Resúmenes
Los contaminantes orgánicos emergentes conforman un grupo de sustancias muy heterogéneas, cuya característica en común es que causan efectos negativos sobre los organismos acuáticos, por lo que deben de ser eliminados del ambiente. Lamentablemente, los procesos convencionales con los que operan las plantas de tratamiento de aguas residuales, especialmente los de tipo biológico, son ineficientes en la remoción de estas sustancias. Por este motivo, se hace necesaria la evaluación y optimización de tratamientos más eficaces, entre los que se encuentran los procesos de oxidación avanzada y de filtración por membranas. Sin embargo, ambas técnicas presentan inconvenientes que pueden limitar la aplicación individual de las mismas, de modo que podría proponerse la combinación de dichas tecnologías con procesos biológicos como mejor solución para tratar las aguas residuales contaminadas con contaminantes orgánicos emergentes.
contaminación acuática; biodegradación; procesos de oxidación avanzada
Os contaminantes orgânicos emergentes formam um grupo de substâncias bastante heterogêneas cuja característica comum é que causam efeitos negativos em organismos aquáticos, por isso, devem ser removidas do meio. Lamentavelmente, os processos convencionais que operam nas plantas de tratamento de águas residuárias, principalmente do tipo biológico, são ineficientes na degradação destas substâncias. Por esta razão, é necessária a avaliação e a otimização dos tratamentos para torná-los mais eficientes, incluindo os processos oxidativos avançados e de filtração por membranas. No entanto, ambas as técnicas têm desvantagens que podem limitar a aplicação isolada delas, de modo que é proposta a combinação dessas tecnologias com processos biológicos como a melhor solução para o tratamento de águas residuárias contaminadas com contaminantes emergentes.
poluição da água; biodegradação; processos oxidativos avançados
Emerging organic pollutants form a very heterogeneous group of substances that have negative effects on aquatic organisms, so they should be removed from the environment. Unfortunately, conventional processes in wastewater treatment plants, especially biological ones, are inefficient in the degradation of these substances. It is therefore necessary to evaluate and optimize the effectiveness of the treatments, including advanced oxidation and membrane filtration processes. However, both techniques have drawbacks that may limit their stand-alone application, so it is proposed that the best solution may be to combine these technologies with biological processes to treat wastewater contaminated with emerging organic pollutants.
water pollution; biodegradation; advanced oxidation processes
Referencias bibliográficas
- ANDREOZZI, R.; RAFFELE, M.; NICKLAS, P. Pharmaceuticals in STP effluents and solar photodegradation in aquatic environment. Chemosphere, n. 50, p. 1319-1330, 2003. http://dx.doi.org/10.1016/S0045-6535(02)00769-5
- ARSLAN-ALATON, I.; DOGRUEL, S.; BAYKAL, E.; GERONE, G. Combined chemical and biological oxidation of penicillin formulation effluent. Journal of Environment Manager, v. 73, n. 2, p. 155-163, 2004. http://dx.doi.org/10.1016/j.jenvman.2004.06.007
- BARCELÓ, D. Emerging pollutants in water analysis. TrAC Trends in Analytical Chemistry, v. 22, n. 10, p. 14-16, 2003. http://dx.doi.org/10.1016/S0165-9936(03)01106-3
- BAUTITZ, I. R.; NOGUEIRA, R. F. P. Degradation of tetracycline by photo-Fenton process- solar irradiation and matrix effect. Journal of Photochemistry and Photobiology A, v. 187, p. 33-39, 2007. http://dx.doi.org/10.1016/j.jphotochem.2006.09.009
- BOLONG, N.; ISMAIL, A. F.; SALIM, M. R.; MATSUURA, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, v. 239, p. 229-246, 2009. http://dx.doi.org/10.1016/j.desal.2008.03.020
- CHIANG, K.; LIM, T. M.; TSEN, L.; LEE, C. C. Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Applied Catalysis A: General, 261, pp. 225-237, 2004.
- CLARA, M.; STRENN, B.; GANS, O.; MARTINEZ, E.; KREUZINGER, N.; KROISS, H. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research, v. 39, p. 4797-4807, 2005. http://dx.doi.org/10.1016/j.watres.2005.09.015
- DOLAR, D.; GROS, M.; RODRIGUEZ-MOZAZ, S.; MORENO, J.; COMAS, J; RODRIGUEZ-RODA, I. et al. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. Journal of Hazardous Materials, v. 239-240, p. 64-69, 2012. http://dx.doi.org/10.1016/j.jhazmat.2012.03.029
- DORIVAL-GARCÍA, N.; ZAFRA-GÓMEZ, A.; NAVALÓN, A.; GONZÁLEZ, J., VILCHEZ, J. L. Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory-scale membrane bioreactors. Science of the Total Environment, v. 442, p. 217-328, 2013. http://dx.doi.org/10.1016/j.scitotenv.2012.10.026
- DOUGHERTY, J.; SWARZENSKI, P.; DINICOLA, R.; REINHARD, M. Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around Liberty Bay, Puget Sound, Washington. Journal of Environmental Quality, v. 39, p. 1173-1180, 2010. http://dx.doi.org/10.2134/jeq2009.0189
- FARRÉ, La M.; PÉREZ, S.; LANTIANI, L.; BARCELÓ, D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends in Analytical Chemistry, v. 27, n. 11, p. 991-1007, 2008. http://dx.doi.org/10.1016/j.trac.2008.09.010
- GLAZE, W. H.; KANG, J. W.; CHAPIN, D. H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science & Engineering, v. 9, n. 4, p. 335-352, 1987. http://dx.doi.org/10.1080/01919518708552148
- GUNNARSSON, L.; ADOLFSSON-ERICI, M.; BJÖRLENIUS, B.; RUTGERSSON, C.; FÖRLIN, L.; LARSSON, D. Comparison of six different sewage treatment processes reduction of estrogenic substances and effects on gene expression in exposed male fish. Science Total Environmental, v. 407, n. 19, p. 5235-5242, 2009. http://dx.doi.org/10.1016/j.scitotenv.2009.06.018
- HOMEM, V.; SANTOS, L. Degradation and removal methods of antibiotics form aqueous matrices - A review. Journal of Environmental Management, v. 92, p. 2304-2347, 2011. http://dx.doi.org/10.1016/j.jenvman.2011.05.023
- JOHNSON, A. C.; SUMPTER, J. P. Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environmental Science & Technology, v. 35, n. 24, p. 4697-4703, 2001. http://dx.doi.org/10.1021/es010171j
- KITAMURA, S.; SUZUKI, T.; SANOH, S.; KOHTA, R.; JINNO, N.; SUGIHARA, K. et al. Comparative Study of the Endocrine-Disrupting Activity of Bisphenol A and 19 Related Compounds. Toxicological Sciences, v. 84, n. 2, p. 249-259, 2005. http://dx.doi.org/10.1093/toxsci/kfi074
- LAYTON, A.; GREGORY, B.; SEWARD, J.; SCHULTZ, T.; SAYLER, G. Mineralization of steroidal hormones by biosolids in wastewater treatment system in Tennessee USA. Environmental Science & Technology, v. 34, p. 3925-3931, 2000. http://dx.doi.org/10.1021/es9914487
- LE-CLECH, P.; CHEM, V.; FANE, T. A. Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, v. 284, p. 17-53, 2006. http://dx.doi.org/10.1016/j.memsci.2006.08.019
- MASTRUP, M.; JENSEN, R. L.; SCHAFER, A. I.; KHAN, S. Modelling an important tool water recycling technologies. In: SCHÄFER, A. I.; WAITE T. D.; SHERMAN, P. Recent advances in water recycling technologies Brisbane: [s.n.], 2001. p. 103-112.
- MUNTER, R. Advanced oxidation processes-current status and prospects. Proceedings of the Estonian Academy of Sciences Chemistry, v. 50, n. 2, p. 59-80, 2001.
- MUTAMIM, N. S. A.; NOOR, Z. Z.; HASSAN, M. A. A.; OLSSON G. Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review. Desalination, v. 305, p. 1-11, 2012. http://dx.doi.org/10.1016/j.desal.2012.07.033
- OLLER, I.; MALATO, S.; SÁNCHEZ-PÉREZ, J. A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-a review. The Science of the Total Environment, v. 409, n. 20, p. 4141-4166, 2011. http://dx.doi.org/10.1016/j.scitotenv.2010.08.061
- PETROVIC, M.; DÍAZ, A.; VENTURA, F.; BARCELÓ, D. Occurrence and removal of estrogenic short-chain ethoxy nonylphenolic compound and their halogenated derivatives during drinking water production. Environmental Science & Technology, v. 27, p. 4442-4448, 2003. http://dx.doi.org/10.1021/es034139w
- PIGNATELLO, J. J.; OLIVEROS, E.; MACKAY, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science & Technology, v. 36, n. 1, p. 1-84, 2006. http://dx.doi.org/10.1080/10643380500326564
- SERVOS, M. R.; BENNIE, D. T.; BURNISON, B. K.; JURKOVIC, A.; MCLNNIS, R.; NEHELI, T. et al. Distribution of estrogens, 17-β estradiol and estrone in Canadian municipal wastewater treatment plants. Science of the Total Environment, v. 336, p. 155-170, 2005. http://dx.doi.org/10.1016/j.scitotenv.2004.05.025
- SEYHI, B.; DROGUI, P.; BUELNA, G.; AZAIS, A.: HERAN, M. Contribution of a submerged membrane bioreactor in the treatment of synthetic effluent contaminated by Bisphenol-A: Mechanism of BPA removal and membrane fouling. Enviromental Pollution, v. 180, p. 229-235, 2013. http://dx.doi.org/10.1016/j.envpol.2013.05.028
- SHEMER, H.; KUNUKCU, Y. K.; LINDEN, K. G. Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere, v. 63, n. 2, p. 269-276, 2006. http://dx.doi.org/10.1016/j.chemosphere.2005.07.029
- TAMBOSI, J. L.; DE SENA, R. F.; FAVIER, M.; GEBHARDT, W.; JOSÉ, H. J.; SCHRÖDER, H. F.; PERALTA MUNIZ, R. F. Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination, v. 261, p. 148-156, 2010. http://dx.doi.org/10.1016/j.desal.2010.05.014
- TERNES, T.; KRECKEL, P.; MUELLER, J. Behaviour and occurrence of estrogens in municipal sewage treatment plantsII. Aerobic batch experiments with activated sludge. Science of the Total Environment, v. 225, p. 91-99, 1999. http://dx.doi.org/10.1016/S0048-9697(98)00335-0
- URASE, T.; KIKUTA, T. Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the environment in the activated sludge process. Water Research, v. 39, p. 1289-1300, 2005. http://dx.doi.org/10.1016/j.watres.2005.01.015
- VADER, J.; VAN GINKEL, C.; SPERLING, F.; DE FONG, F.; DE BOER, W.; DE GRAAF, J. Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere, v. 41, p. 1239-1243, 2000. http://dx.doi.org/10.1016/S0045-6535(99)00556-1
- ZAVISKA, F.; DROGUI, P.; GRASMICK, A.; AZAIS, Z.; HERÁN, M. Nanofiltration membrane bioreactor for removing pharmaceutical compounds. Journal of Membrane Science, v. 429, p. 121-129, 2013. http://dx.doi.org/10.1016/j.memsci.2012.11.022
Fechas de Publicación
-
Publicación en esta colección
22 Ene 2014 -
Fecha del número
Dic 2013
Histórico
-
Recibido
28 Ago 2013 -
Acepto
03 Oct 2013