachloride, lipopolysaccharide (LPS)/D-galactosamine, 
pharmacological compounds, bile duct ligations and 
methionine-deficient diet etc. (57-61). In animal mod-
els of both alcoholic and nonalcoholic steatohepatitis, 
exogenous adiponectin reduces hepatomegaly, depletes 
lipid accumulation, quenches hepatic inflammation and 
decreases hepatic expression and plasma concentrations 
of TNFα (62). Adiponectin knockout mice exhibit an 
enhanced pattern of hepatic fibrosis induced by carbon 
tetrachloride (58). The lack of adiponectin expression 
could accelerate hepatic tumor formation in a NASH 
model in mice (63). Among the known adipokines, adi-
ponectin stands out for its insulin-sensitizing and anti-
inflammatory roles, and may be used as a promising 
drug candidate for the treatment of liver diseases.

Structural basis and signaling 
mechanisms underlying the hepato-
protective functions of adiponectin 

Adiponectin, also termed Acrp30, AdipoQ, apM1 or 
GBP28, was originally identified by four independent 

groups in both mice and humans (64-67). This adi-
pokine has attracted much attention because of its mul-
tiple beneficial effects on a cluster of obesity-related 
metabolic and cardiovascular dysfunctions. Hypoadi-
ponectinemia is a key etiologic factor contributing to 
almost all the major pathological conditions associated 
with obesity (68). The physiological functions and clin-
ical relevance of adiponectin in obesity-related medi-
cal complications have been extensively reviewed else-
where (50,69-72). In the following sections, we will 
discuss recent advances on the structural regulations of 
adiponectin as well as the molecular evidences support-

Adiponectin and fatty liver diseases
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ing the role of adiponectin as a major protective agent 
against obesity-related NAFLD.

Polymorphism of the multimeric structures of 
adiponectin 

A unique feature of adiponectin structure is its ability to 
assemble into several characteristic oligomeric isoforms, 
including trimer (low molecular weight, LMW), hex-
amer (middle molecular weight, MMW) and the oligo-
meric complexes consisting of 18 protomers or above 
(high molecular weight, HMW). (73). Adiponectin 
presents predominantly in the circulation as these three 
oligomeric complexes (74-79). The trimeric adiponec-
tin is the basic building block of adiponectin. The sub-
units in the trimer are associated via hydrophobic in-
teractions. The hexameric adiponectin is formed by two 
LMW adiponectin molecules linked by disulfide bonds. 
The structural properties of the HMW adiponectin re-
main poorly characterized due to the heterogeneous na-
ture of this isoform. Analysis of adiponectin oligomers 
by non-denaturing and non-heating gel electrophoresis 
shows that the human HMW adiponectin composes 
of a mixture of 18-30 mers, or even larger molecular 
weight species (73,78,80,81). Dynamic light scattering 
and transmission electron microscopy shows that the 
bovine HMW adiponectin forms a bouquet-like archi-
tecture resembling that of complement C1q (82). Six 
globular objects can be seen atop a thin stalk, which 
presumably correspond to the six LMW adiponectins. 
The stalks bunch together in a manner that is consis-
tent with the requirement for NH2-terminal disulfide 
bonding. The side views of HMW adiponectin suggest 
a conical structure of the oligomer with the COOH-
terminal portion forming the base. Interestingly, these 
globular domains are arranged in a tight ring. This 
circular arrangement might enable polyvalent interac-
tions of the globular domains with a single receptor. 
Recently, the HMW oligomeric structures formed by 
multiples of adiponectin trimers have been determined 
by single-particle analysis of electron micrographs (83). 
Pleiomorphic ensembles of collagen-like stretches of 
the trimers lead to a highly dynamic structure of HMW 
adiponectin, which could be classified into two major 
classes, the fan-shaped (class I) and bouquet-shaped 
(class II). In both of these conformations, the globular 
domains assume a variety of arrangements, covering an 
area of up to 4.9 × 105 Å2 and up to 320Å apart. The 
conformational flexibility of the HMW oligomer can 

allow it to access and cluster disparate target ligands or 
receptors, which may be necessary to activate cellular 
signaling leading to the remarkable functional diversity 
of adiponectin.

The HMW adiponectin as a major bioactive form in 
liver

Obese individuals have different distribution of adi-
ponectin oligomers compared with lean control. Rela-
tively lower content of HMW adiponectin is closely as-
sociated with obesity-related metabolic complications 
(81). The increases in the ratio of HMW versus total 
adiponectin, but not total adiponectin level per se, cor-
relate well with improved insulin sensitivity during 
treatment with the insulin-sensitizing drug thiazolidin-
ediones in both diabetic mice and patients with T2DM. 
On the other hand, weight reduction by either calorie 
restriction or gastric bypass surgery results in a selec-
tive elevation of the HMW adiponectin, but not the 
trimeric and hexameric complexes (84-86). In line 
with these data from the epidemiological studies, there 
is also genetic evidence supporting the role of HMW 
adiponectin as a major insulin-sensitizing isoform in 
humans. Kadowaki and colleagues have reported two 
rare mutations (G84R and G90S) located within the 
collagenous domain which are closely associated with 
insulin resistance and T2DM (76). Interestingly, sub-
jects with either of these mutations have extremely low 
levels of HMW adiponectin. Moreover, recombinant 
adiponectin with either of these mutations expressed in 
NIH-3T3 fibroblasts failed to form HMW oligomers. 
An independent inverse association exists between ALT 
and HMW adiponectin (87). Taken together, these 
epidemiological and genetic data suggest that the ben-
eficial effects of adiponectin in humans might be medi-
ated primarily by its HMW isoform, and the deficiency 
of this oligomer is an important etiological factor that 
links obesity with its medical complications. 

Evidence from both in vitro and animal-based stud-
ies also supports the role of the HMW oligomer as the 
major active form in mediating the multiple actions of 
adiponectin in the liver tissue. Recombinant adiponec-
tin produced from mammalian cells, which can form 
the HMW oligomers, potently decreases hyperglycemia 
in diabetic mice through inhibition of hepatic glucose 
production (88). However, bacterially generated full-
length adiponectin, which lacks the capacity to form 
the HMW adiponectin, is almost inactive. Intravenous 

Adiponectin and fatty liver diseases
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injection of the HMW adiponectin, but not the hexa-
meric adiponectin, leads to a dose-dependent decrease 
in serum glucose levels (81). The formation of the 
HMW oligomers is obligatory to mediate the insulin-
sensitizing effects of adiponectin on suppression of he-
patic gluconeogenesis in primary rat hepatocytes (80). 
Acute injection of recombinant adiponectin enriched 
with the HMW oligomers results in a marked activa-
tion of AMP-activated kinase (AMPK) in the liver, 
while chronic infusion with this protein leads to pro-
longed alleviation of hyperglycemia and insulin resis-
tance in db/db diabetic mice (89). These animal-based 
evidences are consistent with the clinical observations 
showing that the ratio of HMW/total adiponectin 
correlates closely with hepatic insulin sensitivity (81). 
The role of the HMW oligomer as a predominant ac-
tive form of adiponectin mediating its hepatic actions 
is also supported by two recent independent reports 
demonstrating that the insulin-sensitizing effects of the 
PPARγ agonists thiazolidinediones were diminished in 
ob/ob obese mice with the targeted mutation of the adi-
ponectin gene (90,91). Notably, treatment with thiaz-
olidinediones has been shown to cause a selective eleva-
tion of the HMW oligomeric adiponectin (79,81). In 
addition to the hepatic insulin-sensitizing activity, the 
HMW adiponectin has also been suggested to be the 
most potent isoform for alleviation of fatty liver disease 
in high fat diet-induced obese mice (92), and inhibi-
tion of apolipoprotein B and E release from human he-
patocytes (93). HMW adiponectin dose-dependently 
suppressed growth factor-induced hepatic stellate cell 
proliferation (94). Together, these data suggest that 
the beneficial effects of adiponectin in the hepatic tis-
sue are mediated predominantly by its HMW form.

Receptors and postreceptor signaling pathways 
mediating the hepato-protective functions of 
adiponectin

Two adiponectin receptors (adipoR1 and adipoR2) have 
been identified and found to be expressed in various tis-
sues (95). AdipoR1 is abundantly expressed in skeletal 
muscles, whereas adipoR2 is present predominantly in 
the liver, suggesting a role of adipoR2 in hepatic adi-
ponectin signaling (68,96). The physiological roles of 
adipoR1 and adipoR2 have recently been investigated by 
several laboratories in adipoR1/2 knockout mice. Both 
adipoR1 and adipoR2 knockout mice exhibit mild insulin 
resistance (97). In adipoR1/R2 double knockout mice, 

the binding and actions of adiponectin are abolished, re-
sulting in increased tissue triglyceride content, inflamma-
tion and oxidative stress (97). AdipoR2 knockout mice 
reported by Liu and cols. displayed reduced diet-induced 
insulin resistance, but promoted T2DM (98). These data 
support the physiological roles of adipoR1 and adipoR2 
as the predominant receptors for adiponectin in the reg-
ulation of glucose and lipid metabolism. Despite this in-
formation, the detailed roles and expression of adipoRs 
in NAFLD are not conclusive (99-102). 

Adiponectin has been shown to stimulate AMP-
activated protein kinase (AMPK) in almost all its major 
target tissues, including skeletal muscle, liver, heart, 
endothelium, adipocytes and brain (75,89,103-106). 
Notably, most biological effects of adiponectin in these 
target tissues are abrogated by expression of a domi-
nant negative version of AMPK, supporting its obliga-
tory role in mediating adiponectin’s multiple actions. 
The precise mechanisms whereby adiponectin activates 
AMPK through its receptors remain to be determined. 
APPL1, an adaptor protein containing pleckstrin ho-
mology domain, phosphotyrosine binding domain 
and leucine zipper motif, appears to be a key signal-
ing molecule that couples adiponectin receptors and its 
downstream AMPK activation (103,107). Adiponec-
tin enhances the binding of APPL1 to both adipoR1 
and adipoR2, and these interactions are essential for 
subsequent phosphorylation and activation of AMPK. 
Studies also indicate the important role of APPL1 in 
the metabolic syndrome (108,109). AMPK activation 
in turn phosphorylates acetyl Coenzyme A carboxylase 
(ACC) and attenuates ACC activity. Inhibition of ACC 
reduces lipid synthesis and enhances fatty acid oxida-
tion by blocking the production of malonyl-CoA, an 
allosteric inhibitor of carnitine palmitoyl transferase 1 
(CPT-1), the rate-limiting enzyme in fatty acid oxida-
tion. In addition, activation of AMPK downregulates 
the expression of sterol regulatory element-binding 
protein 1c (SREBP1c), a transcription factor that 
regulates cholesterol and lipid synthesis. Reduction 
of SREBP1c results in downregulation of genes in-
volved in lipogenesis, including ACC, fatty acid syn-
thase (FAS), and glycerol-3-phosphate acyltransferase 
(GPAT) (104,110,111). 

PPARα is a transcription factor controlling the tran-
scription of a panel of genes encoding fatty acid oxida-
tion enzymes, such as FATP, acyl-CoA oxidase (ACOX) 
and long chain acyl-CoA synthetase (LCAS). Adiponec-
tin stimulates PPARα activity possibly through PPARγ 

Adiponectin and fatty liver diseases
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coactivator-1α (PGC-1α) (112). These signaling path-
ways mediated by adiponectin lead to enhanced fat 
oxidation, reduced lipid synthesis and prevention of he-
patic steatosis (Figure 1).

IL6 production stimulated by LPS and induces IL10 ex-
pression. The attenuation of proinflammatory cytokine 
production by adiponectin is mediated in part by attenu-
ating the translocation of NFκB to the nucleus (120). 
Adiponectin can also induce the expression of anti-in-
flammation cytokine interleukin-1-receptor antagonist 
(IL-1RA) (121,122). The anti-inflammatory effects of 
adiponectin in macrophages may involve Toll-like recep-
tor-4 (TLR-4) signaling pathway. However, the mecha-
nisms by which adiponectin suppresses TLR-4 mediated 
responses are not well understood (123). 
The transformation of hepatic stellate cells (HSC) into 
myofibroblasts is the key step initiating the fibrotic 
process during liver injury (124,125). The activated 
hepatic stellate cells increase the accumulation of ex-
tracellular matrix. Both adiponectin receptors, adipoR1 
and adipoR2, are expressed in HSC. Adiponectin treat-
ment maintains HSC quiescence, inhibits platelet-de-
rived growth factor (PDGF)-stimulated proliferation 
and migration of human HSCs, and reduces the secre-
tion of monocyte chemoattractant protein-1 through 
AMPK-dependent mechanisms (94,125,126). Addi-
tionally, adiponectin also regulates hepatic expression 
of TGFβ1, a pro-fibrotic factor involved in HSC acti-
vation (58,127). Inhibition of adipoR2 expression by 
short hairpin RNAi-expressing adenovirus can induce 
TGFβ1 expression, and overexpression of adipoR2 di-
minishes TGFβ1 mRNA level. 

Regulatory role of adiponectin on mitochondria 
activities

Mitochondrial dysfunction represents a central mecha-
nism linking obesity with associated metabolic compli-
cations (128). In patients with NASH, the hepatic mi-
tochondria exhibit ultrastructural lesions and decreased 
activity of the respiratory chain complexes (129,130). 
In this condition, the decreased activity of the respira-
tory chain results in accumulation of reactive oxygen 
species (ROS) that oxidize fat deposits to form lipid 
peroxidation products, which in turn, cause steatohepa-
titis, necrosis, inflammation and fibrosis. The increased 
mitochondrial ROS formation in steatohepatitis could 
directly damage mitochondria DNA (mtDNA) and re-
spiratory chain polypeptides, induce NFκB activation 
and the hepatic synthesis of TNFα (131). Oxidative 
phosphorylation reactions mediated by mitochondria 
respiratory chain (MRC) complexes are directly in-
volved in regulating intracellular ROS activities and 

Adiponectin and fatty liver diseases

Figure 1. A summary of multiple signaling pathways that mediate the anti-steatotic 
effects of adiponectin. 
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Cellular mechanisms contributing to the anti-
inflammatory activities of adiponectin in NAFLD

Inflammatory cytokines are key mediators of hepatic 
inflammation, cell death, fibrosis, as well as regenera-
tion after massive or focal liver injury (38,113). Adi-
ponectin levels are negatively associated with mediators 
of inflammation, including IL-6 and C-reactive protein 
(CRP); but positively related to anti-inflammatory cy-
tokine IL-10 (114,115). It suppresses TNF-α functions 
via inhibition of its expression and antagonizing its ac-
tivities (61,62,116,117). In the liver, cytokines such as 
interleukin-6 (IL-6) and TNFα, are mainly produced 
from Kuppfer cells and hepatic stellate cells (HSC), and 
partly from inflamed hepatocytes (52,118,119). Adi-
ponectin ameliorates NASH and liver fibrosis through 
suppressing the activation of Kupffer cells and hepatic 
stellate cells (HSC) (Figure 2). In porcine blood-derived 
macrophages, adiponectin suppresses both TNFα and 
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Figure 2. A summary of multiple pathways underlying the protective effects of adiponectin against liver injury. 

Adiponectin

AdipoR2

Fibrogeneis anti-inflammation proinflammation

Inflammation

Hepatocyte injury/apoptosis

Fibrosis

SOD1, catalase
anti-oxidation

Activated
HSC

Scar
matrix

Activated
Kupffer cell

Kupffer 
cell

Quiescent
HSC

Hexamer
(MMW)

Hexamer
HMW

UCP2

Respiration chain

CRP, IL-6, TNF-a
IL-8, INFγ

IL-10
IL-1RA

PDGF-BB
TGFb1

ROS

Adiponectin and fatty liver diseases

preventing accumulation of lipids and lipid peroxida-
tion products in the liver. 

We have found that mice without adiponectin show 
an increased lipid accumulation even under normal 
chow feeding. This pre-existing hepatic steatotic condi-
tion might be the direct consequence of dysregulated 
mitochondria functions  (117). Adiponectin treatment 
restores the MRC activities, decreases the levels of mi-
tochondrial lipid peroxidation products through regu-
lating hepatic mitochondrial functions, which might 
represent a common mechanism underlying the multi-
ple beneficial activities of this hormone in various obe-
sity-related pathologies. Moreover, we have provided 

evidence supporting an essential role of uncoupling pro-
tein 2 (UCP2), a mitochondria inner membrane trans-
porter, in mediating the beneficial effects of adiponectin 
on MRC activities. The protein and mRNA levels of 
UCP2 are decreased in the liver tissues of adiponectin 
knockout mice and can be significantly up-regulated by 
adiponectin treatment. Over-expression of adipoR2 up-
regulates mRNA levels of UCP2, catalase, and super-
oxide dismutase 1 in the liver (97). Furthermore, the 
effects of adiponectin on the MRC activities are dra-
matically attenuated in Ucp2-deficient mice, suggesting 
that the increased UCP2 expression might be obligato-
ry for adiponectin to elicit its activities on mitochondria 
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functions (Figure 2). It is known that UCP2 possesses 
anti-oxidant activities through inhibition of ROS pro-
duction from mitochondria (132). It can also inhibit 
the production of pro-inflammatory cytokines in both 
macrophage and Kupffer cells (133). A growing body 
of evidence suggests that UCP2 may play a beneficial 
role in various stages of fatty liver diseases (133,134). 
These results suggest the existence of a reciprocal rela-
tionship between uncoupling proteins and adiponectin. 
However, the detailed signaling mechanisms underly-
ing adiponectin-induced UCP2 expression are not clear 
and warrant further investigations. 

Elevation of adiponectin production as a 
therapeutic strategy for the treatment 
of NAFLD 

To date, there have been very few effective drug treat-
ments for NAFLD and NASH. Early diagnosis and 
management of the underlying condition remains the 
mainstay of treatment. The present “gold standard” 
for treatment of NAFLD is weight reduction or a re-
duction of central obesity (4). These “life-style adjust-
ment” or anti-obesity measures (including bariatric sur-
gery) impressively reduce liver cell injury, inflammation 
and hepatic fibrosis, as well as steatosis (135,136). The 
potential for correcting steatosis by dietary or pharma-
cological approaches should provide a sound therapeu-
tic approach for the treatment of steatosis and steato-
hepatitis. Strategies to block oxidative stress are of great 
interest, with some evidence that ALT normalization or 
histological improvement occurs with vitamin E (alone 
or with vitamin C or pioglitazone) and betaine (137). 
However, more definitive studies are needed before 
these or other antioxidants and antifibrotic agents (in-
cluding silymarin) can be routinely recommended. 

Adiponectin and its agonists might represent emerging 
therapeutic agents for the treatment and/or prevention 
of liver dysfunctions. Adiponectin replacement therapy is 
not yet available as a treatment option. Pharmacological 
intervention aimed at elevating adiponectin production 
might hold promise for the treatment and/or prevention 
of NAFLD. We have recently reported the identification 
of two structurally related natural compounds (astragalo-
side II and isoastragaloside I) from the medicinal herb 
Radix Astragali that possess such an activity (138). Astra-
galoside II and isoastragaloside I selectively increase adi-
ponectin secretion in primary adipocytes without any ob-
vious effects on a panel of other adipokines. Furthermore, 

an additive effect on induction of adiponectin production 
has been observed between these two compounds and 
rosiglitazone. Chronic administration of astragaloside II 
and isoastragaloside I in both dietary and genetic obese 
mice significantly elevated serum levels of total adiponec-
tin and selectively increased the composition of its high 
molecular weight oligomeric complex. These changes are 
associated with an alleviation of hyperglycemia, glucose 
intolerance and insulin resistance. These results suggest 
that pharmacological elevation of circulating adiponectin 
alone is sufficient to ameliorate insulin resistance and dia-
betes. The two natural compounds might also provide 
the lead as a novel class of therapeutics for obesity-related 
diseases, such as NAFLD.

Conclusion remarks 

Adiponectin is an abundant adipocyte-derived hormone 
with well established anti-inflammatory and insulin sen-
sitizing properties. The significance of adiponectin in 
protecting obesity-related NAFLD has been increasing-
ly recognized. Despite the knowldege advances made in 
recent years, the detailed molecular and cellular mecha-
nisms underlying its hepato-protective functions remain 
largely uncharacterized. Nevertheless, adiponectin-based 
therapeutics for NAFLD represent a promising area for 
further investigation. 
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