Accessibility / Report Error

Community structure of invertebrate fauna in Central Chilean Rivers

Estrutura da comunidade de invertebrados em rios da região central do Chile

Abstract

Aim

River systems of Central Chile are short, steep and fast flowing. They are characterized by discharge regimes dominated by rainfall and snowmelt. Invertebrate fauna is highly endemic. This study aimed to describe the community structure of invertebrate in eight river systems in Central Chile (33-39°S) using species co-occurrence and niche sharing null models.

Methods

Invertebrate samples were collected from Central Chilean rivers (33-39°S), data were analyzed co-occurrence species and niche sharing null models for determine potential structuring patterns.

Results

The results revealed the presence of non-structured patterns in co-occurrence considering each site as well as all sites, that is most probably an effect of presence of many repeated species in the studied sites. Furthermore, we found the existence of niche overlap due to interspecific competition at each site and among all sites. The results obtained from these river systems corroborate observations from Chilean Patagonian Rivers.

Conclusion

This study contributes to understanding of biogeographical and ecological patterns of invertebrate communities in central Chilean Rivers and provide foundations for more complex ecological studies.

Keywords:
fluvial ecosystems; zooplankton; aquatic insects; crustaceans; null models

Resumo

Objetivo

Os sistemas fluviais do Chile central são curtos, íngremes e fluem rapidamente. Eles são caracterizados por regimes de descarga dominados por chuvas e neve derretida. A fauna de invertebrados desses sistemas fluviais é altamente endêmica. O objetivo do presente estudo foi descrever a estrutura da comunidade de invertebrados em oito sistemas fluviais na região central do Chile (33-39°S), utilizando co-ocorrência de espécies e modelos nulos de compartilhamento de nichos.

Métodos

Amostras de invertebrados foram coletadas de rios chilenos centrais (33-39 ° S), os dados foram analisados com as espécies de coocorrência e os modelos nulos de compartilhamento de nichos para determinar potenciais padrões de estruturação.

Resultados

Os resultados revelaram a presença de padrões não estruturados em coocorrência, considerando cada local, bem como todos os locais, que é mais provavelmente um efeito da presença de muitas espécies repetidas nos locais estudados. A sobreposição de nicho revelou a existência de competição interespecífica em cada local e entre locais Os resultados obtidos para estes sistemas fluviais corroboram observações dos rios patagônicos chilenos.

Conclusão

O presente estudo contribui para a compreensão dos padrões biogeográficos e ecológicos das comunidades de invertebrados nos rios da região central do Chile e, como tal, constitui a base para estudos ecológicos mais complexos.

Palavras-chave:
ecossistemas fluviais; zooplâncton; insetos aquáticos; crustáceos; modelos nulos

Introduction

Freshwater invertebrate fauna of Chile is characterized by low species number, high endemism at regional scale and the highest species richness in lacustrine systems between 39-41°S ( Soto & Zúñiga, 1991 SOTO, D. and ZÚÑIGA, L.R. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Revista Chilena de Historia Natural , 1991, 64(3), 569-581. ; De los Ríos-Escalante et al., 2013 DE LOS RÍOS-ESCALANTE, P., MERUANE, J., MORALES, M.C., RUDOLPH, E., FUENTEALBA, C. and BOXSHAL, G. Zoogeography of Chilean inland water crustaceans. Latin American Journal of Aquatic Research, 2013, 41(5), 846-853. http://dx.doi.org/10.3856/vol41-issue5-fulltext-5.
http://dx.doi.org/10.3856/vol41-issue5-...
, 2015a DE LOS RÍOS-ESCALANTE, P., GÓRSKI, K., ACEVEDO, P. and CASTRO, M. First observations of the aquatic invertebrate fauna in ephemeral Atacama River (22° S, Antofagasta Region, Chile). Desert, 2015a, 20(2), 117-121. ). Many Chilean rivers and streams at latitudes above 33°S originate from glacial lakes ( Niemeyer & Cereceda, 1984 NIEMEYER, H. and CERECEDA, P. Hidrografia. Santiago de Chile: Instituto Geográfico Militar, 1984, 320 p. ; De los Ríos-Escalante, 2010 DE LOS RÍOS-ESCALANTE, P. Crustacean zooplankton communities in Chilean inland waters. The Netherlands, Brill, 2010, 109 p. Crustaceana Monographs, vol. 12. ) and their zooplankton communities are highly influenced by lake-dwelling species that are transported downstream by the outflow. Similar pattern has been observed for rivers in North America and Europe ( Havel & Shurin, 2004 HAVEL, J.E. and SHURIN, J.B. Mechanism, effects and scales of dispersal in freshwater zooplankton. Limnology and Oceanography, 2004, 49(4), 1229-1238. http://dx.doi.org/10.4319/lo.2004.49.4_part_2.1229.
http://dx.doi.org/10.4319/lo.2004.49.4_...
; Walks & Cyr, 2004 WALKS, D.J. and CYR, H. Movement of plankton through lake-stream systems. Freshwater Biology, 2004, 49(6), 745-759. http://dx.doi.org/10.1111/j.1365-2427.2004.01220.x.
http://dx.doi.org/10.1111/j.1365-2427.2...
) and southern systems in Patagonia (De los Ríos-Escalante et al., 2015b, 2016 DE LOS RÍOS-ESCALANTE, P., GONZÁLEZ, J.F., GÓRSKI, K., HABIT, E.M. and RUZZANTE, D.E. Crustacean zooplankton assemblages in inland waters of southern Patagonia (Alacalufes National Reserve), Chile (49-51°S). Crustaceana , 2016, 89(14), 1639-1647. http://dx.doi.org/10.1163/15685403-00003587.
http://dx.doi.org/10.1163/15685403-0000...
). Previous studies have also reported that the presence of recurrent species over a wide gradient of latitudes dominates the biogeographical pattern of zooplankton invertebrates in Chilean freshwaters ( Bayly, 1992 BAYLY, I.A.E. Fusion of the genera Boeckella and Pseudoboeckella and a revision of their species from South America and subantarctic islands. Revista Chilena de Historia Natural, 1992, 65(1), 17-63. ; Menu-Marque et al., 2000 MENU-MARQUE, S., MORRONE, J.J. and LOCASCIO DE MITROVICH, C. Distributional patterns of the South American species of Boeckella (Copepoda, Centropagidae): a track analysis. Journal of Crustacean Biology, 2000, 20(2), 262-272. http://dx.doi.org/10.1163/20021975-99990038.
http://dx.doi.org/10.1163/20021975-9999...
; De los Ríos-Escalante et al., 2013 DE LOS RÍOS-ESCALANTE, P., MERUANE, J., MORALES, M.C., RUDOLPH, E., FUENTEALBA, C. and BOXSHAL, G. Zoogeography of Chilean inland water crustaceans. Latin American Journal of Aquatic Research, 2013, 41(5), 846-853. http://dx.doi.org/10.3856/vol41-issue5-fulltext-5.
http://dx.doi.org/10.3856/vol41-issue5-...
). Still, our knowledge on invertebrate fauna community ecology in Chilean rivers and specific environmental drivers remains poor (De los Ríos-Escalante et al., 2015a DE LOS RÍOS-ESCALANTE, P., GÓRSKI, K., ACEVEDO, P. and CASTRO, M. First observations of the aquatic invertebrate fauna in ephemeral Atacama River (22° S, Antofagasta Region, Chile). Desert, 2015a, 20(2), 117-121. , b DE LOS RÍOS-ESCALANTE, P., GÓRSKI, K., HABIT, E.M. and MANOSALVA, A.J. First observations of crustacean zooplankton abundance in northern Patagonian rivers. Crustaceana, 2015b, 88(5), 617-623. http://dx.doi.org/10.1163/15685403-00003433.
http://dx.doi.org/10.1163/15685403-0000...
).

Community structure describes the community composition, richness and abundance of species. Null models became a powerful statistical tool to describe the ecological mechanisms that drive the structure of an ecological community and underlying diversity patterns. Null models for species co-occurrence assume a random pattern of species associations ( Tiho & Josens, 2007 TIHO, S. and JOSENS, G. Co-occurrence of earth worms in urban surroundings: a null model analysis of community structure. European Journal of Soil Biology, 2007, 43(2), 84-90. http://dx.doi.org/10.1016/j.ejsobi.2006.10.004.
http://dx.doi.org/10.1016/j.ejsobi.2006...
), and the absence of niche overlap, that is no interspecific competition ( Gotelli & Ellison, 2013 GOTELLI, N.J. and ELLISON, A.M. EcoSimR 1.00 [online]. UVM, 2013 [viewed 1 Dec. 2017]. Available from: http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html
http://www.uvm.edu/~ngotelli/EcoSim/Eco...
; Carvajal-Quintero et al., 2015 CARVAJAL-QUINTERO, J.D., ESCOBAR, F., ALVARADO, F., VILLA-NAVARRO, F.A., JARAMILLO-VILLA, U. and MALDONADO-OCAMPO, J.A. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution , 2015, 5(13), 2608-2620. http://dx.doi.org/10.1002/ece3.1539. PMid:26257874.
http://dx.doi.org/10.1002/ece3.1539 ...
)

Central Chilean rivers accommodate multiple invertebrate species of high conservation value and, at the same time, are marked by human intervention e.g., urbanization, flow regime alterations due to hydropower developments, intensified land use and water withdrawal for irrigation due to agricultural activities ( Figueroa et al., 2013 FIGUEROA, R., BONADA, N., GUEVARA, M., PEDREROS, P., CORREA-ARANEDA, F., DÍAZ, M.E. and RUIZ, V.H. Freshwater biodiversity and conservation in mediterranean climate streams of Chile. Hydrobiologia, 2013, 719(1), 269-289. http://dx.doi.org/10.1007/s10750-013-1685-4.
http://dx.doi.org/10.1007/s10750-013-16...
). Therefore, the area allows assessment of both environmental and ecological factors that drive community structure of riverine invertebrate. This study aimed describe the community structure of invertebrate fauna in rivers of Central Chile (33-39°S) using species richness and null models based on species presence/absence and niche overlap.

Material and Methods

Studied sites are located in Central Chilean Rivers at latitudes of 33-39°S. Invertebrate fauna samples were collected during two sampling campaigns, the first between December 2015 and May 2016 and the second between December 2016 and February 2017 ( Table 1 ; Figure 1 ). Invertebrate fauna was collected by filtering 60 L of water collected just below the surface using a 10L bucket through a 45 µm mesh net (De Los Ríos-Escalante et al., 2015a DE LOS RÍOS-ESCALANTE, P., GÓRSKI, K., ACEVEDO, P. and CASTRO, M. First observations of the aquatic invertebrate fauna in ephemeral Atacama River (22° S, Antofagasta Region, Chile). Desert, 2015a, 20(2), 117-121. , b DE LOS RÍOS-ESCALANTE, P., GÓRSKI, K., HABIT, E.M. and MANOSALVA, A.J. First observations of crustacean zooplankton abundance in northern Patagonian rivers. Crustaceana, 2015b, 88(5), 617-623. http://dx.doi.org/10.1163/15685403-00003433.
http://dx.doi.org/10.1163/15685403-0000...
). The material retained on the net was preserved in 60-70% ethanol (final concentration). Specimens were identified in the laboratory according to identification keys in Araya & Zúñiga (1985) ARAYA, J.M. and ZÚÑIGA, L.R. Manual taxonómico del zooplancton lacustre de Chile. Valdivia: Universidad Austral de Chile, 1985, 110 p. Boletín Limnológico, vol. 8. , González (2003) GONZÁLEZ, E. The freshwater amphipods Hyalella Smith, 1874 in Chile (Crustacea: Amphipoda). Revista Chilena de Historia Natural, 2003, 76(4), 623-637. http://dx.doi.org/10.4067/S0716-078X2003000400007.
http://dx.doi.org/10.4067/S0716-078X200...
, and Domínguez & Fernandez (2009) DOMÍNGUEZ, E. and FERNANDEZ, H.R. Macroinvertebrados bentónicos sudamericanos. Tucumán: Fundación Miguel Lillo, 2009, 656 p. Sistemática y Biología. .

Table 1
Geographical coordinates included in the present study.
Figure 1
Location of sampling sites in the study area.

Data on dissolved oxygen concentrations, conductivity, total dissolved solids, pH, temperature and turbidity were also collected in studied sites. An equipment failure did not allow sampling of dissolved oxygen in the second campaign.

The dependent and independent variables were used in multiple regression analyses using software R ( R Development Core Team, 2009 R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing . Vienna: R Foundation For Statistical Computing, 2009. ) and the HSAUR R package ( Everitt & Hothorn, 2016 EVERITT, B.S., and HOTHORN, T. A handbook of Statistical Analysis using R [online]. 2016 [viewed 1 Dec. 2017]. Available from: https://cran.r-project.org/web/packages/HSAUR/HSAUR.pdf
https://cran.r-project.org/web/packages...
). We ran two models: first one using species number and the second one using total abundance as dependent variable. Furthermore, we built a species presence/absence matrix. It calculated the Checkerboard score (“C-score”). C-score is a quantitative index of occurrence that measures the extent to which species co-occur less frequently than expected by chance ( Gotelli, 2000 GOTELLI, N.J. Null model analysis of species co-occurrence patterns. Ecology , 2000, 81(9), 2606-2621. http://dx.doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2.
http://dx.doi.org/10.1890/0012-9658(200...
). A community is structured by competition when the C-score is significantly larger than expected by chance ( Gotelli, 2000 GOTELLI, N.J. Null model analysis of species co-occurrence patterns. Ecology , 2000, 81(9), 2606-2621. http://dx.doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2.
http://dx.doi.org/10.1890/0012-9658(200...
; Tondoh, 2006 TONDOH, J.E. Seasonal changes in earthworm diversity and community structure in Central Côte d’Ivoire. European Journal of Soil Biology, 2006, 42(Supp 1), 334-340. http://dx.doi.org/10.1016/j.ejsobi.2006.09.003.
http://dx.doi.org/10.1016/j.ejsobi.2006...
; Tiho & Josens, 2007 TIHO, S. and JOSENS, G. Co-occurrence of earth worms in urban surroundings: a null model analysis of community structure. European Journal of Soil Biology, 2007, 43(2), 84-90. http://dx.doi.org/10.1016/j.ejsobi.2006.10.004.
http://dx.doi.org/10.1016/j.ejsobi.2006...
). Consequently, we compared co-occurrence patterns with null expectations via simulation using statistical Fixed-Fixed null models ( Gotelli & Ellison, 2013 GOTELLI, N.J. and ELLISON, A.M. EcoSimR 1.00 [online]. UVM, 2013 [viewed 1 Dec. 2017]. Available from: http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html
http://www.uvm.edu/~ngotelli/EcoSim/Eco...
). In this model the row and column sums of the matrix are preserved and, each random community contains the same number of species (fixed column) and each species occurs with the same frequency as the original community (fixed row). The null model analyses were performed using the software R ( R Development Core Team, 2009 R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing . Vienna: R Foundation For Statistical Computing, 2009. ) and the package EcosimR ( Gotelli & Ellison, 2013 GOTELLI, N.J. and ELLISON, A.M. EcoSimR 1.00 [online]. UVM, 2013 [viewed 1 Dec. 2017]. Available from: http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html
http://www.uvm.edu/~ngotelli/EcoSim/Eco...
; Carvajal-Quintero et al., 2015 CARVAJAL-QUINTERO, J.D., ESCOBAR, F., ALVARADO, F., VILLA-NAVARRO, F.A., JARAMILLO-VILLA, U. and MALDONADO-OCAMPO, J.A. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution , 2015, 5(13), 2608-2620. http://dx.doi.org/10.1002/ece3.1539. PMid:26257874.
http://dx.doi.org/10.1002/ece3.1539 ...
).

We calculated the niche overlap using Pianka index calculated on an individual matrix with rows representing species and columns representing sites. This index was used to test if niche overlap significantly differed from corresponding value under the null hypothesis (random assemblage). The model allows to evaluate the probability of the calculated niche overlap differing from the theoretically simulated community ( Gotelli & Ellison, 2013 GOTELLI, N.J. and ELLISON, A.M. EcoSimR 1.00 [online]. UVM, 2013 [viewed 1 Dec. 2017]. Available from: http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html
http://www.uvm.edu/~ngotelli/EcoSim/Eco...
). In the model, the niche amplitude can be fixed or reshuffled. A fixed amplitude preserves the specialization of each species, whereas a reshuffled amplitude uses a wide utilization gradient of specialization. Furthermore, the presence of zeros in the observed matrix can be maintained or omitted. In the present study we used the RA3 algorithm ( Gotelli & Ellison, 2013 GOTELLI, N.J. and ELLISON, A.M. EcoSimR 1.00 [online]. UVM, 2013 [viewed 1 Dec. 2017]. Available from: http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html
http://www.uvm.edu/~ngotelli/EcoSim/Eco...
; Carvajal-Quintero et al., 2015 CARVAJAL-QUINTERO, J.D., ESCOBAR, F., ALVARADO, F., VILLA-NAVARRO, F.A., JARAMILLO-VILLA, U. and MALDONADO-OCAMPO, J.A. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution , 2015, 5(13), 2608-2620. http://dx.doi.org/10.1002/ece3.1539. PMid:26257874.
http://dx.doi.org/10.1002/ece3.1539 ...
). RA3 algorithm retains the amplitude and reshuffles the zero conditions ( Gotelli & Ellison, 2013 GOTELLI, N.J. and ELLISON, A.M. EcoSimR 1.00 [online]. UVM, 2013 [viewed 1 Dec. 2017]. Available from: http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html
http://www.uvm.edu/~ngotelli/EcoSim/Eco...
). The null model analysis were carried out using the software R ( R Development Core Team, 2009 R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing . Vienna: R Foundation For Statistical Computing, 2009. ) and the package EcosimR ( Gotelli & Ellison, 2013 GOTELLI, N.J. and ELLISON, A.M. EcoSimR 1.00 [online]. UVM, 2013 [viewed 1 Dec. 2017]. Available from: http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html
http://www.uvm.edu/~ngotelli/EcoSim/Eco...
; Carvajal-Quintero et al., 2015 CARVAJAL-QUINTERO, J.D., ESCOBAR, F., ALVARADO, F., VILLA-NAVARRO, F.A., JARAMILLO-VILLA, U. and MALDONADO-OCAMPO, J.A. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution , 2015, 5(13), 2608-2620. http://dx.doi.org/10.1002/ece3.1539. PMid:26257874.
http://dx.doi.org/10.1002/ece3.1539 ...
).

Results and Discussion

Overall, the abundance of invertebrate fauna was very low and characterized by a limited numbers of species ( Table 2 ). For the first sampling period (2016), significant inverse associations were observed between species richness and turbidity, total number of individuals and conductivity as well as total number of individuals and turbidity ( Table 3 ), whereas for second sampling period there were no significant associations with environmental variables ( Table 3 ). These results suggest higher species number in less polluted waters often characterized by low turbidity and low mineral content ( Figueroa et al., 2003 FIGUEROA, R., VALDOVINOS, C., ARAYA, E. and PARRA, O. Macroinvertebrados bentónicos como indicadores de calidad de agua de ríos del sur de Chile. Revista Chilena de Historia Natural, 2003, 76(2), 275-285. http://dx.doi.org/10.4067/S0716-078X2003000200012.
http://dx.doi.org/10.4067/S0716-078X200...
, 2007 FIGUEROA, R., PALMA, A., RUIZ, V. and NIELL, X. Análisis comparativo de índices bióticos utilizados en la evaluación de la calidad de aguas en un río mediterráneo de Chile, río Chillán, VIII región. Revista Chilena de Historia Natural, 2007, 80(2), 225-242. http://dx.doi.org/10.4067/S0716-078X2007000200008.
http://dx.doi.org/10.4067/S0716-078X200...
).

Table 2
List of taxa reported for two sampling periods.
Table 3
Results of the model averaging for selection of the variables with the highest contribution to the species number.

The results of null model analysis revealed that species associations in all sites and for each river are random ( Table 4 and 5 ). The niche overlap null model revealed that species have niche sharing and in consequence interspecific competition both among rivers and within each river exist ( Table 4 and 5 ). The null model results revealed random presence that is probably due the presence of few species, their low abundance and repetition of species among studied sites. Similar patterns were observed in Patagonian rivers (De los Ríos-Escalante et al., 2015b; De los Ríos-Escalante, 2016 DE LOS RÍOS-ESCALANTE, P. Null models for study rotifers and crustacean zooplankton species richness in Chilean Patagonian lakes. Acta Limnologica Brasiliensia , 2016, 28, e11. ). Nevertheless, the results of niche sharing revealed that the reported species share their niches, and they are expected to have interspecific competition ( Kamjunke et al., 2009 KAMJUNKE, N., VOGT, B. and WOELFL, S. Trophic interactions of the pelagic ciliate Stentor spp in north Patagonian lakes. Limnologica, 2009, 39(2), 107-114. http://dx.doi.org/10.1016/j.limno.2008.08.001.
http://dx.doi.org/10.1016/j.limno.2008....
, 2012 KAMJUNKE, N., KRAMPS, M., CHÁVEZ, S. and WOELFL, S. Composition of large Chlorella-bearing ciliates (Stentor) by Mesocyclops araucanus in North Patagonian lakes. Journal of Plankton Research , 2012, 34(10), 922-927. http://dx.doi.org/10.1093/plankt/fbs051.
http://dx.doi.org/10.1093/plankt/fbs051...
; Muñoz-Pedreros et al., 2013 MUÑOZ-PEDREROS, A., DE LOS RÍOS, P. and MÖLLER, P. DE LOS RÍOS P., and MOLLER P. Zooplankton in Laguna Lejía, a high-altitude Andean shallow lake of the Puna in northern Chile. Crustaceana, 2013, 86(13-14), 1634-1643. http://dx.doi.org/10.1163/15685403-00003265.
http://dx.doi.org/10.1163/15685403-0000...
; De los Ríos-Escalante & Woelfl, 2017 DE LOS RÍOS-ESCALANTE, P. and WOELFL, S. Use of null models to explain crustacean zooplankton assemblages in north Patagonian lakes with presence or absence of mixotrophic ciliates. Crustaceana, 2017, 90(3), 311-319. http://dx.doi.org/10.1163/15685403-00003634.
http://dx.doi.org/10.1163/15685403-0000...
). Furthermore, due to low productivity of these systems, complex trophic interactions ( Gray, 2005 GRAY, B.R. Selecting a distributional assumption for modeling relative densities of benthic macroinvertebrates. Ecological Modelling, 2005, 185(1), 1-12. http://dx.doi.org/10.1016/j.ecolmodel.2004.11.006.
http://dx.doi.org/10.1016/j.ecolmodel.2...
; Ings et al., 2009 INGS, T.C., MONTOYA, J.M., BASCOMPTE, J., BLÜTHGEN, N., BROWN, L., DORMANN, C.F., EDWARDS, F., FIGUEROA, D., JACOB, U., JONES, J.I., LAURIDSEN, R.B., LEDGER, M.E., LEWIS, H.M., OLESEN, J.M., VAN VEEN, F.J., WARREN, P.H. and WOODWARD, G. Ecological networks – beyond food webs. Journal of Animal Ecology, 2009, 78(1), 253-269. http://dx.doi.org/10.1111/j.1365-2656.2008.01460.x. PMid:19120606.
http://dx.doi.org/10.1111/j.1365-2656.2...
; Woodward et al., 2010 WOODWARD, G., BLANCHARD, J., LAURIDSEN, R.B., EDWARDS, F.K., JONES, J.I., FIGUEROA, D., WARREN, P.H. and PETCHEY, O.L. Individual-based food webs: species indentity, body size and sampling effects. Advances in Ecological Research, 2010, 43, 211-266. http://dx.doi.org/10.1016/B978-0-12-385005-8.00006-X.
http://dx.doi.org/10.1016/B978-0-12-385...
; Schmid-Araya et al., 2012 SCHMID-ARAYA, J.M., FIGUEROA HERNANDEZ, D., SCHMID, P. and DROUOT, C. Algivory in food webs of three temperate Andean rivers. Austral Ecology, 2012, 37(4), 440-451. http://dx.doi.org/10.1111/j.1442-9993.2011.02298.x.
http://dx.doi.org/10.1111/j.1442-9993.2...
). Similar processes were observed in some northern Patagonian rivers in Chile and Argentina where low diversity but complex trophic interactions were reported ( Encina et al., 2017 ENCINA, F., VEGA, R., LARA, G. and DE LOS RÍOS-ESCALANTE, P. Ecological role of benthic crustaceans in Chilean North Patagonian lakes and rivers (Araucania region, 39° S). Crustaceana, 2017, 90(4), 437-447. http://dx.doi.org/10.1163/15685403-00003643.
http://dx.doi.org/10.1163/15685403-0000...
; Vega et al., 2017 VEGA, R., RÍOS-ESCALANTE, P., ENCINA, F. and MARDONES, A. Ecology of benthic crustaceans in the Cautin river (38°S, Araucania region, Chile). Crustaceana , 2017, 90(6), 709-719. http://dx.doi.org/10.1163/15685403-00003689.
http://dx.doi.org/10.1163/15685403-0000...
; Alvear et al., 2007 ALVEAR, P. A., RECHENCQ, M., MACCHI, P.J., ALONSO, M.F., LIPPOLT, G.E., DENEGRI, M.A., NAVONE, G., ZATTARA, E.E., ASOREY, M.I.G. and VIGLIANO, P.H. Composición, distribución y relaciones tróficas de la ictiofauna del rio Negro, Patagonia, Argentina. Ecología Austral, 2007, 17(2), 231-246. ; Pascual & Ciancio, 2007 PASCUAL, M.A. and CIANCIO, J.E. Introduced anadromous salmonids in Patagonia: risk, uses and a conservation paradox. In: T.M. BERT, ed. Ecological and genetic implications of aquaculture activities. Dordrecht: Springer, 2007, p. 333-353. http://dx.doi.org/10.1007/978-1-4020-6148-6_18.
http://dx.doi.org/10.1007/978-1-4020-61...
). Present study contributes to understanding of biogeographical and ecological patterns of invertebrate communities in central Chilean rivers and as such forms foundations for more complex ecological studies.

Table 4
Results of null models for data of first sampling period.
Table 5
Results of null models for data of second sampling period.

Acknowledgements

The present study was funded by projects FONDECYT 1150105 and MECESUP UCT 0804, also the authors express the gratitude to M.I and S.M.A. for their valuable comments and suggestions.

  • Cite as: De los Ríos, P. et al. et al. Community structure of invertebrate fauna in Central Chilean Rivers. Acta Limnologica Brasiliensia, 2019, vol. 31, e3.

References

  • ALVEAR, P. A., RECHENCQ, M., MACCHI, P.J., ALONSO, M.F., LIPPOLT, G.E., DENEGRI, M.A., NAVONE, G., ZATTARA, E.E., ASOREY, M.I.G. and VIGLIANO, P.H. Composición, distribución y relaciones tróficas de la ictiofauna del rio Negro, Patagonia, Argentina. Ecología Austral, 2007, 17(2), 231-246.
  • ARAYA, J.M. and ZÚÑIGA, L.R. Manual taxonómico del zooplancton lacustre de Chile Valdivia: Universidad Austral de Chile, 1985, 110 p. Boletín Limnológico, vol. 8.
  • BAYLY, I.A.E. Fusion of the genera Boeckella and Pseudoboeckella and a revision of their species from South America and subantarctic islands. Revista Chilena de Historia Natural, 1992, 65(1), 17-63.
  • CARVAJAL-QUINTERO, J.D., ESCOBAR, F., ALVARADO, F., VILLA-NAVARRO, F.A., JARAMILLO-VILLA, U. and MALDONADO-OCAMPO, J.A. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution , 2015, 5(13), 2608-2620. http://dx.doi.org/10.1002/ece3.1539. PMid:26257874.
    » http://dx.doi.org/10.1002/ece3.1539
  • DE LOS RÍOS-ESCALANTE, P. and WOELFL, S. Use of null models to explain crustacean zooplankton assemblages in north Patagonian lakes with presence or absence of mixotrophic ciliates. Crustaceana, 2017, 90(3), 311-319. http://dx.doi.org/10.1163/15685403-00003634.
    » http://dx.doi.org/10.1163/15685403-00003634
  • DE LOS RÍOS-ESCALANTE, P. Crustacean zooplankton communities in Chilean inland waters The Netherlands, Brill, 2010, 109 p. Crustaceana Monographs, vol. 12.
  • DE LOS RÍOS-ESCALANTE, P. Null models for study rotifers and crustacean zooplankton species richness in Chilean Patagonian lakes. Acta Limnologica Brasiliensia , 2016, 28, e11.
  • DE LOS RÍOS-ESCALANTE, P., GONZÁLEZ, J.F., GÓRSKI, K., HABIT, E.M. and RUZZANTE, D.E. Crustacean zooplankton assemblages in inland waters of southern Patagonia (Alacalufes National Reserve), Chile (49-51°S). Crustaceana , 2016, 89(14), 1639-1647. http://dx.doi.org/10.1163/15685403-00003587.
    » http://dx.doi.org/10.1163/15685403-00003587
  • DE LOS RÍOS-ESCALANTE, P., GÓRSKI, K., ACEVEDO, P. and CASTRO, M. First observations of the aquatic invertebrate fauna in ephemeral Atacama River (22° S, Antofagasta Region, Chile). Desert, 2015a, 20(2), 117-121.
  • DE LOS RÍOS-ESCALANTE, P., GÓRSKI, K., HABIT, E.M. and MANOSALVA, A.J. First observations of crustacean zooplankton abundance in northern Patagonian rivers. Crustaceana, 2015b, 88(5), 617-623. http://dx.doi.org/10.1163/15685403-00003433.
    » http://dx.doi.org/10.1163/15685403-00003433
  • DE LOS RÍOS-ESCALANTE, P., MERUANE, J., MORALES, M.C., RUDOLPH, E., FUENTEALBA, C. and BOXSHAL, G. Zoogeography of Chilean inland water crustaceans. Latin American Journal of Aquatic Research, 2013, 41(5), 846-853. http://dx.doi.org/10.3856/vol41-issue5-fulltext-5.
    » http://dx.doi.org/10.3856/vol41-issue5-fulltext-5
  • DOMÍNGUEZ, E. and FERNANDEZ, H.R. Macroinvertebrados bentónicos sudamericanos Tucumán: Fundación Miguel Lillo, 2009, 656 p. Sistemática y Biología.
  • ENCINA, F., VEGA, R., LARA, G. and DE LOS RÍOS-ESCALANTE, P. Ecological role of benthic crustaceans in Chilean North Patagonian lakes and rivers (Araucania region, 39° S). Crustaceana, 2017, 90(4), 437-447. http://dx.doi.org/10.1163/15685403-00003643.
    » http://dx.doi.org/10.1163/15685403-00003643
  • EVERITT, B.S., and HOTHORN, T. A handbook of Statistical Analysis using R [online]. 2016 [viewed 1 Dec. 2017]. Available from: https://cran.r-project.org/web/packages/HSAUR/HSAUR.pdf
    » https://cran.r-project.org/web/packages/HSAUR/HSAUR.pdf
  • FIGUEROA, R., BONADA, N., GUEVARA, M., PEDREROS, P., CORREA-ARANEDA, F., DÍAZ, M.E. and RUIZ, V.H. Freshwater biodiversity and conservation in mediterranean climate streams of Chile. Hydrobiologia, 2013, 719(1), 269-289. http://dx.doi.org/10.1007/s10750-013-1685-4.
    » http://dx.doi.org/10.1007/s10750-013-1685-4
  • FIGUEROA, R., PALMA, A., RUIZ, V. and NIELL, X. Análisis comparativo de índices bióticos utilizados en la evaluación de la calidad de aguas en un río mediterráneo de Chile, río Chillán, VIII región. Revista Chilena de Historia Natural, 2007, 80(2), 225-242. http://dx.doi.org/10.4067/S0716-078X2007000200008.
    » http://dx.doi.org/10.4067/S0716-078X2007000200008
  • FIGUEROA, R., VALDOVINOS, C., ARAYA, E. and PARRA, O. Macroinvertebrados bentónicos como indicadores de calidad de agua de ríos del sur de Chile. Revista Chilena de Historia Natural, 2003, 76(2), 275-285. http://dx.doi.org/10.4067/S0716-078X2003000200012.
    » http://dx.doi.org/10.4067/S0716-078X2003000200012
  • GONZÁLEZ, E. The freshwater amphipods Hyalella Smith, 1874 in Chile (Crustacea: Amphipoda). Revista Chilena de Historia Natural, 2003, 76(4), 623-637. http://dx.doi.org/10.4067/S0716-078X2003000400007.
    » http://dx.doi.org/10.4067/S0716-078X2003000400007
  • GOTELLI, N.J. and ELLISON, A.M. EcoSimR 1.00 [online]. UVM, 2013 [viewed 1 Dec. 2017]. Available from: http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html
    » http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html
  • GOTELLI, N.J. Null model analysis of species co-occurrence patterns. Ecology , 2000, 81(9), 2606-2621. http://dx.doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2.
    » http://dx.doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2
  • GRAY, B.R. Selecting a distributional assumption for modeling relative densities of benthic macroinvertebrates. Ecological Modelling, 2005, 185(1), 1-12. http://dx.doi.org/10.1016/j.ecolmodel.2004.11.006.
    » http://dx.doi.org/10.1016/j.ecolmodel.2004.11.006
  • HAVEL, J.E. and SHURIN, J.B. Mechanism, effects and scales of dispersal in freshwater zooplankton. Limnology and Oceanography, 2004, 49(4), 1229-1238. http://dx.doi.org/10.4319/lo.2004.49.4_part_2.1229.
    » http://dx.doi.org/10.4319/lo.2004.49.4_part_2.1229
  • INGS, T.C., MONTOYA, J.M., BASCOMPTE, J., BLÜTHGEN, N., BROWN, L., DORMANN, C.F., EDWARDS, F., FIGUEROA, D., JACOB, U., JONES, J.I., LAURIDSEN, R.B., LEDGER, M.E., LEWIS, H.M., OLESEN, J.M., VAN VEEN, F.J., WARREN, P.H. and WOODWARD, G. Ecological networks – beyond food webs. Journal of Animal Ecology, 2009, 78(1), 253-269. http://dx.doi.org/10.1111/j.1365-2656.2008.01460.x. PMid:19120606.
    » http://dx.doi.org/10.1111/j.1365-2656.2008.01460.x
  • KAMJUNKE, N., KRAMPS, M., CHÁVEZ, S. and WOELFL, S. Composition of large Chlorella-bearing ciliates (Stentor) by Mesocyclops araucanus in North Patagonian lakes. Journal of Plankton Research , 2012, 34(10), 922-927. http://dx.doi.org/10.1093/plankt/fbs051.
    » http://dx.doi.org/10.1093/plankt/fbs051
  • KAMJUNKE, N., VOGT, B. and WOELFL, S. Trophic interactions of the pelagic ciliate Stentor spp in north Patagonian lakes. Limnologica, 2009, 39(2), 107-114. http://dx.doi.org/10.1016/j.limno.2008.08.001.
    » http://dx.doi.org/10.1016/j.limno.2008.08.001
  • MENU-MARQUE, S., MORRONE, J.J. and LOCASCIO DE MITROVICH, C. Distributional patterns of the South American species of Boeckella (Copepoda, Centropagidae): a track analysis. Journal of Crustacean Biology, 2000, 20(2), 262-272. http://dx.doi.org/10.1163/20021975-99990038.
    » http://dx.doi.org/10.1163/20021975-99990038
  • MUÑOZ-PEDREROS, A., DE LOS RÍOS, P. and MÖLLER, P. DE LOS RÍOS P., and MOLLER P. Zooplankton in Laguna Lejía, a high-altitude Andean shallow lake of the Puna in northern Chile. Crustaceana, 2013, 86(13-14), 1634-1643. http://dx.doi.org/10.1163/15685403-00003265.
    » http://dx.doi.org/10.1163/15685403-00003265
  • NIEMEYER, H. and CERECEDA, P. Hidrografia Santiago de Chile: Instituto Geográfico Militar, 1984, 320 p.
  • PASCUAL, M.A. and CIANCIO, J.E. Introduced anadromous salmonids in Patagonia: risk, uses and a conservation paradox. In: T.M. BERT, ed. Ecological and genetic implications of aquaculture activities Dordrecht: Springer, 2007, p. 333-353. http://dx.doi.org/10.1007/978-1-4020-6148-6_18.
    » http://dx.doi.org/10.1007/978-1-4020-6148-6_18
  • R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing . Vienna: R Foundation For Statistical Computing, 2009.
  • SCHMID-ARAYA, J.M., FIGUEROA HERNANDEZ, D., SCHMID, P. and DROUOT, C. Algivory in food webs of three temperate Andean rivers. Austral Ecology, 2012, 37(4), 440-451. http://dx.doi.org/10.1111/j.1442-9993.2011.02298.x.
    » http://dx.doi.org/10.1111/j.1442-9993.2011.02298.x
  • SOTO, D. and ZÚÑIGA, L.R. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Revista Chilena de Historia Natural , 1991, 64(3), 569-581.
  • TIHO, S. and JOSENS, G. Co-occurrence of earth worms in urban surroundings: a null model analysis of community structure. European Journal of Soil Biology, 2007, 43(2), 84-90. http://dx.doi.org/10.1016/j.ejsobi.2006.10.004.
    » http://dx.doi.org/10.1016/j.ejsobi.2006.10.004
  • TONDOH, J.E. Seasonal changes in earthworm diversity and community structure in Central Côte d’Ivoire. European Journal of Soil Biology, 2006, 42(Supp 1), 334-340. http://dx.doi.org/10.1016/j.ejsobi.2006.09.003.
    » http://dx.doi.org/10.1016/j.ejsobi.2006.09.003
  • VEGA, R., RÍOS-ESCALANTE, P., ENCINA, F. and MARDONES, A. Ecology of benthic crustaceans in the Cautin river (38°S, Araucania region, Chile). Crustaceana , 2017, 90(6), 709-719. http://dx.doi.org/10.1163/15685403-00003689.
    » http://dx.doi.org/10.1163/15685403-00003689
  • WALKS, D.J. and CYR, H. Movement of plankton through lake-stream systems. Freshwater Biology, 2004, 49(6), 745-759. http://dx.doi.org/10.1111/j.1365-2427.2004.01220.x.
    » http://dx.doi.org/10.1111/j.1365-2427.2004.01220.x
  • WOODWARD, G., BLANCHARD, J., LAURIDSEN, R.B., EDWARDS, F.K., JONES, J.I., FIGUEROA, D., WARREN, P.H. and PETCHEY, O.L. Individual-based food webs: species indentity, body size and sampling effects. Advances in Ecological Research, 2010, 43, 211-266. http://dx.doi.org/10.1016/B978-0-12-385005-8.00006-X.
    » http://dx.doi.org/10.1016/B978-0-12-385005-8.00006-X

Publication Dates

  • Publication in this collection
    11 Apr 2019
  • Date of issue
    2019

History

  • Received
    29 May 2018
  • Accepted
    20 Feb 2019
Associação Brasileira de Limnologia Av. 24 A, 1515, CEP: 13506-900 , Tel.:+55 (19) 3526-4225 - Rio Claro - SP - Brazil
E-mail: actalimno@gmail.com