Accessibility / Report Error

The potential of Zea mays, Commelina bengelensis, Helianthus annuus and Amaranthus hybridus for phytoremediation of waste water

O potencial de Zea mays, Commelina bengelensis, Helianthus annuus e Amaranthus hybridus para fitorremediação de águas residuárias


Waste-water from domestic use and from industrial effluent burden the water systems with high levels of heavy metal hence there is need to remove these heavy metals so that the waste water can be recycled for use for household or irrigation. The present study has screened Zea mays (maize), Commelina bengelensis (wondering jew), Helianthus annuus (sunflower) and Amaranthus hybridus (amaranthus) for their ability to bioaccumulate Pb, Cu, Cd and Zn metals. The results obtained show that the H. annuus and C. bengelensis plant have promising potential for removal of Pb, Cu and Cd from wastewater though their ability to remove Zn from contaminated solutions is not much different from that of Z. mays and A. hybridus.

AAS; lead; copper; zinc; cadmium

Nas águas residuárias de origem doméstica ou esgoto sanitário, níveis elevados de metais tóxicos poluem os sistemas hídricos e, por conseguinte, há necessidade de eliminar esses elementos para que as águas residuárias possam ser recicladas para uso doméstico ou irrigação. O presente estudo avaliou a capacidade das espécies Zea mays (milho), Commelina bengelensis (trapoeraba), Helianthus annuus (girassol) e Amaranthus hybridus (amaranto) para bioacumulação de Pb, Cu, Cd e Zn. Os resultados revelaram que o H. annuus e a C. bengelensis têm potencial para remoção do Pb, Cu e Cd de águas residuárias, entretanto, a capacidade delas para remoção de Zn não é muito diferente das espécies Z. mays e A. hybridus.

AAS; chumbo; cobre; zinco; cádmio

  • AJMAL, M.; MOHAMMED, A.; YOUSUF, R.; AHMAD, A. Adsorption behavior of cadmium, zinc, nickel and lead from aqueous solutions by Mangifera Indica seed shell. Indian Journal Environmental Health, v. 40, n. 1, p. 15-26, 1998.
  • ANTONKIEWICZ, J.; JASIEWICZ, C. The use of plants accumulating heavy metals for detoxification of chemically polluted soils. Electronic Journal of Polish Agricultural Universities, v. 5, n. 1, 2002.
  • BAKER, A. J. M.; WALKER, P. L. Ecophysiology of metal uptake by tolerant plants. In: SHOW, A. J. (Ed.). Heavy metal tolerance in plants: evolutionary aspects. Boca Raton: CRC Press, 1990. p. 155-157.
  • BAKKALOGLU, I.; BUTTER, T. J.; EVISON, L. M.; HOLLAND, F. S.; HANCOCKTT, I. C. Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Cd) by biosorption, sedimentation and desorption. Water Science technology, v. 38, n. 6, p. 269-277, 1998.
  • CARLSON, R. W.; BAZZAZ, F. A.; ROLFE, G. L. The effect of heavy metal on plants. Environmental Pollution, v. 7, p. 241-246, 1975.
  • CUNNINGHAM, S. D.; SHANN, J. R.; CROWLEY, D.; ANDERSON, T. A. In: KRUEGER, E. L.; ANDERSON, T. A.; COATS, J. P. (Ed.). Phytoremediation of soil and water contaminants. Washington, DC: American Chemical Society, 1997.
  • CHAUDHRY, T. M.; HAYES, W. J.; KHAN, A. G.; KHOO, C. S. Phytoremediation : focusing on accumulator plants that remediate metal-contaminated soils. Australasian Journal of Ecotoxicology, v 4, p. 37-51, 1998.
  • DUSHENKOV, V.; NANDA KUMAR, P. B. A.; MOTTO, H.; RASKIN, I. Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology, v. 29, n. 5, 1239 - 1245, 1995.
  • ESPINOZA-QUIÑONES, F. R.; ZACARKIM, C. M.; PALACIO, S. M.; OBREGON, C. L.; ZENATTI, D. C.; GALANTE, R. M. et al. Removal of heavy metal from polluted river water using aquatic macrophytes Salvinia sp. Brazilian Journal of Physics, v. 55, n. 3b, p.744 -746, 2005.
  • GHOSH, M.; SINGH. S. P. A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research, v. 3, n. 1, p. 1-18, 2005.
  • GREMION, F.; CHATZINOTAS, A.; KAUFMANN, K.; VON SIGLER, W.; HARMS, H. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiology Ecology, v. 48, n. 2, p. 273-283, 2004.
  • HINCHMAN, R. R.; NEGRI, M. C.; GATLIFF, E. G. Phytoremediation: using green plants to clean up contaminated soil, groundwater and wastewater. In: INTERNATIONAL TOPICAL MEETINGS ON NUCLEAR AND HAZARDOUS WASTE MANAGEMENT, 1996, Seattle. Proceedings... Seattle: American Nuclear Society, 1996.
  • LASAT, M. M. The use of plants for the removal of toxic metals from contaminated soil. [S.l.]: American Association for the Advancement of Science Environmental Science and Engineering Fellow, 2000.
  • LOMBI, E.; ZHAO F. J.; DUNHAM, S. J.; MCGRATH, S. P. Phytoremediation of heavy metal-contaminated soils. Journal Environmental Quality, v. 30, n. 6, p. 1919- 1926, 2001.
  • LOW, K. S.; LEE, C. K.; LIEW, S. C. Sorption of cadmium and Lead from aqueous solution by spent grain. Process Biochemistry, v. 36, n. 1/2, p. 59-64, 2000.
  • PODAR, D.; DOBROTA, C.; TRIFU, M. Uptake of heavy metals by maize (Zea mays) plants cultivated on mine spoils. Studia Universitatis Babes-Bolyai, Studia Biologia, v. 49, n. 1, p. 45-60, 2004a.
  • PODAR, D.; RAMSEY M. H.; HUTCHINGS, M. J. Effect of cadmium, zinc and substrate heterogeneity on yield, shoot metal concentration and metal uptake by Brassica juncea: implications for human risk assessment and phytoremediation. New Phytologist, v. 163, n. 2, p. 313-324, 2004b.
  • RASKIN, I.; ENSLEY, B. D. Phytoremediation of toxic metals: using plants to clean up the environment. New york: John Wiley & Sons, 2000. p. 53-70.
  • REEVES, R. D.; BAKER, A. J. M. Metal accumulating plants. In: RASKIN, I.; ENSLEY, B. D. (Ed.). Phytoremediation of toxic metals: using plants to clean up the environment, 2000. p. 193-229.
  • SALT, E. D.; PICKERING, I. J.; PRINCE, R. C.; GLEBA, D.; DUSHENKOV, S.; SMITH, R. D. et al. Metal accumulation by aquacultured seedlings of Indian mustard. Environmental Science & Technology, v. 31, n. 6, p. 1636-1644, 1997.
  • STOLTZ, E.; GREGER, M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, v. 47, n. 3, p. 271-280, 2002.
  • VALDMAN, E.; ERIJMAN, L.; PESSOA, F. L. P.; LEITE, S. G. F. Continuous biosorption of Cu and Zn by immobilized waste biomass Sargassum sp. Process Biochemistry, v. 36, n. 8/9, p. 869-873, 2001.
  • VYSLOUZILOVA, M.; TLUSTOS, P.; SZAKOVA, J.; PAVLIKOVA, D. As, Cd, Pb and Zn uptake by Salix. spp. clones grown in soils enriched by high loads of these elements. Plant, Soil and Environment, v. 49, n. 5, p. 191-196, 2003.

Publication Dates

  • Publication in this collection
    16 Sept 2014
  • Date of issue
    Dec 2012
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil