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ABSTRACT | This review is intended to describe the thera-
peutic approaches for corneal blindness, detailing the steps and 
elements involved in corneal wound healing. It also presents  
the limitations of the actual surgical and pharmacological stra-
tegies used to restore and maintain corneal transparency in terms 
of long-term survival and geographic coverage. In addition, 
we critically review the perspectives of anabolic agents, including 
vitamin A, hormones, growth factors, and novel promitotic 
and anti-inflammatory modulators, to assist corneal wound 
healing. We discuss the studies involving nanotechnology, 
gene therapy, and tissue reengineering as potential future 
strategies to work solely or in combination with corneal 
surgery to prevent or revert corneal blindness.

Keywords: Blindness; Corneal diseases; Corneal transplantation; 
Genetic therapy; Cell- and tissue-based therapy; Stem cells

RESUMO | O presente trabalho traz uma revisão das abordagens 
terapêuticas para a cegueira da córnea. O estudo detalha as etapas 
e os elementos envolvidos na cicatrização da córnea. Ele mostra 
as limitações das estratégias cirúrgicas e farmacológicas usadas 
para restaurar e manter a transparência da córnea em termos de 
sobrevida a longo prazo e alcance geográfico. As perspectivas 
dos agentes anabólicos, incluindo vitamina A, hormônios, fatores 
de crescimento e novos moduladores pró-mitóticos e anti-in-
flamatórios para auxiliar a cicatrização da ferida na córnea, são 

revisadas criticamente. Aqui, apresentamos estudos envolvendo 
nanotecnologia, terapia gênica e reengenharia de tecidos como 
possíveis estratégias futuras para atuar de maneira isolada ou 
combinada com a cirurgia da córnea para prevenir ou reverter 
a cegueira corneana.

Descritores: Cegueira; Doenças da córnea; Transplante de córnea; 
Terapia genética; Terapia baseada em transplante de células e 
tecidos; Células-tronco

INTRODUCTION

In the first part of this review, we challenge the com-
mon sense of three assumptions concerning corneal 
blindness and reinforce that a) corneal blindness is not 
a minor epidemiologic problem; b) although the major 
causes are predictable, the current prevention measures 
against corneal blindness are not followed or not effec-
tive; and c) corneal transplantation, which is the major 
therapeutic strategy, is limited in terms of access and 
long-term effectiveness, which is because approximately 
180,000 corneal transplants are performed per year 
across the world; however,16 million people are blind 
due to corneal diseases and the average half-life of a 
corneal transplant is lower than 15 years(1-4). In the se-
cond part, we review alternative therapeutic approaches 
to corneal transplantation to treat corneal blindness, 
including the modalities of lamellar keratoplasty, ocular 
surface reconstruction, and potential novel medications 
designed to modulate corneal wound healing. For this 
purpose, we conducted a literature review of recent 
medical articles. The mechanisms underlying corneal 
wound healing and therapeutic approaches to prevent 
or treat corneal blindness were addressed with variable 
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completeness, depending on the uniqueness and rele-
vance, based on an extensive search of the literature. 
Therefore, in this paper, we intend to offer a review of 
the state-of-the-art corneal blindness treatment approa-
ches, adding a critical evaluation of the clinical relevance, 
whenever possible(5). This is justified by the fact that 
reverting corneal blindness by corneal transplantation 
is a limited strategy, as mentioned earlier. In summary, 
this review demonstrates the alternative corneal surgi-
cal modalities and their limitations and investigates the 
perspectives of novel therapeutic strategies for corneal 
blindness based on the current understanding of corneal 
wound healing.

Lessons learned from the past

In the XIX century, a Brazilian ophthalmologist, Gama 
Lobo, reported about a disease in four children, slave 
descendants, with infections involving the lungs, muco-
sal tissues, and eyes. The children were very thin and 
weak and cried without producing tears. He named the 
new disease as Ophthalmia Braziliana and hypothesized 
that it was caused by eating few meals or being deprived 
of essential nutrients in the food(6). In 1934, after the 
discovery of vitamin A, Mellanby demonstrated that rats 
deprived of this vitamin for 10 days showed an absence 
of tears, corneal melting, and, just as importantly, dege-
neration of trigeminal ganglions (TGs)(7,8). Several items 
must have coincided for an eventual lethal outcome 
in the patients described by Gama Lobo, but a key nu-
tritional element required for vision, corneal integrity, 
and body health was found to be vitamin A or retinoic 
acid, and the condition associated with its deprivation 
is known as keratomalacia(6,8-10).

Vitamin A supports not only the corneal tissue but 
also the lacrimal functional unit (LFU) that protects the 
cornea(11). Vitamin A deprivation may be a health pro-
blem in the XXI century, whereas the application of this 
nutrient could be an adjuvant topical anabolic therapy 
for corneal wound healing, indicating two hypotheses 
that require further investigation(12,13).

In Sweden, the ophthalmologist Henrik Sjögren 
described a series of 19 female patients with inflamma-
tion of the ocular surface as having tear deficiency, dry 
mouth, and, in some cases, polyarthralgia. He termed 
this condition as keratoconjuctivitis sicca, and decades 
later, it was redefined as a systemic disease named after 
him as Sjögren’s syndrome (SS)(14,15). SS is one of the 
most common autoimmune diseases worldwide(16,17). 

The etiology of this disease remains unknown, and no 
possible cures have yet been developed(18,19). However, 
several studies have clarified that inflammatory events 
occurring in the ocular surface and in the lacrimal gland 
(LG) and tear deficiency are associated with hormonal 
status and the state of the neural network, confirming 
the model of LFU(11,20,21). Furthermore, in severe cases, 
SS can induce corneal melting or opacity per se(22-24). 
Since its first description, a clear aspect about SS is its 
predominance in women and the role of sex hormones 
in its physiopathology, emphasizing the prospect of the 
therapeutic use of androgens and other anabolic hor-
mones for ocular surface diseases(25).

The above-described lessons teach us two points; 
first, the neural network integrates the cornea and the 
LG by the sensorial and autonomic nerves in the LFU. 
It maintains the constitutive and regulated exocrine 
secretion, including anabolic agents such as hormones, 
vitamin A, and growth factors, which are crucial for 
corneal integrity and homeostasis. Second, the anabolic 
agents and growth factors present in the LFU are useful 
in the therapeutic approaches to prevent or treat corneal 
blindness.

Corneal wound healing mechanisms

To understand the role of growth factors and anabolic 
agents in preventive and therapeutic approaches for cor-
neal diseases, it would be helpful to review the steps and 
the players involved in the process of corneal wound 
healing. The cornea is a transparent organ in front of 
the eye, with a spherical toroidal or aspheric format and 
an average central thickness of 520 μm and an average 
peripheral thickness of 650 μm. Although it possesses 
such a fragile profile, being almost 90% transparent and 
typically composed of water, it works as a shield for the 
eye globe(26). The protective role provided by the tear 
film is broadly recognized and described as deficient in 
keratomalacia, SS, and children’s dry eye, where tear 
deficiency is an early manifestation and the outcome is 
corneal opacity or perforation(22,27-29).

Corneal restoration during wound healing exhibits 
the following five properties: a) avascularity, b) high sen-
sitivity, c) epithelial renewal supported by limbal stem 
cells, d) a distinct corneal layer wound response, and e) 
cross-talk between the cornea and the LFU(30-32).

Corneal wound healing can be divided into three pha-
ses(33,34) (Figure 1). In the first step, the hyperacute phase, 
the cornea loses mass and integrity. The proinflammatory 
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storm is characterized by the secretion of chemotactic 
factors. Corneal necrosis and clearance occur by colla-
genolytic destruction and leukocyte permeability and 
attraction. The symptoms in this phrase include pain 
and blurred vision. The process is initiated in the first 
12 h and may last approximately 7 days, with ocular 
surface inflammation (redness, tearing, and discomfort) 
and opacity and the wound being covered by fibrinoid 
material, building a matrix for the second phase(33,35-37).

The second, subacute phase occurs between an ave-
rage of 7 to 21 days after the trauma. This phase can 
be identified using typical biomarkers, viz., keratocyte 
and epithelial cell proliferation. The inflammatory 
signs are milder, and anabolic and growth factors and  
anti-inflammatory cytokines comprise the predominant 
early mediators of inflammation(38-40).

In this phase, the adjacent healthy epithelial cells 
lose the structures that make them a compact and inter-
connected layer (tight junctions and hemidesmosomes) 
and migrate to cover the wound. These corneal epithe-
lial cells provide paracrine secretion, produced by the 
epithelial cells or filtered from the tear film that are now 
regulated to carry anabolic agents and growth factors to 
induce the extracelluar matrix reconstitution(38,41). This 
process induces keratocyte mitosis and dedifferentia-
tion in myofibroblasts or fibroblasts, depending on the 
interactions between cytokines and growth factors(42). 
Fibroblast growth factor-2 (FGF-2) is associated with cell 
proliferation in the wounded cornea, and transforming 
growth Factor-β (TGF-β) is associated with the synthesis 

of the fibrotic extracellular matrix and keratocyte de-
differentiation, which induces faster and stronger, but 
also more opaque, corneal scars(43). Insulin-like growth 
factors I and II (IGF-I/II) and also insulin in pharmaco-
logical levels are capable of synthesizing collagen and 
proteoglycan, combining the elements into a more or-
ganized extracellular matrix, resulting in a more trans-
parent stroma(42,44). During this phase, the inflammatory 
signs and symptoms reduce gradually and the visual 
symptoms of visual haze and glare persist.

The third phase is initiated by the 3rd week and lasts 
for several months and is characterized by extracellular 
matrix tissue remodeling and homeostasis recovery, 
including transparency, surface regularity, and the 
shielding function of the cornea, thus consolidating the 
healing process. This phase includes edema reduction, 
collagen secretion, and restoration of nerve fibers, basal 
membrane, intercellular channels, and epithelial cells. 
It is marked by symptom attenuation and visual acuity 
improvement(33,45).

The outcome is dependent on the severity and persis-
tency of the aggression and a combination of external and 
systemic factors(33,34,45). In the first phase, poor outcomes 
include progressive stromal erosion, perforation, and cor-
neal melting. In the second and third phases, the process 
may result in intense and deep opacity, neovasculari-
zation, and altered neural network replacement (Figure 2). 
In these cases, loss of the optic function of the cornea 
and persistent pain and inflammation are observed in 
the clinical setting(33,46).

Figure 1. Schematic and clinical illustration of the three phases of the 
corneal wound healing process.

Figure 2. Quadrant representation of the progression of corneal wound 
healing with one favorable (homeostatic) and two unfavorable outcomes 
(opaque scar or melting and perforation).
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These unfavorable outcomes are present in several 
diseases and also account for the prevalence of corneal 
opacity and blindness (Figure 3).

Alternatives to corneal transplantation  
and novel treatments for corneal opacity  
and their limitations

In this section, we review the surgical alternatives to 
fix corneal diseases that cause changes in its shape and 
transparency. The alternatives range from the less inva-
sive and preventive techniques to the most invasive and 
applied in severe cases. In the second part, we review 
the currently available options in topical drug therapy.

Surgical alternatives to corneal transplantation

Changes in corneal shape, also known as ectasia, 
can cause blindness, which does not necessarily result 
in corneal opacity but induces blindness due to severe 
refractive problems. Keratoconus is the major type of 
ectasia whose frequency in the population varies from 
0.4 to 86 cases per 100,000 inhabitants(47). The cause of 
keratoconus is unknown, but it is probably multifacto-
rial. Although keratoconus does not frequently induce 
corneal opacity or neovascularization, it disturbs the 
curvature, and biomechanical properties of the cornea, 
potentially leading to bilateral visual impairment and 
blindness, making it one of the most frequent reasons 
for corneal transplantation(48,49). Briefly, conservative 
treatments include glasses, hard contact lenses, and 

intrastromal corneal rings, before its severity reaches 
the need for corneal transplantation. All these treat-
ments are capable of reverting the blindness caused by 
keratoconus, and more recently, the corneal crosslinking 
induced by ultraviolet light and riboflavin (vitamin B 2) 
topical application is being advocated as a strategy to 
prevent the progression of keratoconus. Despite the 
high prevalence and the impact of keratoconus on the 
patient’s life, access to these treatments is hindered by 
the economic and technological barriers. Furthermore, 
their long-term efficacy and stability are modest, consi-
dering that the disease manifests at a young age and the 
need for lifetime support(50,51).

Alternative techniques to penetrating transplantation

Lamellar corneal transplantations, replacing only the 
altered layers, constitute a group of growing alternatives 
to penetrant keratoplasty (PK). These types of transplan-
tations were conceived by Barraquer in Colombia in the 
1960s(52). Currently, both the anterior (deep anterior 
lamellar keratoplasty, DALK) and the posterior moda-
lities, Descemet’s membrane endothelial keratoplasty 
(DMEK) and its variations, of these lamellar techniques 
are in use and replacing PK in the majority of referral 
centers throughout the world(53-56). Clinical trials and 
meta-analysis conducted till date have demonstrated 
similar outcomes and prognoses of PK compared to 
those of lamellar corneal transplantations for trea-
ting common corneal diseases, such as pseudophakic 
bullous keratopathy (PBK), and the same challenges of 
PK: inflammation and vascularization(49,55,57,58). Studies 
have also reported promising results for endothelial 
lamellar corneal transplantations compared with PK in 
terms of visual acuity, final refractive error, less invasi-
veness, graft survival, and recovery period(59,60). These 
modalities replace the corneal endothelium that does 
not regenerate spontaneously in humans. However, 
endothelial lamellar corneal transplantations cannot 
overcome the two major limitations in reverting corneal 
opacity and blindness at the population level, i.e., the 
scarcity of corneas for grafting and the dependence on 
highly specialized centers to provide the treatment(59,60).

Ocular surface reconstruction and keratoprosthesis

The pioneering studies of Thoft and Friend conducted 
during the 1970s opened the possibility of promoting 
the epithelial regeneration of the cornea(61). The concepts 
developed from their studies were translated and ap-
plied to ocular surface reconstruction for critical cases 
involving neovascularization, fibrosis, and limbal defi-

Figure 3. Illustration of corneal opacity: A) direct observation, B) slit lamp 
image of a corneal scar with neovascularization, and c) the presence of 
an epithelial defect limited by fluorescein staining. Although none are 
favorable for vision improvement, both distinct outcomes can occur 
(i.e., neovascularization and scarring versus chronic epithelium defects 
and corneal ulceration), although the reasons and mechanisms for their 
differences are unknown.

A

B C
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ciency(62-67). In addition, the usefulness of the amniotic 
membrane and ex vivo corneal limbal epithelial stem 
cell expansion was demonstrated in further studies(68,69).

At the same institution where Thoft and Friend star-
ted the project for ocular surface reconstruction, but a 
little early, Doane et al. initiated studies to produce a ke-
ratoprosthesis capable of replacing the central cornea, 
which can be applied in very severe cases of ocular sur-
face scarring with anatomical and functional damage(70).

Both ocular surface reconstruction and its alternative 
for treating corneal blindness in the most severe cases 
of surface scarring, the keratoprosthesis, gained techno-
logical adjustments and resources in the past few de-
cades. Besides the necessary training and sophisticated 
equipment, these strategies had limited survival curves 
in terms of maintaining transparency, visual acuity, or 
eye globe integrity(71-75). The survival curve of the Bos-
ton keratoprosthesis indicated a half-life of 3 years, and 
that of a limbal transplant from an allogeneic donor 
was less than 1 year(71-73,76,77). Therefore, ocular surface 
reconstruction with allogeneic limbal stem cell trans-
plantation and keratoprosthesis for reverting corneal 
blindness are hampered by limited survival. However, 
when autologous limbal transplant was possible from 
grafts obtained from the healthy contralateral eye, the 
survival was longer than 5 years in more than 80% of 
the cases(73). Nevertheless, autologous limbal transplant 
is much less common in clinical practice because of 
its much less requirement. Transplantation of cultiva-
ted limbal epithelial cells and small limbal autologous 
transplants have been used to avoid the limitations of 
the scarcity of autologous epithelial stem cells in the 
damaged cornea or the immune reactions of allogeneic 
cells; however, again, these techniques are restricted to 
higher technology centers and selected cases of ocular 
surface diseases and still require long-term analysis(78-81).

Corneal neurotization and other grafting strategies

As indicated previously (Part I), corneal trophism and 
avascularity are typically sustained by robust corneal 
innervation(82-84). Loss of innervation leads to fragility in 
corneal transparency(83). In this context, a surgical tech-
nique (neurotization/neurotisation, as it appears with 
both spellings in the medical literature) has been pro-
posed to restore corneal innervation and revert neuro-
trophic keratitis(85). Neurotization is a surgical procedure 
in which autologous nerve tissue grafting between the 
neurotrophic cornea and the peripheral nervous system 
is intended to restore corneal sensation(86-89).

Other grafting strategies involve the salivary gland 
duct transposing to the OS or minor salivary gland grafts 
to the orbital cavity to provide basal biological fluid 
to regenerate and sustain the epithelial surface(90-94).  
However, the confidence in this surgical strategy to re-
vert corneal blindness is limited by the lack of controlled 
trials and long-term results.

Topical drug therapy for corneal blindness

The major pharmacological strategies used to prevent 
and treat corneal blindness as a single or adjuvant tre-
atment include anti-inflammatory, anabolic and growth 
factors, and neurotrophic and neurotransmitter analogs.

Topical corticosteroids are hazardous options in cases 
of corneal infection, severe inflammation, and delayed 
wound healing(95-98). However, topical corticosteroids are 
still the best choice to prevent corneal transplant rejec-
tion and subsequent failure(99). Corticosteroids modulate 
inflammatory cytokines, thereby reducing neovascula-
rization and opacity(95). Therefore, excluding the con-
traindications, corticosteroids remain the gold standard 
adjuvant therapy for modulating corneal wound healing.

Among the natural biological fluids with anabolic, lu-
bricant, and nutritional properties for treating corneal di-
seases and promoting wound healing in the most se vere 
cases are the autologous serum (AS) and platelet-rich 
plasma (PRP)(100-104). However, due to the lack of similar 
comparative parameters for analyzing the outcomes of 
several studies together and the short duration of most 
of the clinical trials, it is not possible to conclude that 
any of the abovementioned fluids are superior thera-
peutic strategies(105,106).

The topical use of recombinant nerve growth factor 
eye drops to restore the neural network in neurotrophic 
keratitis has been investigated for several years and was 
recently approved for commercial use as Oxervate® 
(Cenegermin)(107-109). The other topical medication is 
ReGeneraTing Agent (RGTA)®, a tissue protector that 
mimics the extracellular matrix and speeds up the cor-
neal wound healing process in refractory conditions 
by binding with healing agents and protecting against 
lytic enzymes(108). Based on the limited and short-term 
controlled observations, the variability of the surgical 
techniques and the short 8 weeks of observations of the 
topical therapies (Cenegermin and RGTA), these appro-
aches are being received with caution, and the reports 
indicate that further studies are required in terms of 
neurotrophic keratitis, which, as previously mentioned, 
is one of the most challenging causes of corneal neovas-
cularization and opacity and where corneal transplan-
tation has a very limited prognosis(49,109-111).
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The abovementioned descriptions indicate that cor-
neal blindness, and its various causes, cannot be largely 
reverted by PK or its surgical alternatives in combination 
with or replaced by adjuvant drug therapy in terms of 
large-scale or long-lasting strategies(1,2,57,112-114) (Table 1). 
The lessons learned from the past as mentioned above 
(Session 2) indicate that vitamin A deficiency is probably 
not just a cause of dry eye and corneal melting but also 
disrupts the neural network, which is a crucial support 
for corneal integrity and still extremely difficult to res-
tore with the current therapeutic strategies as discussed 
above. Furthermore, in conditions where the tear film is 
missing (dry eye), not just dryness but also suppression 
of the protective mediators present in tears, including 
growth factors and hormones, results in delay or induces 
a scarring corneal wound healing.

Future perspectives of corneal blindness:  
drugs, cell genetic reprogramming, tissue  
reengineering, and combined strategies

After identifying that treatment is not simple or 
widely accessible and that the cure is not possible in 

several cases due to the time restrictions of the treat-
ments, it is necessary to identify the pathophysiological 
events associated with corneal opacity. Destruction of 
the cornea occurs in one of the following two ways: a) 
melting and perforation caused due to inflammation 
and necrosis and/or b) scarring and neovascularization 
caused due to denervation. Depending on the intensity 
of each process, it may cause corneal damage to one of 
the poles (ulceration or neovascularization) or restrict 
it somewhere between the two (Figure 3). Therefore, 
inflammation and denervation are the events that need 
to be reverted to prevent corneal blindness.

The present knowledge about the therapeutic options 
to assist corneal wound healing to prevent or revert 
corneal blindness is detailed below in the following to-
pics: a) regenerative drugs (growth factors and hormonal 
agents); b) novel analgesic and anti-inflammatory drugs 
delivered as eye drops or using c) nanotechnology; d) cell 
genetic reprogramming (e.g., viral vector gene transfer 
or other strategies of gene therapy) of the cornea or its 
natural delivery system, the LG; e) tissue reengineering 
(e.g., combined allogeneic transplantation, including 
embryonic tissues); and combined approaches.

Table 1. Current surgical and clinical alternatives for the treatment of corneal opacity and its limitations.

Category Treatment Limitations Author, year

Surgical Penetrant keratoplasty (PK) Availability of corneas to all cases of corneal blindness; 
limited survival curve in severe cases and reoperations.

Pascolini, Mariotti, 2012(115);  
Gain et al., 2016(1); Dandona et al. 1997(116); 

Coster et al., 2014(56); Tan et al., 2018(117)

DALK A healthy host endothelium is needed, 
similar survival curve as PK.

Reinhart et al., 2011(118);  
Borderie et al., 2009(3); Keane et al., 2014(58)

DSAEK/DSEK Graft detachment and primary graft failure, lower optical 
quality, and faster endothelial loss compared with PK.

Lee et al., 2009(119); Anshu et al., 2012(120); 
Nanavaty et al., 2014(57)

DMEK Surgical complexity in graft preparation and 
handling, superior results compared with DSEK. 

Similar outcome and survival curve as PK.

Anshu et al., 2012(120); Price, Price, 2013(121); 
Tourtas et al., 2012(122); Navanaty et al., 

2014(57); Li, et al., 2017(123)

DWEK Longer time for recovery. Lack of comparative studies. Davies et al., 2017(124); Kymiois et al., 2017(125)

Ocular surface reconstruction with 
donated limbal stem cells and 

amniotic membrane

Donor stem cells for bilateral cases,  
limited survival curve.

Rama et al., 2010(73);  
Santos et al., 2005(71);  
Daya et al., 2005(126)

Keratoprosthesis Glaucoma, secondary infection,  
extrusion. Limited survival curve. 

Nguyen, Chopra, 2014(127); Basu et al., 2014(128); 
Al Arfaj, 2015(129); Aravena et al.,(130)

Clinical Corticosteroids in the treatment of 
bacterial corneal ulcers

Controversial, with no definitive evidence 
to guide treatment decisions.

Carmichael, et al., 1990(131);  
Srinivasan, et al., 2009(132);  

Hindman, et al., 2009(133); Wilhelmus, 2002(134)

Allogeneic serum eye drops for the 
treatment of dry eye in patients with 

chronic graft-versus-host disease

Care should be taken to avoid the risk of blood-borne 
diseases. Need do adhere to guidelines for obtention, 

preparation, storage, and usage of hemoderivates. 

Na, Kim, 2012(135)

Nerve Growth Factor 
Recombinant eye drops

Indicated for neurotrophic keratitis. 
Expensive and limited experience. 

Pflugfelder et al., 2019(109)

DALK= deep anterior lamellar keratoplasty; DSAEK= Descemet’s stripping automated endothelial keratoplasty; DMEK= Descemet’s membrane endothelial keratoplasty; DSEK= 
Descemet’s stripping; DWEK= Descemetorhexis without endothelial keratoplasty.
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Regenerative drugs

Sex and other hormones are involved in the mainte-
nance of the cornea and the ocular surface and in the 
response to diseases(25). Estrogens elevate the inflamma-
tory response in the LGs of female individuals compa-
red to that in male individuals of several species(136). In 
contrast, androgens, insulin, and other hormones exert 
anti-inflammatory and anabolic effects on the cornea 
and LGs(25). Diseases involving the absence or impaired 
action of hormones that risk compromising the trans-
parency and integrity of the cornea include diabetes 
mellitus (DM) and thyroid autoimmune disease, among 
others(25,137). Therefore, the therapeutic use of hormones 
may assist the process of corneal wound healing and 
restore the ocular surface homeostasis.

The anabolic effects of growth factors, such as NGF 
and IGF-I, and hormones, such as insulin and androgen 
topical therapy, include improvement of tear secretion 
and reduction of the duration of ulcers(109,138-142). Of in-
terest, the healthy LG is not only a target but also has 
the capacity to produce and secrete growth factors and 
hormones such as insulin and convert testosterone into 
a more powerful hormone, dihydrotestosterone, by type 1 
and 2 5-alfa-reductase(143,144).

The conceptual support for using insulin as a topical 
corneal therapy is based on the observation that DM 
induces neurotrophic keratopathy and causes slower 
wound healing, lower tear secretion, and changes in 
the cornea and LG structures(145-147). Insulin deprivation 
leads to LG malfunction and corneal damage, and it has 
been observed that topical or systemic insulin replace-
ment can restore tear flow and the corneal structure in 
diabetic human and animal models(148-152).

As mentioned in section 3, insulin has a corneal wound 
healing property compared with keratocytes that is not 
as rapid as that exhibited by growth factors, including 
IGF1, but is less scarring(141,153). Studies have suggested 
that insulin could be used as a supportive treat ment to 
prevent corneal diseases in diabetic subjects and as a 
potential promoter of corneal wound healing in patients 
with dry eye disease(152,153).

Studies conducted using diabetic animal models have 
demonstrated that insulin topical therapy could improve 
neurotrophic corneal ulcers and dry eye disease; howe-
ver, a recent clinical trial in humans revealed that insulin 
topical therapy showed similar outcomes as those of 
artificial tears after 4 weeks of treatment(150,154,155). The 
limiting aspects pertaining to the storage and delivery 
of the small and unstable insulin peptide to the ocular 

surface have been addressed using nanotechnology, 
where the number of microparticles, stably enveloping 
the therapeutic molecule, and the time to modulate the 
wound healing process can lead to a promising strategy 
for treating corneal diseases and dry eye disease(150,156).

In the inner face of the cornea, the topical use of Rho 
kinase inhibitors restored endothelial pump function 
and reduced edema in PBK when used as a single or 
adjuvant treatment in combination with various mo-
dalities of deep lamellar corneal transplantation(157,158). 
This topical corneal treatment increased the endothelial 
cell density and was able to minimize the waiting period 
for a corneal transplant and replaced it with lower risk 
procedures(157).

Novel analgesic and anti-inflammatory drugs

Recent studies have demonstrated that cannabi-
noid analogs can reduce pain sensations and leukocyte 
migration to corneas burned with silver nitrate(159,160). 
As these outcomes were shown to be comparable or 
superior to those of topical corticosteroids in reducing 
corneal pain, inflammation, and opacity without causing 
the side effects of ocular hypertension and corneal to-
xicity associated with topical steroids and nonsteroidal 
anti-inflammatory drugs (NSAIDs), cannabinoid analogs 
could be considered as a useful adjuvant corneal topi-
cal therapy that require further studies(22). Of interest, 
in 2020, the Brazilian Health Surveillance Agency ap-
proved the therapeutic use of cannabidiol for treating 
refractory diseases, including neuropathic pain. Other 
alternatives that can be used to inhibit corneal inflam-
mation and pain include transient receptor of potential 
vanilloid-1 (TRPV-1) antagonists, such as resiniferatoxin, 
whose analgesic effects have been confirmed, and it also 
did not slow down the process of corneal wound hea-
ling in animal studies by blocking the sodium/calcium 
channels(161).

Nanotechnology

There are several examples where delivery systems 
and microenvironment packing therapeutic molecules 
can render them more stable and available in the ocu-
lar tissue. Earlier, we mentioned the example of insulin 
topical therapy, although several other molecules are 
being designed and tested(150,162). Another example 
is fungal keratitis (FK), a neglected disease (Orpha: 
519930), which is strongly related to corneal trauma and 
has limited treatment options and poor prognosis(163,164). 
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FK therapy can also benefit from nanotechnology, where 
chitosan solutions or chitosan/poloxamer gel prepara-
tions for formulating the antifungal fluconazole, availa-
ble for systemic use, can be an option for topical use, 
with corneal permeability and a sustained presence at 
the target sites(165).

Cell reprogramming by gene therapy

Therapeutic strategies using cell reprogramming by 
gene therapy can promote the overexpression and local 
delivery of growth factors, anabolic hormones, or other 
intended adjuvant molecules to revert corneal inflam-
mation or opacity, as detailed below. These therapeutic 
genes can reprogram the corneal cells or the LG(166). Pre-
vious studies have shown that the salivary gland can be 
reprogrammed by viral vector gene therapy to work as a 
bioreactor and delivery system of hormones and other 
therapeutic molecules to treat severe oral dryness cau-
sed due to SS or radiotherapy at the experimental and 
clinical levels(167-170). Furthermore, hormone gene thera-
py can be used to transfer the hormone erythropoietin 
(Epo), which preserved LG secretions and corneal epi-
thelial integrity after the application of an adenovirus 
containing the Epo gene to the salivary gland(139).

Corneal neovascularization reduces corneal transpa-
rency and the prognosis of corneal transplantation, and 
the actual treatment approaches for neovascularization 
are little effective and not long-lasting(171,172). The key 
elements needed to prevent corneal neovascularization 
are a) constant vigilance for soluble vascular endothelial 
growth factor (VEGF) receptors on the ocular surface 
that can inhibit corneal neovascularization(31) and b) the 
presence of corneal nerves working as anti-neovessel 
elements in the cornea(83).

The neovascularization and opacity caused due to 
alkali burns in rat corneas were prevented in rats injec-
ted with an adenovirus containing the genes of soluble 
VEGF receptors (VEGFRs) in the LG. After 7 days, the 
corneas protected by the VEGFRs expressed in the LG 
were more transparent than those treated with an ade-
novirus with null genes or saline(173). Therefore, LG may 
function as a target of gene therapy, functioning as a 
bioreactor for therapeutic molecules to prevent corneal 
scarring and blindness caused due to opacity or neovas-
cularization(173).

Tissue reengineering
Taking in account the limitations associated with OS 

reconstruction using the limbus transplant as mentioned 
above, the possibility of reengineering of corneal cells 
in vitro is being attempted. In the corneal limbus, the 

niches of stem cells exhibit mitotic activity mediated by 
at least three crucial transcription factors as follows: 
ATP-binding cassette, subfamily B, member 5 (ABCB5), 
paired box protein PAX6, and WNT7A(174,175). Therefore, 
the strategies for preserving or restoring these niches 
could include cell reprogramming to overexpress these 
transcription factors to achieve a stable corneal epithe-
lial layer to revert ulcers or keratinization and support 
the corneal epithelial layer. The approach of gene the-
rapy using these transcription factors combined with  
tissue reengineering to grow distinct corneal layers in 
vitro opens the possibility of using the combined approa-
ches to repair or replace corneal layers in therapies used 
for corneal wound healing(176,177).

Biosynthesis and xenotransplantation of corneas have 
also been explored as possible alternatives to corneal 
transplantation using tissue reengineering(114,178,179).

In cases where the LG is also damaged by the disease, 
the potential LG regeneration is limited(180-182), and it is 
known that without the support of the LG, the corneal 
integrity is severely damaged(183). Till date, only one study 
has been capable of demonstrating the restoration of 
a functional LG from transplanted embryonic tissue 
using tissue reengineering techniques(184). Nevertheless, 
the strategies used for restoring and reintegrating ex-
tensively damaged LFU structures are unknown, which 
is probably the major challenge in reverting corneal 
blindness in the long-term in diseases involving the 
extraocular organs.

Table 2 summarizes the potential molecules and 
surgical interventions capable of working in a combined 
preventive and therapeutic manner or as an adjuvant 
therapy for corneal opacity to minimize the incidence 
of corneal blindness in the future (Table 2).

Corneal blindness is a health problem and a thera-
peutic challenge. If few conditions have found efficient 
strategies as trachoma, which is being treated with the 
combined strategy that includes Surgery, Antibiotics, Fa-
cial cleaning, and Environmental improvement (SAFE), 
and vitamin A supplementation can prevent keratoma-
lacia secondary to nutritional problems even in remote 
regions, there are several conditions causing corneal 
blindness that are not being efficiently reverted by the 
currently available therapeutic strategies(201,202). Novel 
therapeutic strategies using growth factors, anabolic 
agents, new promitotic, and anti-inflammatory drugs, 
combined with delivery systems, or corneal or LG ge-
netic reprogramming of cells in association or not with 
corneal tissue reengineering can reduce the need for 
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Table 2. Potential clinical and surgical novel strategies for corneal opacity treatment

Category Treatment Results Author, year

Combined 
Biological & 
Clinical Therapy

NK1R antagonists Lanepitant and 
Befetupitant for corneal neovascularization

Reduction of corneal hemangiogenesis, 
lymphangiogenesis, and leukocyte infiltration

Bignami et al., 2014(185)

Contact lenses for the culture and delivery 
of corneal epithelial cells for the treatment 

of limbal stem cell deficiency

Reconstruction of the recipient corneal surface Brown et al., 2014(186)

Topical AMA0526 after corneal trauma Inhibition of angiogenesis in vitro, reduction of 
corneal opacity, and neovascularization

Sijnave et al., 2015(187)

Topical applied cell-permeable FK506BP 
on corneal alkali burn injury

Corneal opacity and corneal 
neovascularization were significantly decreased 

Kim et al., 2015(188)

Topical β-1,3-glucan in corneal alkali burn Epithelial wound healing in vitro and 
suppression of acute inflammatory reaction 

Choi et al., 2013(189)

Downregulation of vimentin by pharmacological 
agent withaferin A in corneal alkali injury

Vimentin deficiency alters the fibrotic response to corneal 
alkali injury and instead engages a reparative healing 

mechanism to restore corneal clarity

Bargagna-Mohan
 et al., 2012(190)

Inhibitory oligonucleotides of miR-206,  
miR-206-I, intrastromally injected into alkali-burned 
corneas. The possible binding of miR-206 on its 

molecular target Cx43 was assessed 

Ameliorated inflammatory responses both in vivo 
and in vitro. Cx43 was directly targeted by miR-206 

Li et al., 2015(191)

Injection of a naked plasmid expressing green 
fluorescent protein (GFP; pCMV-GFP) into an 

unwounded mouse corneal stroma. Injection of 
pCMV-GFP or plasmids expressing small hairpin 

RNA in the corneal wound injury model

In the corneal wound injury model, the GFP-positive 
cells demonstrated extensive dendritic-like processes that 

extended to adjacent cells, whereas the vimentin knockdown 
model showed significantly reduced corneal opacity

Das et al., 2014(192)

Application of angiogenin eye drops in 
neovascularization and corneal opacity

Reduction of the inflammatory response 
induced by TNF-α or LPS 

Lee et al., 2016(193)

Keratocytes in culture and within intact 
normal and diseased tissue were induced 

to produce collagen type II upon treatment 
with TGFβ3 and dexamethasone

Collagen type II deposition and a threefold 
increase in corneal hardness and elasticity

Greene et al., 2016(194)

Fresh isolated omental cells were injected 
subconjunctivally in limbal corneal alkali injury

Reduction of corneal neovascularization 
and neutrophil infiltration

Bu et al., 2014(195)

Deep corneal neovessels treated with 
intrastromal injections of bevacizumab

Complete regression of neovessels in 16 patients, partial 
regression in 6 patients, and reduced opacity and 

improved visual acuity in 5 patients

Sarah et al., 2016(196)

Combined 
Biological & 
Surgical Therapy

Allogeneic limbal mesenchymal stem cell 
therapy after severe corneal chemical burn

Reduction of corneal opacity, neovascularization, and 
corneal fluorescein staining

Acar et al., 2015(197)

Autologous or allogenic cultivated limbal 
stem cell transplantation using a standardized 

protocol free from xenogenic products

Reduction in corneal neovascularization Zakaria et al., 2014(198)

The transplantation of CECs in combination 
with the selective ROCK inhibitor Y-27632 

in corneal endothelial dysfunction

Endothelium with a monolayer hexagonal cell 
shape with a normal expression of function-related 

markers; recovery of corneal transparency

Okumura et al., 2012(199), 
Kinoshita et al.,(158)

Autologous and allogeneic limbal epithelial cells 
cultivated on amniotic membranes and transplanted 

in cases of limbal stem cell deficiency

Improvement in corneal epithelium 
quality, with subsequent improvement 
in symptoms, quality of life, and vision

Ramirez et al., 2015(200)

Cx43= connexin43; TNF-α= tumor necrosis factor-alpha; LPS= lipopolysaccharide; NK1R= tachykinin 1 receptor; TGFβ3= transforming growth factor beta3; CECs= corneal 
endothelial cells.

corneal transplantation and may function as adjuvants, 
providing customized therapies supporting more stable 
and long-lasting therapies for corneal transparency.
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