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ABSTRACT
Objective: To identify DNA methylation and gene expression profiles involved in obesity by 
implementing an integrated bioinformatics approach. Materials and methods: Gene expression 
(GSE94752, GSE55200, and GSE48964) and DNA methylation (GSE67024 and GSE111632) datasets 
were obtained from the GEO database. Differentially expressed genes (DEGs) and differentially 
methylated genes (DMGs) in subcutaneous adipose tissue of patients with obesity were identified 
using GEO2R. Methylation-regulated DEGs (MeDEGs) were identified by overlapping DEGs and 
DMGs. The protein–protein interaction (PPI) network was constructed with the STRING database and 
analyzed using Cytoscape. Functional modules and hub-bottleneck genes were identified by using 
MCODE and CytoHubba plugins. Functional enrichment analyses were performed based on Gene 
Ontology terms and KEGG pathways. To prioritize and identify candidate genes for obesity, MeDEGs 
were compared with obesity-related genes available at the DisGeNET database. Results: A total of 
54 MeDEGs were identified after overlapping the lists of significant 274 DEGs and 11,556 DMGs. Of 
these, 25 were hypermethylated-low expression genes and 29 were hypomethylated-high expression 
genes. The PPI network showed three hub-bottleneck genes (PTGS2, TNFAIP3, and FBXL20) and 
one functional module. The 54 MeDEGs were mainly involved in the regulation of fibroblast growth 
factor production, the molecular function of arachidonic acid, and ubiquitin-protein transferase 
activity. Data collected from DisGeNET showed that 11 of the 54 MeDEGs were involved in obesity. 
Conclusion: This study identifies new MeDEGs involved in obesity and assessed their related 
pathways and functions. These results data may provide a deeper understanding of methylation-
mediated regulatory mechanisms of obesity.
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INTRODUCTION

Obesity is a chronic metabolic disorder characterized 
by an excessive accumulation of body fat 

resulting from an imbalance between energy intake and 
expenditure (1,2). Despite nutritional intervention and 
physical education programs, the prevalence of obesity 
is increasing in most countries (3). This disease has been 
considered the 21st century epidemic (1) as it affects 
more than 650 million adults and 124 million children 
worldwide (2). Obesity is associated with a number of 
comorbidities, such as type 2 diabetes mellitus (T2DM), 
cardiovascular diseases, non-alcoholic fatty liver disease, 

and some types of cancers, which reduce the quality of 
life and life expectancy of the affected individuals (4,5).

Obesity is the result of complex and not completely 
understood pathological processes (6,7). Adipose tissue 
produces several endocrine factors, cytokines, and 
chemokines that regulate physiological processes and 
immune system functions. Moreover, individuals with 
obesity have increased pro-inflammatory adipokines and 
chemokines, which contributes to a systemic low-grade 
chronic inflammation and the development of obesity-
related comorbidities (8). Several agents influence 
the development of obesity, including environmental 
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factors (especially diet quality and physical activity), 
gut microbiota composition, endocrine disruptors, 
and drugs. Moreover, the development of obesity is 
influenced by a crosstalk between environmental factors, 
genetic susceptibility, and epigenetic mechanisms (9,10).

Large-scale genome-wide association studies (GWAS) 
showed more than 500 loci associated with obesity and 
other related traits (11). DNA methylation – the transfer 
of a methyl group to the 5-carbon of cytosine in CpG 
dinucleotides – is a major epigenetic mechanism that 
regulates gene expression according to the influence of 
different environmental factors and hormones (6,12,13). 
Evidence for the role of DNA methylation in obesity 
has come mostly from animal models (1,13,14). Zhang 
and cols. (14) identified 178 differentially methylated 
genes (DMGs) in the liver of mice with high-fat diet 
(HFD)-induced obesity, showing that HFD changes the 
epigenetics of hepatocytes and, thus, contributes to the 
pathophysiology of obesity. In humans, an epigenome-
wide DNA methylation association study identified 278 
CpG islands associated with variation in body mass index 
(BMI) in 5,387 individuals (15).

In the last years, gene expression and epigenome 
profiling arrays have been used to study thousands of genes 
for a given disease at the same time. Moreover, integrative 
bioinformatics analysis of the profiling arrays, using systems 
biology methodology, emerged as a promising approach to 
identify and classify differentially expressed genes (DEGs) 
and DMGs (16,17). Therefore, an integrative analysis 
using gene expression and DNA methylation datasets of 
patients with obesity, documented in previous studies, 
could facilitate the identification of new and potential 
molecular pathological pathways related to this disease.

Separate DEG and DMG analyses have been used 
to evaluate genes associated with diseases at different 
regulation levels. However, by identifying methylation-
regulated DEGs (MeDEGs), an integrated network 
analysis of DNA methylation and gene expression 
profiling data may provide a deeper understanding of 
obesity than individual disconnected analyses (18,19). 
Thus, in this study, we used an integrative analysis 
approach to identify MeDEGs in the subcutaneous 
adipose tissue (SAT) from subjects with obesity and 
assess in which biological functions and pathways 
they are involved. We implemented a systems biology 
approach to analyze the protein-protein interaction 
(PPI) network. Our analysis may provide new ways to 
understand the mechanisms and pathways underlying 
obesity.

MATERIALS AND METHODS
Microarray data

Gene Expression Omnibus (GEO; https://www.
ncbi.nlm.nih.gov/geo) is an international public 
data repository of microarrays, next-generation 
sequencing, and other forms of high-throughput 
functional genomics. The search strategy adopted in 
GEO was: “obesity” [MeSH terms] AND “Homo 
sapiens” [Organism] AND (“DNA methylation” OR 
“Expression profiling” [Filter]). Figure 1 shows that 
five datasets were retrieved from GEO and included 
in this study: three of gene expression (GSE94752, 
GSE55200, and GSE48964) and two of DNA 
methylation (GSE67024 and GSE111632) analyses in 
SAT of cases with obesity and lean individuals.

Figure 1. Flowchart of the identification of methylation-regulated differentially expressed genes (MeDEGs) and their function in obesity.   
DMG: differentially methylated gene; DEG: differentially expressed gene.
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Regarding gene expression datasets, GSE94752 
(GPL11532; Affymetrix Human Gene 1.1 ST Array) 
included isolated adipocytes from abdominal SAT 
samples from nine lean controls and 21 subjects with 
obesity (20). GSE55200 (GPL17692; Affymetrix 
Human Gene 2.1 ST Array) included SAT samples 
from seven lean subjects and 16 metabolic healthy 
patients with obesity (21). GSE48964 (GPL6244; 
Affymetrix Human Gene 1.0 ST Array) analyzed gene 
expression in adipose-derived stem cells (hASCs) from 
three patients with severe obesity and three individuals 
without obesity (22).

Regarding DNA methylation datasets, GSE67024 
(GPL13534; Illumina HumanMethylation450 
BeadChip) analyzed SAT from 15 women with obesity 
and 14 lean women (23) and GSE111632 (GPL13534; 
Illumina HumanMethylation450 BeadChip) included 
hASCs isolated from six women with obesity and six 
lean women (24).

Data processing

GEO2R (http://www.ncbi.nlm.nih. gov/geo/
geo2r/) is an interactive web tool that allows users 
to compare two or more groups of samples in a GEO 
Series. This tool was used to analyze the selected 
datasets and identify DMGs and DEGs in SAT of 
individuals with obesity compared with lean controls. 
When a gene symbol corresponded to multiple probe 
IDs, the average value of these probes was estimated as 
the representative expression level of this gene. Gene 
identifiers were mapped according to the HUGO Gene 
Nomenclature Committee (HGNC) (25) and only 
valid identifiers were maintained.

DEGs were defined based on an absolute log2-
Fold Change (log FC) > 2.0 and P < 0.05. To identify 
DMGs, |t|>2 and P < 0.05 were used as cutoff points. 
Using the Excel LOOKUP function (VLOOKUP), 
datasets were overlapped according to the expression/
methylation profile. Hypomethylated-high expression 
genes were identified after overlapping upregulated 
and hypomethylated genes and hypermethylated-
low expression genes were identified after 
overlapping downregulated and hypermethylated 
genes (Figure 1). Hypomethylated-high expression 
genes and hypermethylated-low expression  genes 
were identified as MeDEGs. Results were presented 
in Venn diagrams, which were constructed in the 
InteractiveVenn website (26).

Protein-protein interaction network

The PPI network of obesity-related MeDEGs was 
constructed using the free web-available Search Tool 
for the Retrieval of Interacting Genes (STRING 
version 11.0; http://string-db.org/) database (27). An 
interaction score > 0.4 and P < 0.05 were considered 
as statistically significant. Results from STRING were 
imported into Cytoscape 3.8.1 (28) for the network 
analysis and visualization.

Systems biology approach to analyze the PPI 
network based on MeDEGs 

Complex biological systems may be represented and 
analyzed as computable networks. Nodes and edges are 
the basic components of a network. Nodes are 
connected by edges (which are also called links or lines) 
and edges show the relationships between nodes (29). 
In this study, the nodes were the genes and the edges 
were lines showing the interaction force between them, 
thus forming a PPI network.

The relevance of each node for the network 
was assessed by two centrality measures: degree 
and betweenness. Degree quantifies the number of 
connections from a given node (30). Highly connected 
nodes are called hubs and tend to be important control 
points in the network. Betweenness is the number of 
minimum non-redundant paths between two nodes that 
cross a given node (31). Nodes with high betweenness 
are called bottlenecks and tend to act as major 
intersections between modules in networks (27,32). In 
this study, hubs and bottlenecks were defined as nodes 
in the top 10% of degree and betweenness distributions 
(33), respectively, with a minimum of two interactions. 
Hub and bottleneck genes were identified using the 
CytoHubba plugin version 0.1 (34) for Cytoscape.

Cluster analysis to identify modules within the PPI 
network was performed using the Molecular Complex 
Detection (MCODE) version 2.0.0 plugin (35) and 
considering a number of nodes > 3.0 as a cutoff point. 
This algorithm identifies in the PPI network densely 
connected regions that are likely to represent functional 
interaction complexes, since proteins in the same cluster 
tend to enrich common biological functions (36).

Functional enrichment analysis

The Gene Ontology (GO) analysis is extensively used to 
identify the characteristic biological attributes of genes, 
gene products, and sequences, including biological 
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processes (BP), cell components (CC), and molecular 
function (MF) (37). The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) is a collection of databases on 
genomes, biological pathways, diseases, and chemical 
substances (38). In this study, GO terms and KEGG 
pathway enrichment analyses were performed using 
STRING version 11.0. A hypergeometric test was 
used to estimate the statistical significance of enriched 
pathways and P-values were corrected for multiple 
tests using the Benjamini-Hochberg procedure, which 
provides a false discovery rate (FDR)-adjusted-P-value 
(q-value). GO terms and KEGG pathways associated 
with q < 0.05 were considered significantly enriched.

MeDEG candidate selection

To prioritize and identify candidate genes for obesity, 
the DisGeNET database (http://www.disgenet.org) 
was used. The obesity-related MeDEGs identified in 
this study were compared with experimentally validated 
and computationally predicted obesity-related genes 
(C0028754), according to DisGeNET. This database 
is a comprehensive platform that integrates information 
on human disease-associated genes and includes data 
from expert curated repositories, text mining data 
extracted from scientific literature, experimentally 
validated data, and referred data (39,40).

RESULTS

DMGs and DEGs in obesity

Figure 1 presents the flowchart of the analysis strategy 
used in this study. Regarding DEGs, we identified 
131 upregulated and 143 downregulated genes 
after overlapping the three gene expression datasets. 
Regarding DMGs, we identified 6,083 hypermethylated 
and 5,473 hypomethylated genes after overlapping 
the two datasets. After overlapping the five datasets, 
we identified 29 hypomethylated-high expression 
(Figure 2A) and 25 hypermethylated-low expression 
genes (Figure 2B), totalizing 54 MeDEGs.

PPI network construction, module analysis, and 
identification of hub and bottleneck genes

The PPI network was constructed in the STRING 
database and includes 19 nodes (MeDEGs) and 17 edges 
(connecting lines) (Figure 3). The nodes represent the 
proteins encoded by each gene and the edges represent 
protein-protein interactions. Of the 54 MeDEGs, 
35 had no interconnection within the network, thus, 
we excluded them from the further analysis. Among 
the 19 MeDEGs present in the network, 11 were 
hypomethylated-high expression genes and eight were 
hypermethylated-low expression genes. Moreover, the 

Figure 2. Identification of methylation-regulated differentially expressed genes (MeDEGs) by overlapping gene expression datasets (GSE94752, 
GSE55200, and GSE48964) and DNA methylation datasets (GSE67024 and GSE111632) in the subcutaneous adipose tissue of subjects with obesity.  
(A) Hypomethylated (hypo)-high (up) expression genes; (B) Hypermethylated (hyper)-low (down) expression genes.
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Figure 3. PPI network formed by 19 MeDEGs: protein-protein interaction (PPI). Green nodes represent hypomethylated-high expression genes in obesity 
and red nodes represent hypermethylated-low expression genes. Diamond nodes represent the hub-bottleneck genes identified in the network analysis. 
Nodes represent the proteins encoded by each gene and the edges represent the protein-protein interactions. Interaction score refers to “combined score” 
in the STRING database. The thicknesses of the edges was associated with the combined scored. This score ranges from 0.0 (weak interaction) to 1.0 
(strong interaction).

highest interaction score (0.9) was between RNF144B, 
UBR2, CDC23, and FBXL20, and between HK2 and 
PMM1 (Figure 3).

We used two algorithms to measure centrality 
in the PPI network: degree (hub genes) and 
betweenness (bottleneck genes). We considered the 
three most connective nodes as hub-bottleneck genes: 
prostaglandin-endoperoxide synthase 2 (PTGS2), 
tumor necrosis factor α-induced protein 3 (TNFAIP3), 
and F-box and leucine rich repeat protein 20 (FBXL20), 
which might play a critical role in obesity. These three 
genes participate in several KEGG pathways, including 
TNF, NF-κB, IL-17, ubiquitin mediated proteolysis, 
Wnt signaling pathway, and the regulation of lipolysis 
in adipocytes (Figure 4).

We performed the further analysis of the PPI 
network to identify the most significantly connected 
and tightly clustered subnetworks. We selected 
from the PPI network a significant module using 
MCODE (Figure 5A). In this module, we identified 
four genes (CDC23, FBXL20, RNF144B, and UBR2). 
This module was mainly enriched for cell cycle and 
ubiquitin mediated proteolysis signaling pathways. 
Regarding GO terms, these genes were enriched in 

biological processes and molecular functions related to 
ubiquitination and nuclear division (Figure 5B).

Functional enrichment analysis of MeDEGs

Table S1 presents the full results of the GO terms 
and KEGG pathways enrichment analysis for the 54 
MeDEGs. Results showed that the 29 hypomethylated-
high expression genes were involved in biological 
processes of positive regulation of fibroblast growth 
factor (FGF) production. Regarding molecular 
function, MeDEGs were also related to arachidonic 
acid binding. The 25 hypermethylated-low expression 
genes were not significantly enriched in GO terms.

Regarding KEGG pathways, the 29 hypomethylated-
high expression genes participate especially in the IL-17 
signaling. The 25 hypermethylated-low expression 
genes participate in fructose and mannose metabolism, 
amino sugar and nucleotide sugar metabolism, lysine 
degradation, and glycolysis/gluconeogenesis pathways.

All 54 MeDEGs were mainly involved in biological 
processes of regulation of FGF production (Table S1). 
Moreover, these MeDEGs were related to the molecular 
function of arachidonic acid and ubiquitin-protein 
transferase activity (Table S1).
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Figure 4. Significant KEGG pathways in which participate each hub-bottleneck gene. The color of the circle represents statistical significance, according 
to the q-value. 

Figure 5. Module identification within the PPI network. (A) Significant module identified by MCODE. Green nodes represent hypomethylated-high 
expression genes in obesity and red nodes represent hypermethylated-low expression genes. (B) Significant GO terms and KEGG pathways in which 
genes participate. The y-axis represents GO terms or KEGG pathways and the x-axis refers to the number of genes enriched on GO terms or KEGG 
pathways.

Comparison between the 54 MeDEGs and obesity-
related genes identified in the DisGeNET database

To identify key obesity-related genes, we accessed the 
DisGeNET database. Of the 54 MeDEGs identified 
in our study, 11 were also identified in the search in 
DisGeNET (ALDH2, ALOX5AP, BAMBI, DOCK5, 

FUZ, HK2, LRRFIP1, OLR1, PTGS2, PTPRJ, and 
S100A8) (Table 1). Moreover, of the three hub-
bottleneck genes (PTGS2, TNFAIP3, and FBXL2), only 
PTGS2 was obesity-related, according to DisGeNET. 
Thus, FBXL20 and TNFAIP3 could be new candidate 
genes to be studied in the context of obesity.
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Table 1. Comparison between the list of 54 MeDEGs and those genes related to obesity in the DisGeNet database 

Gene symbol Gene name Group DisGeNet Other genes from the same gene family that were 
associated with obesity according to DisGeNet

ALDH2 Aldehyde dehydrogenase 2 family member Hiper/Low Yes ALDH1L1, ALDH1A1, ALDH6A1

ALOX5AP Arachidonate 5-lipoxygenase activating 
protein

Hypo/Highly Yes ALOX12, ALOX15, ALOX5

ANKRD44 Ankyrin Repeat Domain 44 Hypo/Highly No ANKK1, ANKRD26

AOAH Acyloxyacyl Hydrolase Hypo/Highly No

BAMBI BMP and activin membrane bound inhibitor Hypo/Highly Yes

C12orf75 Chromosome 12 Open Reading Frame 75 Hypo/Highly No

CACHD1 Cache Domain Containing 1 Hyper/Low No

CD9 CD9 Molecule Hypo/Highly No CD14, CD163, CD180, CD1D, CD200, CD24, CD248, CD274, 
CD33, CD36, CD38, CD40, CD44, CD47, CD48, CD59, CD5L, 
CD68, CD69, CD74, CD79A, CD81, CD8A

CDC23 Cell Division Cycle 23 Hyper/Low No CDC42

COL14A1 Collagen Type XIV Alpha 1 Chain Hypo/Highly No COL12A1, COL1A1, COL25A1, COL4A1, COL6A1, COL6A3, 
COL9A3

DOCK5 Dedicator of cytokinesis 5 Hypo/Highly Yes DOCK2

DPF2 Double PHD fingers 2 Hyper/Low No

ECHDC2 Enoyl-CoA hydratase domain containing 2 Hyper/Low No ECHS1

EZH1 Enhancer of zeste 1 polycomb repressive 
complex 2 subunit

Hyper/Low No EZH2

FAM105A/
OTULINL

OTU deubiquitinase with linear linkage 
specificity like

Hypo/Highly No FAM13A, FAM161A, FAM3A, FAM3B, FAM71F1

FBXL20 F-box and leucine rich repeat protein 20 Hyper/Low No FBXO3

FGD6 FYVE, RhoGEF And PH Domain Containing 6 Hypo/Highly No

FUZ Fuzzy planar cell polarity protein Hyper/Low Yes

GNPTAB N-acetylglucosamine-1-phosphate 
transferase Subunits alpha and beta

Hypo/Highly No

HEG1 Heart development protein with EGF like 
domains 1

Hypo/Highly No

HK2 Hexokinase 2 Hyper/Low Yes HK1

IER3 Immediate early response 3 Hypo/Highly No

IKZF1 IKAROS family zinc finger 1 Hypo/Highly No

LRRC1 Leucine rich repeat containing 1 Hypo/Highly No LRPPRC, LRRC53, LRRC8A

LRRFIP1 LRR binding FLII interacting protein 1 Hypo/Highly Yes LRRN1, LRRN4

MCOLN3 Mucolipin TRP cation channel 3 Hyper/Low No

MICALL2 MICAL like 2 Hypo/Highly No

NFKBIE NFKB inhibitor epsilon Hypo/Highly No NFKB1

NTN4 netrin 4 Hypo/Highly No

NUMA1 Nuclear mitotic apparatus protein 1 Hyper/Low No

OLR1 Oxidized low density lipoprotein receptor 1 Hypo/Highly Yes

PIK3AP1 Phosphoinositide-3-kinase adaptor protein 1 Hypo/Highly No

PMM1 Phosphomannomutase 1 Hyper/Low No

PTGS2 Prostaglandin-endoperoxide synthase 2 Hypo/Highly Yes PTGS1

PTPRJ Protein tyrosine phosphatase receptor type J Hypo/Highly Yes PTPRB, PTPRC, PTPRE, PTPRF, PTPRS, PTPRU

RHOXF1 Rhox homeobox family member 1 Hypo/Highly No

RNF144A Ring finger protein 144A Hyper/Low No RNF19A, RNF216, RNF41

RNF144B Ring finger protein 144B Hypo/Highly No RNF19A, RNF216, RNF41
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Gene symbol Gene name Group DisGeNet Other genes from the same gene family that were 
associated with obesity according to DisGeNet

S100A8 S100 calcium binding protein A8 Hypo/Highly Yes S100A12, S100A16, S100A4, S100A6, S100A7, S100A8, 
S100A9, S100B

SLC25A38 Solute carrier family 25 member 38 Hyper/Low No SLC10A1, SLC12A3, SLC12A9, SLC15A1, SLC16A1, 
SLC16A7, SLC17A5, SLC19A1, SLC22A1, SLC22A12, 
SLC22A2, SLC22A3, SLC22A6, SLC22A8, SLC24A3, 
SLC25A19, SLC25A3, SLC27A1, SLC27A2, SLC2A5, 
SLC27A4, SLC27A5, SLC27A6, SLC2A1, SLC2A12, SLC2A2, 
SLC2A3, SLC2A4, SLC2A9, SLC30A10, SLC30A8, SLC33A1, 
SLC35A1, SLC35B2, SLC35B4, SLC35D3, SLC35G1, 
SLC37A4, SLC38A1, SLC38A2, SLC38A5, SLC39A13, 
SLC45A2, SLC4A4, SLC5A1, SLC5A11, SLC5A2, SLC5A5, 
SLC6A12, SLC6A14, SLC6A2, SLC6A3, SLC6A4, SLC6A8, 
SLC7A14, SLC8A1, SLC9A3, SLC9A6, SLC9A7

SLC36A4 Solute Carrier Family 36 Member 4 Hypo/Highly No

SPON1 Spondin 1 Hyper/Low No

STX17 Syntaxin 17 Hyper/Low No STX16, STX8

TMTC2 Transmembrane O-Mannosyltransferase 
Targeting Cadherins 2

Hypo/Highly No TMTC1

TNFAIP3 TNF Alpha Induced Protein 3 Hypo/Highly No -

TTC21B Tetratricopeptide Repeat Domain 21B Hyper/Low No TTC28, TTC28-AS1, TTC8

TXNIP Thioredoxin interacting protein Hyper/Low No TXNRD2, TXNRD3

UBR2 Ubiquitin protein ligase E3 component 
n-recognin 2

Hyper/Low No -

UBXN7 UBX domain protein 7 Hyper/Low No -

UNC119B Unc-119 lipid binding chaperone B Hyper/Low No -

USP40 Ubiquitin specific peptidase 40 Hyper/Low No USP10, USP17L2, USP17L24, USP17L25, USP17L26, 
USP17L27, USP17L28, USP17L29, USP17L30, USP17L9P, 
USP19, USP27X, USP8, USP9X

WDR75 WD repeat domain 75 Hyper/Low No WDR11, WDR26

WNT11 Wnt family member 11 Hyper/Low No WNT1, WNT10B, WNT3A, WNT4, WNT5A, WNT5B, WNT7A

ZC3H8 Zinc finger CCCH-type containing 8 Hyper/Low No

Hypo: hypomethylated gene; Hyper: hypermethylated gene; Low: low expressed gene; Highly: hightly expressed gene.

DISCUSSION

Previous studies have mainly focused on the association 
between the expression of individual genes and DNA 
methylation profiles in the context of obesity. However, 
bioinformatics analyses allow the combination of data 
from a large number of DEGs and DMGs and thus 
the identification of key genes that are simultaneously 
differentially expressed and methylation-regulated (18). 
Regarding obesity, studies showing the interaction 
between genes and epigenetic factors are specially 
interesting, as several environmental factors influence 
the development of this disease.

In this study, we identified 54 MeDEGs, of which 
29 are hypomethylated-high expression genes and 25 
are hypermethylated-low expression genes. Functional 
enrichment analysis showed that these MeDEGs 

participate in many biological processes and molecular 
functions, including the positive regulation of FGF 
production, arachidonic acid binding, and ubiquitin-
protein transferase activity.

FGFs are secreted signaling proteins with various 
functions in cell proliferation, development, and 
wound healing (41,42). In the last years, several FGFs 
have been involved in the regulation of glucose and 
lipid metabolism (43) and FGF1, FGF19, and FGF21 
are the main factors associated with energy metabolism 
(43,44). Evidence from studies with mice showed that 
Fgf1 is involved in the expansion of adipose tissue 
during HFD feeding, which suggests that this protein 
promotes preadipocyte proliferation and differentiation 
(45). In accordance with these findings, individuals 
with obesity have higher FGF1 secretion in SAT 
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compared with lean individuals (46). The beneficial 
effects of FGF19 and FGF21 on metabolism are more 
established than those of other members of this family. 
These two proteins increase energy expenditure and 
decrease body weight, glucose intolerance, and blood 
glucose (43). Thus, FGFs and their derivatives might 
have great potential as new therapies to treat metabolic 
conditions (47).

Regarding the enrichment of MeDEGs in 
arachidonic acid binding, few studies reported 
arachidonic acid acts as a precursor of pro-
inflammatory metabolites, including prostaglandin 
E2, leukotrienes, hydroxy-eicosatetraenoic acids, and 
diacylglycerol, which are molecules also involved in 
insulin resistance (48). Thus, arachidonic acid may also 
contribute to obesity. MeDEGs were also enriched in 
ubiquitin-protein transferase activity, which seems to 
have significant effects on obesity, mainly due to its 
involvement in inflammation, cholesterol, and glucose 
metabolism (49). Our results provide new information 
to understand obesity.

The PPI network analysis identified three hub-
bottleneck genes: PTGS2, TNFAIP3, and FBXL20. 
Hubs and bottlenecks are crucial components in 
signaling networks, as they are relevant genes for 
biologically significant processes in the disease 
development (32,48). PTGS2 and TNFAIP3 were 
identified as hypomethylated-high-expression genes 
and FBXL20 as a hypermethylated-low expression 
gene in SAT of individuals with obesity. Moreover, 
functional enrichment analysis showed that these three 
hub-bottleneck genes play an essential role in several 
signaling pathways, including TNF, NF-κB, IL-17, 
ubiquitin mediated proteolysis, Wnt, and the regulation 
of lipolysis, suggesting that these genes participate 
in obesity-related pathways and could be essential to 
understand the pathophysiology of obesity. 

TNFAIP3 encodes TNFAIP3/A20, which is a 
ubiquitin-modifying enzyme (50,51). TNFAIP3 
negatively regulates NF-κB activity, which mediates 
the effects of pro-inflammatory cytokines, including 
TNF and IL-1β (52,53). In mice, the overexpression 
of TNFAIP3 inhibits NLRP3 inflammasome complex, 
preventing lupus inflammation and renal injury (53). 
NLRP3 is negatively associated with obesity due 
to increased inflammation in adipose tissue (54). 
Accordingly, Rendo-Urteaga and cols. (55) observed 
a downregulation of TNFAIP3 in high-responder 
children with obesity to a dietary intervention program, 

possibly leading to a better inflammatory state by 
decreased TNF secretion.

PTGSs are rate-limiting enzymes in the conversion of 
arachidonic acid, a product of damaged cell membranes, 
into prostaglandins (56). The expression of the PTGS2 
isoform (COX-2) is induced by IL-1β, IL-6, and TNF; 
thus, it is upregulated during inflammation (56). In 
obesity, adipocyte COX-2 activation seems to upregulate 
the macrophage migration inhibitory factor (MIF) 
production via NF-κB activation. In turn, during early 
stages of inflammation, MIF secretion by adipocytes 
recruits pro-inflammatory macrophages (M1), leading 
to the secretion of several pro-inflammatory cytokines, 
which characterizes a feedback cycle that results in 
chronic inflammation associated with insulin resistance 
in obesity (57). 

FBXL20 is an E3 ubiquitin ligase that plays a key 
role in ubiquitin-mediated proteolysis. Evidence show 
that FBXL2, a protein of the same family, preserves 
cardiac homeostasis in the face of HFD-induced obesity 
(58). However, FBXL20 has not yet been associated 
with obesity or its related comorbidities. Thus, further 
studies are needed to assess its role in the development 
of obesity.

Further analysis of the PPI network using MCODE 
showed a module with the highest interaction between 
nodes, including four genes (CDC23, FBXL20, 
UBR2, and RNF144B). These genes were enriched 
for cell cycle and ubiquitin-mediated proteolysis, 
which is the major pathway for regulated degradation 
of intracellular proteins to prevent the accumulation 
of damaged proteins (59). The upregulation of FTO 
has been robustly associated with increased BMI and 
predisposition to obesity and T2DM (60). Zhu and cols. 
(61) showed that FTO undergoes active ubiquitination 
on the evolutionarily conserved Lys-216 residue, which 
leads FTO to proteasomal degradation. This might have 
a protective effect on energy metabolism, food intake 
regulation, fat metabolism, and body weight. Taking 
that into account, the lack of ubiquitin-mediated 
proteolysis could potentially lead to obesity. 

Comparing our results with data available at 
DisGeNET, 11 MeDEGs identified in our study were 
also previously associated with obesity in the database. 
Interestingly, our study also suggested other genes 
that have a role in obesity that were not included in 
the database. Therefore, this set of genes might play 
an important role in the development/progression of 
obesity.
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Although we identified potential candidate genes 
for obesity using bioinformatics techniques, our study 
has a few limitations. First, the DNA methylation and 
gene expression datasets had relatively small sample 
sizes, which might limit the application of our findings. 
Moreover, the samples of all DNA methylation datasets 
and one gene expression dataset (GSE94752) had only 
women, which might limit the application of our findings 
for men. Second, we analyzed both DNA methylation 
and gene expression only in SAT; thus, the results could 
be different if we had analyzed in other tissues. Lastly, 
we did not validate our bioinformatics data in SAT 
samples from patients with obesity and lean individuals 
due to unavailability of samples. Thus, further studies are 
needed to confirm our data. Despite these limitations, 
our findings are important to understand the complex 
regulation of gene expression in obesity and present new 
potential targets genes and pathways.

In conclusion, we mapped 54 MeDEGs possibly 
related to obesity by combined gene expression and 
DNA methylation profile data analyses. By a series of 
bioinformatics analyses, we identified hub-bottleneck 
genes and key pathways involved in obesity. We 
also presented a list of candidate genes for obesity 
using DisGeNET. These results may deepen the 
understanding of epigenetic regulation mechanisms 
involved in the development/progression of obesity. 
Finally, molecular biological experiments are needed to 
confirm the function of the identified genes in obesity 
and their interactions.
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Supplementary Table 1. Gene ontology and KEGG pathways of the 54 MeDEGs broken down by their methylation/expression profile

54 MeDEGs together

GENE ONTOLOGY

Biological Process

GO term Description FDR

GO:0090270 regulation of fibroblast growth factor production 0.0042

Molecular Function

GO term Description FDR

GO:0050544 arachidonic acid binding 0.0379

GO:0004842 ubiquitin-protein transferase activity 0.0379

No significant KEGG Pathway was found for these set of genes

29 Hypomethylated-highly expressed MeDEGs

GENE ONTOLOGY

Biological Process

GO term Description FDR

GO:0090271 positive regulation of fibroblast growth factor production 0.0385

Molecular Function

GO term Description FDR

GO:0050544 arachidonic acid binding 0.0073

KEGG Pathway

Pathway Pathway Name FDR

hsa04657 IL-17 signaling 0.0034

25 Hypermethylated-low expressed MeDEGs

KEGG Pathway

Pathway Pathway Name FDR

hsa00051 Fructose and mannose metabolism 0.0408

hsa00520 Amino sugar and nucleotide sugar metabolism 0.0415

hsa00310 Lysine degradation 0.0415

hsa00010 Glycolysis / Gluconeogenesis 0.0415

FDR: False Discovery Rate. Method: Benjamini-Hochenberg.
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