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ABSTRACT

The calcium-sensing receptor (CASR) adjusts the extracellular calcium set
point regulating PTH secretion and renal calcium excretion. The receptor is
expressed in several tissues and is also involved in other cellular functions
such as proliferation, differentiation and other hormonal secretion. High
extracellular calcium levels activate the receptor resulting in modulation of
several signaling pathways depending on the target tissues. Mutations in
the CASR gene can result in gain or loss of receptor function. Gain of func-
tion mutations are associated to Autossomal dominant hypocalcemia
and Bartter syndrome type V, while loss of function mutations are associ-
ated to Familial hypocalciuric hypercalcemia and Neonatal severe hyper-
parathyroidism. More than one hundred mutations were described in this
gene. In addition to calcium, the receptor also interacts with several ions
and polyamines. The CASR is a potential therapeutic target to treatment
of diseases including hyperparathyroidism and osteoporosis, since its inter-
action with pharmacological compounds results in modulation of PTH
secretion. (Arq Bras Endocrinol Metab 2006;50/4:628-639)
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RESUMO

O Receptor Sensor de Cálcio e Doenças Associadas.
O receptor sensor de cálcio (CASR) ajusta o set point do cálcio extracelu-
lar através da regulação da secreção de PTH e da excreção renal de cál-
cio. O receptor é expresso em diversos tecidos e também está envolvido
em outras funções celulares como proliferação, diferenciação e secreção
de outros hormônios. Concentrações altas de cálcio extracelular ativam o
receptor resultando em modulação de inúmeras vias de sinais intracelu-
lares dependendo do tecido-alvo. Mutações no gene do CASR podem
resultar em ganho ou perda de função do receptor. Mutações com
ganho de função são associadas à Hipocalcemia autossômica domi-
nante e à Síndrome de Bartter tipo V, enquanto que mutações com perda
de função são associadas à Hipercalcemia hipocalciúrica familiar e ao
Hiperparatireoidismo neonatal grave. Mais de cem mutações foram
descritas neste gene. Além do cálcio, o receptor também interage com
inúmeros íons e poliaminas. CASR é um alvo terapêutico potencial para
tratamento de doenças incluindo hiperparatireoidismo e osteoporose, pois
a sua interação com compostos farmacológicos resulta em modulação
da secreção de PTH. (Arq Bras Endocrinol Metab 2006;50/4:628-639)
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ELECTROPHYSIOLOGICAL STUDIES SHOW that para-
thyroid cells possess a cell surface [Ca2+

o] sensing
mechanism that results in changes in phosphoinositide
turnover and cytosolic calcium to regulate PTH secre-
tion (1). Extracellular calcium regulates itself by serv-
ing as a first messenger and interacting with its recep-
tor, the calcium-sensing receptor (CASR) on target
tissues. The receptor was cloned in 1993 from bovine
parathyroid (BoPCAR1) by expression cloning in
Xenopus laevis oocytes and is a member of the G pro-
tein-coupled receptor super family (2). High calcium
levels activate the CASR in the parathyroid cell surface
to inhibit PTH secretion, and in the kidney to increase
calcium excretion (3).

STRUCTURE OF THE CALCIUM-SENSING RECEPTOR

The human CASR gene is located on chromosome
3q13.3-21 (4,5) and spans over 50 kb of genomic DNA.
It has a coding region of 3234 bp, which is contained
within 6 exons (6). The human CASR is ~120 kDa pro-
tein, consisting of 1078 amino acid, with 612 amino acids
in the extracellular domain (ECD), 250 amino acids of
which comprise seven transmembrane spanning domains
(TM), intracellular (ICL) and extracellular loops (ECL),
and 216 amino acids of a long C-terminus cytoplasmic
tail (ICD) (6). The CASR belongs to the metabotropic
glutamate receptor subfamily, which comprises the
metabotropic glutamate receptors (mGluR) (7), the
GABAB receptor (8), the Vomero-nasal (pheromone)
receptors (9), the taste receptors (10), the GPRC6A
receptor (11) and five orphan receptors (12,13).

Studies, either with CASR cDNA transiently
transfected in HEK293 cells (14) or expressed
endogenously in rat inner medullary collecting duct
endosomes (15), show that the CASR form homod-
imers via intermolecular disulfide linkages within the
ECD. Dimers are the most abundant species present
on the cell surface and intermolecular interactions
within the dimeric CASR are important for receptor
function (16,17). The ECD of the CASR contains
nine potential N-linked glycosylation sites (6). The
native CASR, as well as recombinant receptors trans-
fected in HEK293 cells, present as three forms: 1) a
120 kDa band, which represents the non glycosylated
species; 2) a 140 kDa band, which represents the
immature glycosylated receptor; and 3) a 160 kDa
band, which is the mature fully glycosylated receptor
(18). Although the immature glycosylated receptor
can reach the plasma membrane to a low extent, only
the fully glycosylated receptor is functional (19,20).

Calcium binding sites
Due to the lack of a high-affinity ligand binding assay
for the CASR, all the positions where calcium binds
are unknown. Also, it is not known how many calcium
ions bind to each receptor since there is the possibility
of different affinity of each ligand binding domain for
the ligand, cooperativity between the ligand binding
sites and dimerization of the receptor (21). The phar-
macology of the CASR is unusual for a receptor, as it
only responds to the ligand in the millimolar ion con-
centration range, suggesting low affinity of the recep-
tor for [Ca2+

o] (22). However, this affinity range of
the receptor is of physiological relevance as the free
[Ca2+] range is 0.75 to 2.0 mM for extracellular fluids
(22). The ECD of the CASR has homologous regions
that align with the mGluRs and the related bacterial
periplasmic amino acid binding protein, suggesting
that the CASR might have evolved from an ancient
family of cell-surface proteins binding essential extra-
cellular solutes, and suggesting the existence of addi-
tional ion-sensing receptors (23). The Venus flytrap
model is the proposed model of ligand receptor inter-
action for the metabotropic glutamate receptor family
(24). In this model two ligand-bound forms have been
observed: an open conformation with the ligand ini-
tially bound to one ligand pocket in the large ECD
with low affinity, and a closed form in which the lig-
and binds to a second domain stabilizing a high-affin-
ity closed conformation, enclosed within the cleft. The
liganded N-terminal segment interacts with the mem-
brane-associated domain to generate a signal (24).
Alignment of the extracellular domain of the CASR
with the metabotropic glutamate receptor and the
related bacterial amino-acid binding protein suggested
that Ser 147 and Ser 170 correspond to residues in the
binding pockets in the CASR (25). Further mutation
analysis associated to molecular modeling studies indi-
cated that calcium interact with polar residues in the
binding pockets in the ECD of the receptor, with
residues Ser 170, Asp 190, Gln193, Ser 296 and Glu
297 directly involved in Ca2+ coordination and
residues Tyr 218 and Phe 270 and Ser 147 contribut-
ing to complete the coordination (26).

Calcium-sensing receptor agonists
Although calcium is the endogenous ligand for the
CASR, it also shows affinity for a variety of di-, tri-, and
polyvalent cations in vitro such as Mg2+, Ba2+, Sr2+, Gd3+,
La3+, neomycin, spermine, and protamine (6). The rank
order of potency of some agonists is: Gd3+ > neomycin >
Ca2+ > Mg2+, with a half-maximal response (EC50) of 20
µM, 70 µM, 3 mM and 10 mM, respectively (2). The
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physiological relevance of the interaction of CASR with
ions other than Ca2+ is unknown. In addition to cations,
studies suggest that the CASR also senses sodium and
ionic strength in parathyroid cells (27,28).

CALCIUM-SENSING RECEPTOR SIGNALING

When BoPCaR1 is expressed in Xenopus laevis oocytes,
agonists elicit an increase in inositol 1,4,5-trisphosphate,
which is completely blocked by treatment with pertussis
toxin, indicating that the response is mediated through
Gαi or Gαo (2). However, in bovine parathyroid cells,
high levels of [Ca2+

o] activate phospholipase C (PLC) in
a pertussis toxin-insensitive manner, suggesting that the
CASR is coupled to PLC through a member of the Gq
family (29). Interaction with Gαq is followed by activa-
tion of phospholipase Cβ, breakdown of phosphatidyli-
nositol 4,5-bisphosphate with formation of 1,2-sn-dia-
cylglycerol and of inositol 1,4,5-trisphosphate (IP3).
The accumulation of IP3 leads to the release of intracel-
lular pools of calcium contributing to intracellular sig-
naling and causing inhibition of PTH secretion through
mechanisms that remain to be fully defined (30). The
high [Ca2+

o] also induces a sustained rise in [Ca2+
i] in

parathyroid and in CASR transfected HEK293 cells
associated with activation of a Ca2+-permeable, nonse-
lective cation channel (31). Activation of the receptor
mediates different signal transduction pathways, depend-
ing on the cell line. In Chinese hamster ovary cells elicit
phosphatidylinositol and arachidonic acid responses
(32). In a mouse pituitary cell line (AtT-20) agonist-
elicited increase in inositol phosphate is pertussis toxin-
sensitive (33). In Madin-Darby canine kidney cell line,
the CASR shows interactions of the receptor with Gαi-
2, Gαi-3, and Gαq/11 (34). In the human astrocytoma
cell line U87 (35), rat oligodendrocytes (36), rat
microglia primary cultures (37), as well as in human lens-
epithelial cells (38), the CASR activates an outwards K+

channel. In rat fibroblasts, CASR was shown to mediate
cell proliferation through an increase in c-SRC and
ERK1 tyrosine kinases activity (39). In the human
colonic cell line Caco-2, low Ca2+ (via interaction with
CASR) induces proliferation and c-myc proto-oncogene
expression via PKC activation (40).

ROLE OF THE CASR IN DIFFERENT TISSUES

Regulation of parathyroid function
The highest cell surface expression levels of CASR
are found in parathyroid cells. CASR plays a crucial
role in regulating PTH secretion and the parathy-

roid cells recognize remarkably small perturbations
in the [Ca2+

o], and respond by altering the secretion
of PTH (22). [Ca2+

o] has an inverse steep sigmoidal
relationship with PTH secretion, and most of the
sensing of [Ca2+

o] in parathyroid cells occurs over
changes in free [Ca2+] of approximately 0.25 mM
(22). The set point of normal human parathyroid,
defined as the calcium concentration at which PTH
secretion is half-maximal, is ~1 mM, and it plays an
important role in determining the level at which
[Ca2+

o] is set by the homeostatic system. Inactivat-
ing mutations in the CASR result in a mild increase
in the set point for [Ca2+

o]. In addition, [Ca2+
o]

exerts several other actions on parathyroid function
including modulation of the intracellular degrada-
tion of PTH, cellular respiration and membrane
voltage, but the role of the CASR in mediating these
effects is not known (31). Bovine parathyroid cells
maintained in culture for more than 24 hours reduce
dramatically their responsiveness to [Ca2+

o] (2). This
is associated with a significant reduction in mRNA
and protein levels of CASR (41).

Regulation of calcium excretion in kidney
Kidney is the major route for mineral ion excretion
from the body and plays a key role in calcium home-
ostasis. In addition to PTH, the CASR plays an impor-
tant role in regulating renal divalent mineral transport
processes by both direct (by regulating calcium and
water handling) and indirect (by modulating PTH
secretion) mechanisms (42). [Ca2+

o] modulates renal
tubular divalent mineral and water transport processes
by interacting with the CASR (42).

The CASR has been localized within several
segments of the rat tubule, but it is expressed at
highest levels in the cortical thick ascending limb
(CTAL) (43). It is found mostly on the basolateral
surface of tubular cells, but also to a lesser extent on
the apical surface (31). Elevated peritubular [Ca2+

o]
and [Mg2+

o] reduces the tubular reabsorption in iso-
lated microperfused segments of CTAL in vitro
(44). The reabsorption of Ca2+ and Mg2+ in CTAL
occurs mainly through a paracellular pathway driven
by a lumen-positive, transepithelial potential gener-
ated by the transport of Na+, K+, and Cl- by the api-
cal Na-K-2Cl co-transporter combined with recy-
cling of K+ into the lumen via an apical K+ channel
(31). While PTH acts through its receptor in the
kidney, stimulates cAMP accumulation, enhances
the co-transport activity and results in an increase of
Ca2+ and Mg2+ transport, [Ca2+

o] inhibits the activi-
ty of the apical K+ channel resulting in a decrease in
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co-transporter activity and a reduction of Ca2+ and
Mg2+ transport (31). High [Ca2+

o] in the mouse
CTAL decreases hormone-dependent cAMP accu-
mulation as a result of a direct inhibition of adenylyl
cyclase (AC) activity (45). An increase in Arginine
vasopressin (AVP)-elicited osmotic water permeabil-
ity in collecting ducts stimulates water reabsorption
selectively via aquaporin-2 (AQP-2) water channels
(46). CASR and AQP-2 were also found to co-
express in rat kidney inner medullary collecting
ducts (IMCD) suggesting a direct effect of CASR in
inhibition of AVP-elicited osmotic water permeabil-
ity and the consequent increase in diuresis (46).
CASR and Ca2+-inhibitable AC were found to co-
express and co-localize in the rat CTAL cells (47),
and cAMP synthesis is inhibited by agents coupled
to PLC or to Gαi protein-mediated process suggest-
ing that the CASR contributes to the effect observed
for high [Ca2+

o] (47). Additional evidence of the
role of CASR in regulating Ca2+ and Mg2+ transport
in CTAL is found in subjects with mutations in the
CASR gene. In subjects with FHH due to an inacti-
vating mutation in the CASR there is a PTH-inde-
pendent increase in tubular Ca2+ reabsorption (48),
while in ADH subjects there is increased urinary cal-
cium excretion (31).

Role of the calcium-sensing receptor in other
tissues
The CASR is widely distributed and is also found in
tissues that are not directly involved in calcium
homeostasis. In these tissues it appears that high
[Ca2+

o], via interaction with CASR, regulates a series
of cellular functions such as increased cell prolifera-
tion in fibroblasts (39), induction of cell differentia-
tion in keratinocytes (49) and human colon epithe-
lial cells (50), prevention of apoptosis in AT-3
prostate carcinoma cells (51), and cataract formation
in lens epithelial cell (38). CASR was detected in a
murine bone marrow-derived stromal cell line (ST2)
(52), in osteoblast-like cell lines (53) and in rabbit
mature osteoclasts (54), however its role in bone is
still debatable (55,56). In the mouse pituitary cell
line, AtT-20 cells, it was shown that the CASR was
implicated in adrenocorticotropic hormone (ACTH)
(57) and α-MSH release (58). The CASR was also
demonstrated in human insulinoma primary cul-
tures, causing released insulin upon [Ca2+

o] stimula-
tion (59), in hepatocytes stimulating bile flow (60)
and in antral gastric cells stimulating gastrin secre-
tion (61).

DISEASES ASSOCIATED WITH MUTATIONS IN THE
CASR

Disorders due to loss of the calcium-sensing
receptor function
Two autosomal disorders, Familial Hypocalciuric Hyper-
calcemia (FHH) and Neonatal Severe Primary Hyper-
parathyroidism (NSHPT), have been associated with loss
of CASR function due to inactivating mutations.

Familial hypocalciuric hypercalcemia
FHH is characterized by moderate elevations of serum
calcium concentration (hypercalcemia), lower urinary
calcium excretion (hypocalciuria) and inappropriately
normal parathyroid hormone (PTH) levels (62,63).
This is not a life-threatening condition and most of the
usual sequelae of hypercalcemia such as altered mental
status, kidney stones, decreased urinary concentrating
ability and hypertension are absent (64). Patients are
usually asymptomatic or have nonspecific symptoms
such as fatigue, weakness, painful joints and headache,
with the diagnosis only suspected after a routine bio-
chemical screening showing high blood calcium levels
(63). Interestingly, some subjects with FHH present
with an incomplete phenotype, lacking hypocalciuria.
In some families a more severe phenotype suggestive
of familiar isolated hyperparathyroidism is present
(65,66). FHH is inherited as an autosomal dominant
disorder, and all affected individuals with mutations in
the CASR gene are heterozygous for the mutation
(67). The dominant pattern of inheritance of this dis-
ease has been attributed to haploinsufficiency of the
CASR gene, where protein receptor produced by a
single normal allele cannot support normal function,
although it may suffice for survival (68).

The gene responsible for FHH was linked to
chromosome 3q 21-24 in four families (69) and later
fluorescence in situ hybridization analysis identified
the position of the gene as 3q 13.3-21 (4). Cloning of
the CASR was followed by reports of inactivating
mutations in this gene in FHH families (70,71). FHH
is a heterogeneous disease, and the disease locus seg-
regates with chromosome 3 in most of the families
(FHH type 1); however, mutations in other genes may
be responsible for similar phenotypes as the disease
also segregates to chromosome 19p13.3 (72) in one
family (FHH type 2) and 19q13 (73) in another fam-
ily (FHH type 3) (74). In this last case, besides hyper-
calcemia and hypocalciuria, affected individuals pre-
sent increase in PTH serum levels, hypophosphatemia
and osteomalacia. In view of the lack of complications,
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medical treatment for lowering the calcium level is not
indicated (75). Surgical exploration of the parathyroid
glands is also not indicated, as parathyroidectomy does
not cure the disorder (63).

Neonatal Several Hyperparathyroidism
NSHPT (76,77) represents the most severe expres-
sion of familial hypocalciuric hypercalcemia (68). In
most patients in which mutations were found in the
CASR, the two gene copies are mutated, with both
parents having passed on a mutated copy and pre-
senting with FHH. There are three reports of muta-
tions being found de novo in individuals with NSHPT
with only one copy mutated and no mutation found
in the parents (78,79). Neonatal severe hyper-
parathyroidism causes a marked elevation in serum
calcium and PTH levels. It appears very early, in the
first days of life, and the baby presents with hypoto-
nia, poor feeding, failure to thrive and respiratory
distress associated with rib cage deformities (80).
PTH concentrations are very high, associated with
calcium levels that are life-threatening (80). In severe
cases, surgical intervention is essential, with total
parathyroidectomy still being the currently accepted
method of treatment. However, there are reports of
cases where symptoms are not life threatening and
could be controlled using medical therapy to main-
tain calcium at levels compatible with normal life
(81,82).

Disorders due to gain of calcium-sensing
receptor function
An autosomal dominant hypocalcemia (ADH) and
Bartter syndrome type V have been associated with
gain of CASR function due to activating mutations in
the receptor.

Autosomal Dominant Hypocalcemia
ADH presents with a wide clinical spectrum, from
severe hypocalcemia in the neonatal period to an inci-
dental finding in adulthood (83). Associated problems
include seizures, mental deficiency, orodental prob-
lems, basal ganglia calcification, kidney stones and
renal failure (84). Individuals present with hypocal-
cemia, hyperphosphatemia, low serum PTH levels and
hypercalciuria (84). Autosomal dominant hypocal-
cemia was initially classified as familial isolated hypo-
parathyroidism, a heterogeneous group of disorders
characterized by PTH deficiency, hypocalcemia and
hyperphosphatemia. Within this group, different
modes of inheritance were identified with transmission
patterns consistent with autosomal dominant, autoso-

mal recessive, and X-linked forms. Finegold et al.
linked one form of autosomal dominant hypoparathy-
roidism to chromosome 3q13 (85) and Pollak et al.
(86) described the first activating mutation in the
CASR in a family with ADH, and the terminology was
recommended to be changed to autosomal dominant
hypocalcemia, as a direct contrast to the hypercalcemia
in FHH (87). In most individuals where mutations
have been found, familial inheritance is clear, with one
parent being affected with the same mutation (67).
However, de novo mutations found in individuals
where no mutation was found in the parents have also
been described (67). A careful treatment for this con-
dition is required, as attempts to normalize blood cal-
cium levels with regular doses of vitamin D tend to
exacerbate urinary calcium levels and increase the risk
of kidney stone and renal impairment (88). Treatment
should be limited to symptomatic patients.
Hydrochlorothiazide has been used to control hyper-
calciuria in these patients (88). Recombinant human
PTH to improve hypocalcemia symptoms has been
described, however longer follow-up studies are
required (89).

Bartter Syndrome type V
Bartter syndrome is a heterogeneous rare disease due
to deficiency in sodium and chloride absorption. Bio-
chemical profile is renal salt wasting, hypokalemic
metabolic alkalosis, elevated renin and aldosterone lev-
els with low blood pressure. In some individuals
hypercalciuria is also present. Gain of function muta-
tions in the CASR has been described in some patients
with Batter syndrome associated to hypocalcemia and
hypercalciuria (90,91). Functional studies showed that
these mutations (L125P, C131W and A843E) result
in a more severe receptor activation when compared to
other activating mutations described (90,91). Of
interest, the mutation A843E is the only constitutive
mutation described in the CASR, presenting a high
basal activity in the absence of [Ca2+

o] (92). Clinical
data in the literature may be biased towards the most
severely affected individuals in both ADH and
FHH/NSHPT and may not reflect the whole spec-
trum of the disease.

Calcium-sensing abnormalities in other 
disorders

Autoimmune hypoparathyroidism
Autoimmune hypoparathyroidism (AH) manifests
biochemically by hypocalcemia and hyperphos-
phatemia caused by a deficiency of PTH. It represents
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an integral part of type I autoimmune polyglandular
syndrome, a rare disorder characterized by the pres-
ence of AH, Addison’s disease, and mucocutaneous
candidiasis and can be associated with female primary
hypogonadism, keratopathy, alopecia, vitiligo, parietal
cell atrophy, insulin-dependent diabetes mellitus,
autoimmune hepatitis and hypothyroidism (93). In
one study, an epitope within the ECD of the CASR
was specifically recognized in 14 of 25 individuals
(56%) with AH, suggesting that the CASR is a key
antigen in directing the immune response against
parathyroid tissue in this condition (94). The mecha-
nism of the hypoparathyroidism is destruction of the
parathyroid gland due to the inflammatory reaction
and complement fixation.

Autoimmune hypocalciuric hypercalcemia
The ECD of the CASR is also antigen for antibodies
that instead of inducing parathyroid cell destruction,
interferes with the normal activation of the receptor
resulting in increase PTH levels (95). Patients may
manifest clinically with hypercalcemia, not suppressed
PTH levels and hypocalciuria similar of FHH patients.
However, it is not associated to mutation in the CASR
gene (95). In addition to the hypercalcemia, patients
may present other autoimmune disease such as thy-
roiditis, celiac sprue, psoriasis, hypophysitis, uveitis
and rheumatoid arthritis (95).

Mutations in the calcium-sensing receptor
One hundred and twelve mutations (98 missense, 6
nonsense, 8 insertion and or deletion, and 1 splice
mutation) have been described in the CASR mutation
database (http://www.casrdb.mcgill.ca) related to
FHH, NSHPT, ADH families or as de novo disease
(figure 1) (96). In addition, 6 polymorphisms were
found in samples from a normal population or in fam-
ilies with FHH and ADH in which this base pair
change was present in affected and unaffected mem-
bers and did not segregate with the disease. Fifteen
mutations were found more than once in the CASR
gene in apparently unrelated families. In several posi-
tions two different mutations were described in the
same codon with the same receptor phenotype, with
one exception. At position 297 an activation mutation
(E297D) and an inactivating mutation (E297K) were
described (26,70) confirming the crucial role of this
position on receptor activation. Most of the mutations
found in the ECD are located in the first third of the
N-terminus suggesting the importance of this region
in ligand binding. Activating mutations in the proxi-
mal 1/3 of the ECD may facilitate the ligand-binding

interaction in the different binding sites, increasing the
receptor affinity to the ligand, whereas inactivating
mutations may have the opposite effect, disrupting the
ligand binding pockets. This is supported by in vitro
functional analyses of mutations in this location that
show ligand-dependent changes in the affinity of the
receptor to extracellular calcium (67).

Mutation in the TM domain may abrogate con-
straints, tilting the TM and locking the receptor in
either an inactivating or activating conformation, as
residues in the TM7 are critical for maintaining the
receptor in an inactive conformation (97). From func-
tional analyses of receptors with gain of function, only
A843E showed the ability to activate the receptor in
the absence of the ligand (92). The other activating
mutations all showed a ligand-dependent shift of the
dose-response curves to the left. This suggests that the
mechanism of activation of the receptor in most of the
TM domain mutations is to facilitate the TMD activa-
tion, with the exception of A843E that most likely
locks the TMD in an active conformation. Inactivating
mutations resulting in total loss of function of the
receptor may also be associated to total loss of ability
of the ligand bind and activate the receptor, even
though the receptor is well expressed in the plasma
membrane or due to misfolding and retention within
the cytoplasm resulting in lack of receptor at the mem-
brane (98).

The ICD seems to be important for receptor traf-
ficking to the cell membrane and for the interaction with
intracellular proteins. Large deletion of the c-terminal
tail was associated to gain of function in an ADH family
(99). In vitro functional studies showed gain of function
and increase mutant receptor cell surface expression
level. Mutagenesis in the ICD confirms its involvement
in degradation and processing of the receptor (99).
Residues 962-981 in the c-terminal tail are critical for its
interaction with filamin A and this interaction prevents
the receptor degradation and facilitates MAPK signaling
(100). In contrast, interaction of the ICD with dorfin
targets the receptor for degradation (101).

Activating mutations
Forty activating mutations in the CASR gene have
been described. The majority is missense mutation,
with 2 deletions described. Most ADH affected indi-
viduals are heterozygous for the activating mutation.
In one family, homozygous mutation is described but
it is not associated to a more severe phenotype (99).
Clinical data from affected individuals with activating
mutations are abundant and, despite the spectrum of
severity of the phenotype for the same genotype, sim-
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ilar symptoms are found in different families.

Inactivating mutations
Of the 72 inactivating mutations in the CASR gene,
59 are missense, 6 are nonsense, 6 are insertions
and/or deletion including an Alu element insertion
(102) and one splice mutation (103). The gene
dosage effect is clear in most FHH cases, with one
mutated gene copy resulting in FHH with mild hyper-
calcemia and two mutated copies resulting in NSHPT,
a more severe phenotype that manifests very early in

life with severe hypercalcemia, bone demineralization
and failure to thrive (68). However, the three cases of
de novo NSHTP reported in the literature were he-
terozygous for missense mutations located in the
extracellular domain, with only one mutated allele and
no mutation found in the parents (79,104). One indi-
vidual with de novo NSHPT was heterozygous for a
previously described mutation in a FHH family (79).

Polymorphisms
Six polymorphisms were found in the CASR gene: one

Figure 1. Topography and positions of mutations in the CASR. Symbols  indicate positions with one inactivating mutation,
positions with two different inactivating mutations, positions with one activating mutation, positions with two different

activating mutations and indicate positions with polymorphisms. Adapted from D’Souza-Li in CASR mutation database,
1999. Reproduced with permission.

"
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in intron 5 just before exon 6 (IVS 5 -88 t/c) and the
remaining five in exon 7 in the coding region (one in the
6th TM [A/T826], one in the 7th TM [C/S851], and
three in the ICD [A/S986, R/G990 and Q/E1011]).
The polymorphism in intron 5, IVS 5 -88 t/c, is very
common (105) and, when analyzed in a large group of
normal and affected individuals, no correlation was
found between this mutation and the incidence of
parathyroid adenoma or diabetes (106). The A/T 826
mutation was initially found in 4 parathyroid adenomas
(107). Further analysis showed the same change in 16%
of 50 normal subjects’ samples (108). The C/S 851 was
found in an ADH family in both affected and unaffected
members (109). They also found another mutation in
this family (A116T), which segregates with the disease,
and concluded that C/S 851 was a rare polymorphism.
The frequency of the 3 common polymorphisms in the
cytoplasmic tail varies in different populations. In a large
series in a Caucasian population the incidence for
A/S986 was 24%, for R/G990 was 4% and for
Q/E1011 was 3% within 377 unrelated DNA samples
(110). In addition, a study analyzing serum calcium lev-
els in samples from a normal population found that the
homozygous polymorphism 986S was associated to
higher serum calcium levels when compared to the het-
erozygous form, while the homozygous 986A had the
lowest calcium levels (110,111).

INTERACTION OF THE CASR WITH 
PHARMACOLOGICAL COMPOUNDS

Calcimimetics
The CASR is also a target for pharmacological com-
pounds that act synergistically with calcium as positive
allosteric modulators of the receptor, such as NPS R-
568 and cinalcalcet (112,113). However, these com-
pounds require the presence of calcium and act by
increasing the sensitivity of the receptor to [Ca2+

o]
(114). Their interaction sites are in the TMD of the
receptor with Glu 837 critical for their action (115).
Clinical studies using a calcimimetic in secondary
hyperparathyroidism showed significant reduction on
PTH, and in the calcium x phosphate product levels in
patients treated for 26 weeks (116). Cinacalcet was
approved by the US FDA for the treatment of sec-
ondary hyperparathyroidism (113). Other potential
uses for calcimimetics are co-adjuvant in the treatment
of hyperparathyroidism and parathyroid carcinoma.

Calcilytic
Compounds that interact with the CASR as negative
allosteric modulators have also been developed, such

as NPS-2143 (117) and compound 1 (118). These
compounds are potent CASR antagonists resulting in
transient increase PTH secretion and bone formation
(117). Calcilytic compounds are potential therapeutic
agents for the treatment of osteoporosis, since they
can reproduce the anabolic effect in bone of transitory
increase in PTH.

CONCLUSION

The CASR plays an important role in regulating
[Ca+2

o]. The receptor is more versatile than ever
expected, being involved in a variety of cellular func-
tion. It is also target to new pharmacological com-
pounds that modifies its function with potential ther-
apeutic applications.
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