Abstracts
Plastic materials are widely used in daily life. They contain a wide range of compounds with low molecular mass, including monomeric and oligomeric residues of polymerization, solvent-related chemicals residues, and various additives. Plastic products made of expanded polystyrene (EPS) are currently employed as food containers. This study therefore sought to identify volatile organic compounds released by EPS from food packages and utensils used in Cartagena, Colombia. EPS-based plates, food and soup containers were subjected to various temperatures and released chemicals captured by solid phase microextraction, followed by on-column thermal desorption and gas chromatography/mass spectrometry analysis. The results revealed the presence of at least 30 different compounds in the EPS-based products examined; the most frequently found were benzaldehyde, styrene, ethylbenzene and tetradecane. The release of these molecules was temperature-dependent. It is therefore advisable to regulate the use of EPS products which may be subjected to heating in order to protect human health by decreasing the exposure to these chemicals.
additives; expanded polystyrene (EPS); solid-phase microextraction (SPME); styrene
Os materiais plásticos são amplamente usados na vida quotidiana. Eles contêm uma grande variedade de compostos de baixa massa molecular, incluindo os resíduos monoméricos e oligoméricos de polimerização, relacionados com resíduos de solventes químicos, e diferentes aditivos. Atualmente, os produtos de poliestireno expandido (EPS) são empregados como recipientes para alimentos. Assim, o objetivo deste estudo foi identificar os compostos orgânicos voláteis liberados por objetos utilizados diretamente em contato com alimentos disponíveis em Cartagena, Colômbia. Produtos baseados em EPS tais como pratos, recipientes para alimentos e sopa foram submetidos a diferentes temperaturas de aquecimento e as substâncias químicas liberadas foram capturadas empregando-se a técnica de microextração em fase sólida, seguida de dessorção térmica e análise por cromatografia a gás/espectrometria de massa. Os resultados revelaram a presença de pelo menos 30 compostos diferentes relacionados aos produtos de EPS examinados, sendo o benzaldeído, estireno, etilbenzeno e tetradecano os mais frequentemente encontrados. A liberação dessas moléculas é dependente da temperatura a que o material é submetido. Portanto, para proteger a saúde humana, diminuindo a exposição a estes agentes químicos, é aconselhável regular o uso de produtos a base de EPS que poderão ser submetidos a aquecimento.
aditivos; estireno; micro extração em fase sólida (SPME); poliestireno expandido (EPS)
References
- ARNEDO-PENA, A.; BELLIDO-BLASCO, J.; VILLAMARIN-VAZQUEZ, J.-L.; ARANDA-MARES, J.-L.; FONT-CARDONA, N.; GOBBA, F. et al. Acute health effects after accidental exposure to styrene from drinking water in Spain. Environmental Health, v. 2, p. 1-9, 2003. http://dx.doi.org/10.1186/1476-069X-2-6
- AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY - ASTDR (USA). Toxicological profile for Ethylbenzene. Atlanta, 2007. Available in: http://www.atsdr.cdc.gov/toxprofiles/tp110.pdf Accessed: 15 July 2014.
- BUCHBERGER, W.; STIFTINGER, M. Analysis of polymer additives and impurities by liquid chromatography/mass spectrometry and capillary electrophoresis/mass spectrometry. Advances in Polymers Science, v. 248, p. 39-67, 2012. http://dx.doi.org/10.1007/12_2011_147
- CAMACHO, W.; KARLSSON, S. Quality-determination of recycled plastic packaging waste by identification of contaminants by GC-MS after microwave assisted extraction (MAE). Polymer Degradation Stability, v.71, p. 123-134, 2000. http://dx.doi.org/10.1016/S0141-3910(00)00163-4
- CIUCANU, I.; KAYKHAII, M.; MONTERO, L.; PAWLISZYN, J.; SZUBRA, J. Continuous monitoring of thermooxidative degradation products of polystyrene by membrane extraction with sorbent interface and gas chromatography. Journal of Chromatographic Science, v. 40, p. 350-354, 2002. http://dx.doi.org/10.1093/chromsci/40.6.350
- DATE, K.; OHNO, K.; AZUMA, Y.; HIRANO, S.; KOBAYASHI, K.; SAKURAI, T. et al. Endocrine-disrupting effects of styrene oligomers that migrated from polystyrene containers into food. Food and Chemical Toxicology, v. 40, p. 65-75, 2002. http://dx.doi.org/10.1016/S0278-6915(01)00096-5
- DE PAULA PEREIRA, P. A.; DE OLIVEIRA, R. F. S.; DE ANDRADE, J. B. Determination of styrene content in polystyrene cups by purge-and-trap followed by HRGC-FID. American Laboratory, v. 36, p. 16-18, 2004.
- DUSSELDORP, A.; VAN BRUGGEN, M.; DOUWES, J.; JANSSEN, P. J. C. M.; KELFKENS, G. Health-based guideline values for indoor environment. RIVM report 609021044. Bilthoven, 2007. Available in: http://www.rivm.nl/bibliotheek/rapporten/609021044.pdf Accessed: 14 Nov. 2007.
- EUROPEAN UNION. European Commission - EU. Union Guidelines on Regulation No 10/2011. 2014. Available in: http://ec.europa.eu/food/food/chemicalsafety/foodcontact/docs/10-2011_plastic_guidance_en.pdf Accessed: 28 Aug. 2014.
- FU, P.; KAWAMURA, K. Ubiquity of bisphenol A in the atmosphere. Environmental Pollution, v. 158, p. 3138-3143, 2010. http://dx.doi.org/10.1016/j.envpol.2010.06.040
- GARRIGÓS, M. C.; MARÍN, M. L.; CANTÓ, A.; SÁNCHEZ, A. Determination of residual styrene monomer in polystyrene granules by gas chromatography-mass spectrometry. Journal of Chromatography A, v. 1061, p. 211-216, 2004. http://dx.doi.org/10.1016/j.chroma.2004.10.102
- GELBKE, H.-P.; BANTON, M.; FAES, E.; LEIBOLD, E.; PEMBERTON, M.; DUHAYON, S. Derivation of safe health-based exposure limits for potential consumer exposure to styrene migrating into food from food containers. Food and Chemical Toxicology, v. 64, p. 258-269, 2014. http://dx.doi.org/10.1016/j.fct.2013.11.039
- KUSCH, P.; KNUPP, G. Analysis of residual styrene monomer and other volatile organic compounds in expanded polystyrene by headspace solid-phase microextraction followed by gas chromatography and gas chromatography/mass spectrometry. Journal of Separation Science, v. 25, p. 539-542, 2002. http://dx.doi.org/10.1002/1615-9314(20020601)25:8<539::AID-JSSC539>3.0.CO;2-G
- KUSCH, P.; KNUPP, G. Headspace-SPME-GC-MS identification of volatile organic compounds released from expanded polystyrene. Journal of Polymers and the Environment, v. 12, p. 83-87, 2004. http://dx.doi.org/10.1023/B:JOOE.0000010053.20382.d7
- LATTUATI-DERIEUX, A.; EGASSE, C.; THAO-HEU, S.; BALCAR, N.; BARABANT, G.; LAVÉDRINE, B. What do plastics emit? HS-SPME-GC/MS analyses of new standard plastics and plastic objects in museum collections. Journal of Cultural Heritage, v.14, p. 238-247, 2013. http://dx.doi.org/10.1016/j.culher.2012.06.005
- LEE, C.-W.; DAI, Y.-T.; CHIEN, C.-H.; HSU, D.-J. Characteristics and health impacts of volatile organic compounds in photocopy centers. Environmental Research, v. 100, p. 139-149, 2006. http://dx.doi.org/10.1016/j.envres.2005.05.003
- LEIBMAN, K. C. Metabolism and toxicity of styrene. Environmental Health Perspective, v. 11, p. 115-119, 1975.
- LITHNER, D.; LARSSON, Å.; DAVE, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, v. 409, p. 3309-3324, 2011. http://dx.doi.org/10.1016/j.scitotenv.2011.04.038
- MUHAMMAD, F.; MONTEIRO-RIVIERE, N. A.; RIVIERE, J. E. Comparative in vivo toxicity of topical JP-8 jet fuel and its individual hydrocarbon components: identification of tridecane and tetradecane as key constituents responsible for dermal irritation. Toxicologic Pathology, v. 33, p. 258-266, 2005. http://dx.doi.org/10.1080/01926230590908222
- RUEFF, J.; TEIXEIRA, J. P.; SANTOS, L. S.; GASPAR, J. F. Genetic effects and biotoxicity monitoring of occupational styrene exposure. Clinica Chimica Acta, v. 399, p. 8-23, 2009. http://dx.doi.org/10.1016/j.cca.2008.09.012
- SEEBER, A.; BLASZKEWICZ, M.; GOLKA, K.; HALLIER, E.; KIESSWETTER, E.; SCHÄPER, M. et al. Neurobehavioral effects of experimental exposures to low levels of styrene. Toxicology Letters, v. 151, p. 183-192, 2004. http://dx.doi.org/10.1016/j.toxlet.2003.12.072
- SHAH, A. A.; HASAN, F.; HAMEED, A.; AHMED, S. Biological degradation of plastics: a comprehensive review. Biotechnology Advances, v. 26, p. 246-265, 2008. http://dx.doi.org/10.1016/j.biotechadv.2007.12.005
- SKJEVRAK, I.; DUE, A.; GJERSTAD, K. O.; HERIKSTAD, H. Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water. Water Research, v. 37, p. 1912-1920, 2003. http://dx.doi.org/10.1016/S0043-1354(02)00576-6
- SLIWINSKA-KOWALSKA, M.; ZAMYSLOWSKA-SZMYTKE, E.; SZYMCZAK, W.; KOTYLO, P.; FISZER, M.; WESOLOWSKI, W. et al. Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise. Journal of Occupational and Environmental Medicine, v. 45, p. 15-24, 2003.
- SMITH, S. H.; TAYLOR, L. T. Extraction of various additives from polystyrene and their subsequent analysis. Chromatographia, v. 56, p. 165-169, 2002. http://dx.doi.org/10.1007/BF02493206
- UNITED STATES. Department of Laber. Occupational Safety and Health - OSHA. Guideline for Ethyl Benzene. 2010. Available in: http://www.osha.gov/SLTC/healthguidelines/ethylbenzene/recognition.html#healthhazard Accessed: 11 Apr. 2010.
- UNITED STATES. Environmental Protection Agency - USEPA. Benzaldehyde (CASRN 100-52-7). 1988. Available in: http://www.epa.gov/iris/subst/0332.html Accessed: 14 Nov. 1988.
- UNITED STATES. Environmental Protection Agency - USEPA. Acetophenone. 2000a. Available in: http://www.epa.gov/ttnatw01/hlthef/acetophe.html . Accessed: 14 Jun. 2014.
- UNITED STATES. Environmental Protection Agency - USEPA. Cumene. 2000b. Available in: http://www.epa.gov/airtoxics/hlthef/cumene.html Accessed: 14 Jun. 2014.
- VILAPLANA, F.; MARTÍNEZ-SANZ, M.; RIBES-GREUS, A.; KARLSSON, S. Emission pattern of semi-volatile organic compounds from recycled styrenic polymers using headspace solid-phase microextraction gas chromatography-mass spectrometry. Journal of Chromatograpy A, v. 1217, p. 359-367, 2010a. http://dx.doi.org/10.1016/j.chroma.2009.11.057
- VILAPLANA, F.; RIBES-GREUS, A.; KARLSSON, S. Chromatographic pattern in recycled high-impact polystyrene (HIPS) - occurrence of low molecular weight compounds during the life cycle. Polymer Degradation and Stability, v. 95, p. 172-186, 2010b. http://dx.doi.org/10.1016/j.polymdegradstab.2009.11.033
- WAMPLER, T. Polymer additive analysis using multi-step thermal sampling-GC/MS. Labint Online, 2004. Available in: http://www.labint-online.com/uploads/tx_ttproducts/datasheet/polymer-additive-analysis-using-multi-step-thermal-sampling-gcms.pdf Accessed: 20 Nov. 2004.
- WANG, S.; ANG, H. M.; TADE, M. O. Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environment International, v. 33, p. 694-705, 2007. http://dx.doi.org/10.1016/j.envint.2007.02.011
- WATANABE, M.; NAKATA, C.; WU, W.; KAWAMOTO, K.; NOMA, Y. Characterization of semi-volatile organic compounds emitted during heating of nitrogen-containing plastics at low temperature. Chemosphere, v. 68, p. 2063-2072, 2007. http://dx.doi.org/10.1016/j.chemosphere.2007.02.022
- WORLD HEALTH ORGANIZATION - WHO. Cumene. 2005. Available in: http://www.who.int/ipcs/publications/cicad/cicad18_rev_1.pdf . Accessed: 14 Jun. 2014.
- YANG, C. Z.; YANIGER, S. I.; JORDAN, V. C.; KLEIN, D. J.; BITTNER, G. D. Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environmental Health Perspectives, v. 119, p. 989-996, 2011. http://dx.doi.org/10.1289%2Fehp.1003220
- YORIFUJI, T.; NOGUCHI, M.; TSUDA, T.; SUZUKI, E.; TAKAO, S.; KASHIMA, S. et al. Does open-air exposure to volatile organic compounds near a plastic recycling factory cause health effects? Journal of Occupational Health, v. 54, p. 79-87, 2012. http://dx.doi.org/10.1539/joh.11-0202-OA
Publication Dates
-
Publication in this collection
31 Oct 2014 -
Date of issue
Dec 2014
History
-
Received
19 June 2014 -
Accepted
19 Sept 2014