Acessibilidade / Reportar erro

Assessment of water and sediment quality variation due to organic and conventionally irrigated pre-germinated rice-field cultivation

Variação da qualidade da água e do solo de cultivo convencional e orgânico de arroz irrigado pré-germinado

Abstract

This study evaluated the water and sediment quality of samples collected from different points in organic (O1, O2, O3, and O4) and conventional (C1, C2, and C3) pre-germinated rice fields located in Viamão/RS. Quality indicators such as phosphorus, dissolved oxygen, manganese, iron, turbidity, and BOD5 reduced water quality beyond Classes 3 and 4, as defined by CONAMA Resolution 357/2005. Based on the aluminum levels, the water samples collected from all the points were categorized as Class 4; furthermore, the IQA classified the quality of water samples from Points O4 and C1 as “bad.” The COD/BOD ratio was high, demonstrating that the biodegradable fraction was considerably low. The conductivity of water at points O4, C1, C2, and C3, exceeded 100 µS/cm, as defined by CETESB, indicating impacted environments. The levels of zinc in C1 and nickel in O2, C2, and C3 in the sediment exceeded the quality reference values established by the FEPAM Ordinance 85/2014. In general, the lowest water quality was observed in the samples collected from Points O2 and O4, and the lowest sediment quality was observed in the samples collected from all points in the conventional rice fields and from Point O2 in the organic rice field.

Keywords:
CETESB; coliforms; CONAMA no 357/2005; FEPAM Ordinance no 85/2014; irrigated rice; physicochemical analysis

Resumo

Neste estudo, avaliou-se a qualidade da água e do sedimento de amostras coletadas em diferentes pontos de arrozais orgânicos (O1, O2, O3 e O4) e convencionais (C1, C2 e C3) pré-germinados em Viamão/RS. Indicadores de qualidade como fósforo, oxigênio dissolvido, manganês, ferro, turbidez e DBO5 reduziram a qualidade da água além das classes 3 e 4, conforme definido pela Resolução CONAMA 357/2005. Com base nos níveis de alumínio, as amostras de água coletadas em todos os pontos foram categorizadas como classe 4; além disso, o IQA classificou a qualidade das amostras de água dos pontos O4 e C1 como "ruim". A relação DQO/DBO foi alta, demonstrando que a fração biodegradável era consideravelmente baixa. A condutividade da água nos pontos O4, C1, C2 e C3, ultrapassou 100 µS/cm, conforme definido pela CETESB, indicativo de ambientes impactados. Os teores de zinco em C1 e níquel em O2, C2 e C3 no sedimento superaram os valores de referência de qualidade estabelecidos pela Portaria FEPAM 85/2014. De maneira geral, a mais baixa qualidade da água foi observada nas amostras coletadas nos pontos O2 e O4, e a mais baixa qualidade do sedimento foi observada nas amostras coletadas em todos os pontos nos arrozais convencionais e no ponto O2 nos arrozais orgânicos.

Palavras-chave:
análises físico-químicas; arroz irrigado; CETESB; coliformes; CONAMA no 357/2005; Portaria FEPAM no 85/2014

1. INTRODUCTION

The State of Rio Grande do Sul (RS) is the largest rice producer in Brazil, with a harvested area of 964,537 ha and a total production of 7,241,458 tons in 2018/2019 (IRGA, 2019IRGA. Boletim de Resultados da Lavoura - Safra 2018/19 - Arroz Irrigado e Soja em Rotação. 2019. Available in: Available in: http://www.irga.rs.gov.br. Access: Nov. 2021.
http://www.irga.rs.gov.br....
). Although the cultivation of pre-germinated rice is uncommon, it is the cultivation technique adopted in the metropolitan region of Porto Alegre (RS). As a result, the watercourses in this region frequently receive effluents contaminated with agricultural inputs and pesticides, suspended solids, and organic residues carried by the drainage water of rice fields. Consequently, the supply of quality water to the population is impaired, leading to the suspension of the public water supply system.

Water management is essential for crop performance in flood-irrigated rice, as water, in addition to weed control, interferes with nutrient availability, and increases incidences of certain pests and diseases (Gomes et al., 2008GOMES, A. S.; SCIVITTARO, W. B.; PETRINI, J. A.; FERREIRA, L. H. G. A água: Distribuição, regulamentação e uso na agricultura, com ênfase ao arroz irrigado. Pelotas: Embrapa Clima Temperado, 2008. 46 p. ). The pre-germinated rice cultivation system uses large volumes of water that aid in the formation of mud during the initial soil preparation, thus providing favorable conditions for seeding. The lowering of the water layer level carried out 3-5 days after sowing releases effluents with a high polluting load into the watercourses. Thus, this cultivation system considerably affects the water quality of the Gravataí River Basin because of the release of effluents with high turbidity and high concentrations of suspended solids. In 2016, the release of drained water from rice fields, which was highly turbid, caused an interruption in the water collection, treatment, and distribution system for public supply, in the municipality of Gravataí.

The sustainable practice of rice farming in Brazil undergoes occasional conceptual changes, mainly to address environmental concerns, especially in terms of the quality of effluent water from farming (Mattos and Martins, 2009MATTOS, M. L. T.; MARTINS, J. F. S. Cultivo de arroz irrigado orgânico no Rio Grande do Sul. Pelotas: Embrapa Clima Temperado, 2009. 160p.). Various efforts have been made to address this issue, such as the intensified search for technological alternatives for organic rice production systems, including but not limited to the discontinued use of pesticides prevalent in traditional farming. When not used according to technical recommendations, these pesticides can contaminate the environment and adversely affect the aquatic and soil organisms within production systems and in their surroundings. Similarly, fertilizers, especially nitrogen and phosphorus, can cause eutrophication of both surface and groundwater, leading to oxygen depletion and severe consequences on aquatic ecosystems (Mattos and Martins, 2009MATTOS, M. L. T.; MARTINS, J. F. S. Cultivo de arroz irrigado orgânico no Rio Grande do Sul. Pelotas: Embrapa Clima Temperado, 2009. 160p.). According to the IRGA (2019)IRGA. Boletim de Resultados da Lavoura - Safra 2018/19 - Arroz Irrigado e Soja em Rotação. 2019. Available in: Available in: http://www.irga.rs.gov.br. Access: Nov. 2021.
http://www.irga.rs.gov.br....
, organic rice plantations/cultivation systems in RS occupied 6,000 ha in 2017/2018, with 4,600 ha in settlements of the “Sem Terra” Movement. The average productivity was observed to be 5,000 kg/ha, and the production cost was half that of traditional cultivation (IRGA, 2019IRGA. Boletim de Resultados da Lavoura - Safra 2018/19 - Arroz Irrigado e Soja em Rotação. 2019. Available in: Available in: http://www.irga.rs.gov.br. Access: Nov. 2021.
http://www.irga.rs.gov.br....
).

The pre-germinated rice cultivation system is mainly characterized by the initial drainage of the crop, carried out a few days after sowing, to ensure the proper establishment of the crop. This type of water management, still used by many rice growers, causes detrimental effects on the environment, such as the loss of nutrients (nitrogen, phosphorus, potassium, calcium, and sodium) and total solids; furthermore, it aids the transport of pesticides adsorbed on soil particles into water sources. In addition, they cause an increase in water turbidity, re-infestation of the area by weeds, and imply additional use of water (Scivittaro et al., 2010SCIVITTARO, W. B.; SILVA, M. T.; BRAUN, J. A. F.; MATTOS, M. L. T. Monitoramento da Qualidade da Água de Drenagem Inicial de Lavoura de Arroz Pré-germinado. Pelotas: Embrapa Clima Temperado, 2010. 8 p. ).

Therefore, in this study, we aimed to evaluate the quality of water and sediment in both conventional and organic cultivation systems of irrigated pre-germinated rice crops located in the municipality of Viamão (RS) through physicochemical and microbiological analyses.

2. MATERIAL AND METHODS

2.1. Collection of water and sediment samples

The water samples were collected on November 30, 2020 (beginning of cultivation period) and March 12, 2020 (end of cultivation period), in organic and conventional pre-germinated rice fields in Viamão (RS). The water samples were stored in sterilized glass bottles (500 mL), and their preservation was inherent to each analysis. Additionally, sediment samples (1 kg) were collected on November 11, 2019, and placed in sanitized plastic bags. Seven points were sampled for collection (Figure 1), four in the organic rice field (O1, O2, O3, and O4) and three in the conventional field (C1, C2, and C3). O1 was in the Águas Claras Dam (-30.070590 and -50.874573), which supplies water for irrigating the organic rice fields. The O2 and O3 were in the drainage channels of the organic rice fields (-30.063640 and -50.886690; -30.04350 and -50.884500). The O4 was also located in a drainage channel (-30.030999 and -50.867704), close to the border of the conventional rice field. Drain water from the cultivated areas of organic rice fields converged at O4. C1 and C2 were located in the drainage channels of the conventional rice fields (-30.021599 and -50.880455; -30.012875 and -50.895273). C3 was located in the Rio Gravataí adduction channel (-30.004383 and -50.923700), and is the main source of water for irrigating the conventional rice fields.

Figure 1.
Location of the sampling points in organic and conventional rice cultivation areas in Viamão (RS).

2.2. Physicochemical and microbiological analysis

Electrical conductivity (EC), temperature, turbidity, and pH were measured in situ using HI 9829 (Hanna Instruments) and EXO1 (YSI) multiparameter probes. Physicochemical analyses of the water samples were carried out at the Environmental Analysis Laboratory/FEPAM: total dissolved solids (mg/L), total chloride (mg Cl/L), dissolved oxygen (DO) (mg O2/ml), chemical oxygen demand (COD) (mg O2/L), biochemical oxygen demand (BOD5) (mg O2/L), total phosphorus (mg P/L), ammonia nitrogen (mg N/L), aluminum (mg Al/L), cadmium (mg Cd/L), lead (mg Pb/L), copper (mg Cu/L), chromium (mg Cr/L), iron (mg Fe/L), manganese (mg Mn/L), nickel (mg Ni/L), and zinc (mg Zn/L) (APHA et al., 2005APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater. 21. ed. Washington, 2005.). The samples obtained were classified according to CONAMA Resolution no 357 (CONAMA, 2005CONAMA (Brasil). Resolução nº 357 de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial [da] União: seção 1, Brasília, DF, n. 053, p. 58-63, 18 mar. 2005.). The identification of the metals present in the sediment was carried out at the Soil Analysis Laboratory/UFRGS, using inductively coupled plasma optical emission spectrometry (ICP-OES, Perkin Elmer), which allowed the categorization of the samples according to CONAMA Resolution no. 420 (CONAMA, 2009CONAMA (Brasil). Resolução nº 420 de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial [da] União: seção 1, Brasília, DF, n. 249, p. 81-84, 30 dez. 2009.) and FEPAM Ordinance no. 85 (FEPAM, 2014FEPAM. Portaria FEPAM nº 85/2014. 2014. Available in: Available in: http://www.fepam.rs.gov.br/legislacao/arq/Portaria085-2014.pdf . Access: Nov. 2021.
http://www.fepam.rs.gov.br/legislacao/ar...
). Additional elements analyzed in the sediments were phosphorus (P%), potassium (K%), calcium (Ca%), magnesium (Mg%), sulfur (S%), sodium (mg Na/kg), arsenic (mg As/kg), selenium (mg Se/kg), barium (mg Ba/kg), vanadium (mg V/kg), and cobalt (mg Co/kg) (APHA et al., 2005APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater. 21. ed. Washington, 2005.).

For the quantification of thermotolerant coliforms (TC), the most probable number (MPN) technique was used. The dilutions were inoculated on a chromogenic substrate (Colilert, Idexx) in five sets of five tubes and then incubated for 24 h at 35°C. The substrates that changed their color to yellow and emitted fluorescence were considered positive for thermotolerant coliforms.

For the integrated analysis of physicochemical and microbiological parameters, principal component analysis (PCA) was performed using Past 3.14 software.

2.3. Water Quality Index

The water quality index (WQI) was calculated according to CETESB (2016)CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
, based on which the water quality of a source was graded on a scale from very poor to very good (Table 1).

Table 1.
WQI classification (CETESB, 2016CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
).

3. RESULTS

3.1. Microbiological and physicochemical analysis of water at sampled points

Based on the DO values, water from O2 (3.57 mg O2/L) and C1 (2.57 mg O2/L) were considered to belong to Class 4 (Table 2), and O1 and C2 were categorized as Class 3 and Class 2, respectively (Table 2). At O3 and O4, the DO values were much lower (0.48 and 0.96 mg O2/L) than the detection limits established (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
), making it impossible to classify them above Class 4. Based on turbidity levels, water from O4 and C1 were considered to belong to Class 2; furthermore, as C3 had the highest level of turbidity (151.4 NTU), it could not be categorized above Classes 3 and 4. On the basis of the levels of Fe, O1, O3, O4, C1, and C2 were categorized as Class 3 and O2 (10.9 mg Fe/L) and C3 (5.18 mg Fe/L) above the classes. Mn levels from O4 and C1 indicated that these samples belong to Class 3; furthermore, at O2 with a level of 1.25 mg Mn/L, the class was higher than 4. According to the Zn levels from C1, the water samples were classified as Class 3. Based on BOD5, water from O2 and O3 were considered to belong to Class 3 (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). COD ranged from 47 mg O2/L (for O3 and C2) to 80 mg O2/L (for O1), and COD/BOD ratio was high (>3.5, Table 1). According to the total P levels, the samples were categorized above Classes 3 and 4. The pH of C3 was 6.22, which is within the range stipulated by legislation (6.0-9.0, CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
); however, at all the other points, the pH values were between 4.55 and 5.75. The highest EC levels were observed at C2 (117 µS cm-1) for the samples collected on March 12, 2020 (Table 2). Based on total chloride, total dissolved solids, ammonia nitrogen, Cd, Cu, and Ni levels, the water from all points were categorized as Class 1. Water samples collected from O2 on March 12, 2020, had the lowest water quality primarily because their pH values and Fe, Mn, and P levels were above the stipulated class limit, and based on the DO level, the water was classified as Class 4 (Table 2).

The samples collected on November 30, 2020, from O2, O3, C1, and C2 were classified as Class 4 water, based on the DO levels, with values ranging between 2.14 and 3.88 mg O2/L (Table 3). The DO from O4 (0.52 mg O2/L) was substantially lower than the values established, and its classification was not possible (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). Based on turbidity values, water from C3 was considered to belong to Class 2. However, the turbidity values of water from O2, O3, O4, C1, and C2 (ranging from 263 to 1800 NTU) also exceeded the permissible limits stipulated by legislation (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). Furthermore, based on the Fe concentration, the water from O1 and C3 were categorized as Class 3; however, as samples from all other points exhibited high Fe concentration (from 8.38 to 55.7 mg Fe/L), they could not be placed in a class greater than 4. Based on the Mn levels, water from O2, O4, C1, C2, and C3 were considered Class 3. Moreover, based on the Zn concentrations, the samples from O4 were categorized as Class 3. According to the total Cr the samples from O4 were categorized as Class 4 (0.051 mg Cr/L). On the basis of the BOD5 levels, O4 were classified as Class 2; furthermore, it was observed that the BOD5 were higher in the water from O3 (14 mg O2/L) than any of the classes. The COD ranged from 273 mg O2/L in O4 to 33 mg O2/L in C3. The COD/BOD ratio was high (Table 3) and was >3.5. High concentrations of Al were found at all samples, ranging from 0.247 in O1 to 281 mg Al/L in O4, making it impossible to categorize them into any of the classes. Total phosphorus showed similar results. The pH of the water from all the points in the conventional rice fields was within the range stipulated by legislation (6.0- 9.0) (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
); however, the pH of points in the organic rice field varied between 4.94 and 5.81. The EC at O4, C1, C2, and C3, was greater than 100 µS/cm; this result is indicative of impacted environments (CETESB, 2016CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). For total dissolved solids, the value of 684 mg/L in C1 exceeded the framework limit of CONAMA Resolution no 357 (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). On the basis of total chloride, Cd, Pb, Cu, Ni, and ammonia nitrogen levels, the water from all points were classified as Class 1. Based on the parameters presented in Table 3, water samples collected from O3 and O4 on November 30, 2020, had the lowest water quality. Water from O3 was considered low quality primarily based on their pH, BOD5, and turbidity values. The Al, Fe, and P levels were above the stipulated class limits, and according to the DO levels, the samples were categorized as Class 4. The pH, OD, and turbidity values, and Al, Fe, and P levels of water from O4 were above the stipulated class limit; furthermore, based on the total Cr levels, the samples were categorized as Class 4 (Table 3).

The highest values for TC were observed at O4 (240 MPN/100 mL) and C1 (3300 MPN/100 mL), on November 30, 2020, classifying these water samples as Class 2 and Class 3, respectively (Table 3), which is water suitable for the irrigation of cereals as well as other purposes, according to CONAMA Resolution no 357 (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
).

Table 2.
Classification of water samples collected in organic and conventionally irrigated rice fields based on the physicochemical parameters and proportion of thermotolerant coliforms of the samples as class 1 (green), class 2 (blue), class 3 (orange), class 4 (red) and with quality lower than class 3 or 4 (yellow) (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). Parameters that are not highlighted were not included in the resolution. Sampling date: March 12, 2020. *NR: not in the resolution.

Table 3.
Classification of water samples collected in organic and conventionally irrigated rice fields based on the physicochemical parameters of the samples as Class 1 (green), Class 2 (blue), Class 3 (orange), Class 4 (red) and with quality lower than Class 3 or 4 (yellow) (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). Parameters that are not highlighted were not included in the resolution. Sampling date: November 30, 2020. *NR: not in the resolution.

3.2. Water Quality Index

The water samples collected from O3, O4, and C1 on March 12, 2020, were classified as "fair," and those collected from O1, O2, C2, and C3 were classified as "good” (Table 4). However, the samples collected on November 30, 2020, had relatively lower WQI values. The water from O4 and C1 were classified as "poor,” those from O3 and C2 were classified as "fair," and those from O1, O2, and C3 were classified as "good.”

Table 4.
WQI of the water samples collected from different organic and conventionally irrigated rice fields.

3.3. Principal component analysis of physicochemical and microbiological parameters of the water samples

During the collection on March 12, 2020 (Figure 2), Component 1 separated points O2, C2, and C3 from points C1, O1, O3, and O4. Furthermore, O2 and O3 were separated from the other points by Component 2, with O3 from organic rice fields being the least impacted. The air temperature was separated from the other attributes by Component 1, and Component 2 separated iron and chloride from the other variables. Turbidity was related to total phosphorus, conductivity, DO, and pH. During the collection on November 30, 2020 (Figure 3), Component 1 separated points O4, C1, and C2; Component 2 grouped points O1, O2, and O3 and separated these three points from C3, indicating that these points from the organic rice field are less impacted. DO was separated by Component 1, and Component 2 separated and grouped nickel, COD, aluminum, chromium, iron, turbidity, and total dissolved solids. Conductivity was more associated with pH and ammonia nitrogen; furthermore, phosphorus and manganese were closely associated.

Figure 2.
PCA of the physicochemical and microbiological parameters analyzed at different points in the organic and conventionally irrigated rice fields. Component 1, with 64.72% affinity, separates from Component 2 with 16.03% affinity. Sampling date: March 12, 2020.

Figure 3.
PCA of the physicochemical and microbiological parameters analyzed at different points in the organic and conventionally irrigated rice fields. Component 1, with 73.14% affinity, separates from Component 2 with 17.86% affinity. Sampling date: November 30, 2020.

3.4. Physicochemical analysis of the sediment at the sampled points

According to Table 5, sediment from C1 of the conventional tillage presented the highest levels of P, K, Cu, Zn, Na, Al, Co, and Ba. The samples collected from O2 (organic rice field) had the highest levels for Ca, Mg, S, Fe, Mn, and Va. However, C2 had the highest levels of Ni and P, and O3 had higher Cr levels. Based on the quality reference values (QRV, FEPAM, 2014FEPAM. Portaria FEPAM nº 85/2014. 2014. Available in: Available in: http://www.fepam.rs.gov.br/legislacao/arq/Portaria085-2014.pdf . Access: Nov. 2021.
http://www.fepam.rs.gov.br/legislacao/ar...
) the QRV of Zn was 30 mg Zn/kg in C1; this was above the stipulated (29 mg Zn/kg). O2, C2, and C3, had Ni levels of 8, 12, and 8 mg Ni/kg, respectively, all of which were above the established (7 mg Ni/kg). The sediment from conventional tillage, along with that from the O2 from organic tillage, had the lowest quality among the sampled points (Table 5).

Table 5.
Concentrations of chemical elements at the sediments sampled on November 11, 2019 in organic and conventionally irrigated rice fields compared with the levels allowed in CONAMA Resolution no 420 (CONAMA, 2009CONAMA (Brasil). Resolução nº 420 de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial [da] União: seção 1, Brasília, DF, n. 249, p. 81-84, 30 dez. 2009.) and FEPAM Ordinance no 85 (FEPAM, 2014FEPAM. Portaria FEPAM nº 85/2014. 2014. Available in: Available in: http://www.fepam.rs.gov.br/legislacao/arq/Portaria085-2014.pdf . Access: Nov. 2021.
http://www.fepam.rs.gov.br/legislacao/ar...
).

As shown in Figure 4, PCA Component 1 separated C1, C3, and O2 from C2, O3, and O4. O2, O3, and O4 were separated from the other points by Component 2. Furthermore, Component 2 separated P, K, N, and organic carbon from pH, Mg, Mn, Fe, and Ca.

Figure 4.
PCA of the physicochemical and microbiological elements analyzed at different points in the organic and conventionally irrigated rice fields. Component 1, with 67.50% affinity, separates from Component 2 with 27.17% affinity. Sampling date: November 11, 2019.

4. DISCUSSION

In this study, the quality of water and sediment was evaluated in two pre-germinated irrigated rice fields (organic and conventional). Both the cultivation areas were located in the Gravataí River Basin (Viamão/RS), in the stretch identified as Middle Gravataí classified as Class 3 (Bourscheid, 2012BOURSCHEID - ENGENHARIA E MEIO AMBIENTE S. A. Processo de Planejamento da Bacia do Rio Gravataí, Plano de Bacia. Plano de Recursos Hídricos da Bacia Hidrográfica do Rio Gravataí - Relatório Final. Porto Alegre: Secretaria do Meio Ambiente do Estado do Rio Grande do Sul, 2012. 19p.) based on CONAMA Resolution no 357 (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). The water sampled from Points O1 and C3 is used for irrigation and comes from the Águas Claras Dam and the Gravataí River, respectively. The water from Points O3, O4, C1, and C2, is used for drainage and is reused for irrigating organic and conventional rice fields via pumping. According to Mondstock (2015)MONDSTOCK, C. M. Água de irrigação e drenagem do perímetro de irrigação do Arroio Duro de 2005 a 2012. Cachoeirinha: IRGA/Divisão de Pesquisa, 2015. 96p., rice crops can have a great impact on water quality, especially when taking into consideration the runoff from cultivated land. Furthermore, during periods of intense rainfall, when the soil is unable to absorb the entire volume of accumulated water, drainage channels help in restoring flow.

CONAMA Resolution no 357 (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
) classifies Class 3 fresh waters as those that can be used for irrigation of arboreal, cereal and forage crops as well as other purposes. The results of the physicochemical analysis of the water samples in this study indicated high concentrations of P, turbidity, DO, BOD5, Mn, and Fe beyond the permissible limits established for Classes 3 and 4 (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). At all points sampled, including O1 (Águas Claras dam) and C3 (adduction channel connected to the Gravataí River), P levels exceeded the permitted limits of 0.05 mg P/L indicating high eutrophication. The P from agricultural areas is relevant as it is an indicator of water quality; other indicators such as suspended solids and turbidity are associated with P transport (Scivitaro et al., 2010). In a study conducted by Scivitaro et al. (2010) in Capão do Leão (RS), the P levels found in the waters during the drainage period of pre-germinated rice cultivation ranged from 9 to 27 mg P/L, exceeding the maximum value defined for Class 3 (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). The previous flooding of the soil in this type of cultivation promotes physical, chemical, and biological changes in relation to the original condition. Among these changes, the increase in the P availability in solution is significant; this increase, in addition to the partial dissolution of the phosphate fertilizer applied during pre-sowing, explains the high P levels in drainage water (Scivitaro et al., 2010). Furthermore, P and turbidity levels (>100 NTU) were high for Class 3 (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
), with the highest turbidity levels observed at O4 (1800 NTU). This high value coincides with the period of crop cultivation (November 30, 2020), soil preparation, sowing, water depth reduction, and drainage. Drainage causes the loss of total solids, which causes an increase in turbidity in the water, as well as the loss of nutrients and other materials, such as pesticides that are adsorbed on suspended soil particles and can be transported to water sources (Mattos et al., 2012MATTOS, M. L. T; SCIVITTARO, W. B.; PETRINI, J. A.; DOS SANTOS, I. M. B. Qualidade da água de drenagem em cultivo de arroz pré-germinado. Pelotas: Embrapa Clima Temperado, 2012. 6p.).

DO is also one of the primary parameters affecting the environment, with natural water bodies having high levels of DO, essential for the maintenance of aquatic life (Britto et al., 2016BRITTO, F. B.; SILVA, T. M. M; VASCO, A. N.; AGUIAR NETTO, A. O.; CARVALHO, C. M. Impactos da produção do arroz inundado na qualidade da água do Rio Betume, Sergipe. Revista Agropecuária Técnica, v. 37, n. 1, p. 44-54, 2016. https://doi.org/10.25066/agrotec.v37i1.25254
https://doi.org/10.25066/agrotec.v37i1.2...
; Silva and Pereira Filho, 2010SILVA, D. D. C.; PEREIRA FILHO, J. Qualidade química da água em função de seu uso na rizicultura irrigada na região do baixo estuário do rio Itajaí. Revista de Estudos Ambientais, v.12, n. 2, p. 26-37, 2010.). According to CONAMA Resolution no 357 (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
), the limit for DO in Class 4 is >2 mg O2/L. Water samples collected from O1 (7.90 mg O2/L, Águas Claras Dam) and C3 (6.79 mg O2/L, the Gravataí River adduction channel) had the highest DO levels. Based on these values, the water samples were categorized as Class 1, that is, water that can be used: a) for human consumption, after simplified treatment; b) the protection of aquatic communities; c) primary contact recreation, such as swimming, water skiing, and diving; d) the irrigation of vegetables that are consumed raw, fruits that grow close to the ground, and the ones that are eaten raw without removing the skin; and e) the protection of aquatic communities in indigenous lands (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). The lowest DO value was observed in the water samples collected from O4, < 2.0 mg O2/L, which is the minimum value for classification in Class 4, that is, waters utilized for navigation and landscape harmony (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). Britto et al. (2016)BRITTO, F. B.; SILVA, T. M. M; VASCO, A. N.; AGUIAR NETTO, A. O.; CARVALHO, C. M. Impactos da produção do arroz inundado na qualidade da água do Rio Betume, Sergipe. Revista Agropecuária Técnica, v. 37, n. 1, p. 44-54, 2016. https://doi.org/10.25066/agrotec.v37i1.25254
https://doi.org/10.25066/agrotec.v37i1.2...
attributed DO values <1.0 mg O2/L to the presence of agricultural production residues in the water body. In the study conducted in the Itajaí hydrographic basin (SC), to assess the quality of water used in irrigated rice farming, relatively low concentrations of DO were observed in the drainages, with an average of 3.7 mg O2/L, while in the abstractions, the average was 6.6 mg O2/L. This variation reflects the negative influence of rice farming on water quality (Silva and Pereira Filho, 2010SILVA, D. D. C.; PEREIRA FILHO, J. Qualidade química da água em função de seu uso na rizicultura irrigada na região do baixo estuário do rio Itajaí. Revista de Estudos Ambientais, v.12, n. 2, p. 26-37, 2010.).

According to CETESB (2016)CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
, organic discharges result in the greatest increase in BOD in a water body, which completely depletes oxygen in the water, consequently leading to the disappearance of aquatic life. The greater the BOD, the greater is the degree of water pollution (CETESB, 2016CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). In this study, high levels of BOD were found at all sampling points in the organic rice fields, with the highest value in O3 (14 mg O2/L) at the time of crop cultivation, surpassing the limit of Class 3 (<10 mg O2/L) (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). Silva and Pereira Filho (2010)SILVA, D. D. C.; PEREIRA FILHO, J. Qualidade química da água em função de seu uso na rizicultura irrigada na região do baixo estuário do rio Itajaí. Revista de Estudos Ambientais, v.12, n. 2, p. 26-37, 2010. analyzed the quality of irrigation water used in rice farming and showed that the average levels of BOD were 3.2 mg O2/L and 4.8 mg O2/L in abstraction and drainage, respectively. In this study, BOD values were higher in practically all samples collected from drainages, thus indicating a greater amount of organic matter in returning waters to the Gravataí River after passing through rice fields. Associating BOD with ammoniacal nitrogen and DO reinforces this idea, as BOD was higher in returning water, indicating increased ammonia concentration and decreased DO.

COD is an extremely useful parameter when used in conjunction with BOD to observe the biodegradability of dumps (Britto et al., 2016BRITTO, F. B.; SILVA, T. M. M; VASCO, A. N.; AGUIAR NETTO, A. O.; CARVALHO, C. M. Impactos da produção do arroz inundado na qualidade da água do Rio Betume, Sergipe. Revista Agropecuária Técnica, v. 37, n. 1, p. 44-54, 2016. https://doi.org/10.25066/agrotec.v37i1.25254
https://doi.org/10.25066/agrotec.v37i1.2...
). However, no reference for COD exists in the CONAMA Resolution no 357 (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). Molozzi et al. (2006)MOLOZZI, J.; PINHEIRO, A.; SILVA, M. R. da. Qualidade da água em diferentes estádios de desenvolvimento do arroz irrigado. Pesquisa Agropecuária Brasileira, v.41, n. 9, p.1393-1398, 2006. https://doi.org/10.1590/S0100-204X2006000900007
https://doi.org/10.1590/S0100-204X200600...
reported that during the rice maturation stage, COD values were higher in drainage water than that in irrigation water. It was only after the harvest that irrigation water had a higher COD than that of drainage water. In this study, the COD values ranged from 47 mg O2/L (in O3 and C2), during the rice maturation and harvest phases, to 273 mg O2/L (O4) during the soil preparation and rice sowing phases. In general, the COD was higher in the conventional rice field than that in the organic rice field; this value can be attributed to the application of chemical fertilizers and pesticides (Molozzi et al. (2006)MOLOZZI, J.; PINHEIRO, A.; SILVA, M. R. da. Qualidade da água em diferentes estádios de desenvolvimento do arroz irrigado. Pesquisa Agropecuária Brasileira, v.41, n. 9, p.1393-1398, 2006. https://doi.org/10.1590/S0100-204X2006000900007
https://doi.org/10.1590/S0100-204X200600...
. In this study, the COD/BOD ratio was high, demonstrating that the biodegradable fraction was very low, which suggests the need for physicochemical treatment of these waters (Von Sperling, 1996 VON SPERLING, M. Introdução à qualidade das águas e ao tratamento de esgotos. 2. ed. Belo Horizonte: Editora UFMG, 1996. 243p. ).

High levels of the metals Fe, Mn, Zn, and Ni were found in samples collected for the present study. The highest Fe concentrations were found during the cultivation period of the crop and at O4 (55.7 mg Fe/L). Fe concentrations >5 mg Fe L-1, which is the maximum value for this parameter for Class 3 (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
), were found at some points, mainly at the end of cultivation and harvest. Fe is toxic to vegetables at concentrations >5 mg Fe L-1, when it makes P and Mo unavailable, causing nutritional deficiency (Almeida, 2010ALMEIDA, O. A. de. Qualidade da água de irrigação. Cruz das Almas: Embrapa Mandioca e Fruticultura, 2010. 234p.). Moreover, the red yellow alic argis soil of this region contains iron, hematite, and goethite with a high propensity for erosion (EMBRAPA, 2018EMBRAPA. Sistema Brasileiro de Classificação do Solo. 5. ed. Brasília: Embrapa, 2018. 356p.), which may also contribute to these high levels. Santos and Hernandez (2013)SANTOS, G. O.; HERNANDEZ, F. B. T. Uso do solo e monitoramento dos recursos hídricos no córrego do Ipê, Ilha Solteira, SP. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n.1, p. 60-68, 2013. also found high Fe concentrations at all sampled points of the agricultural basin of the Ipê Stream in Ilha Solteira (SP). The Mn level in O2 was 1.25 Mn mg/L, which is higher than the maximum value allowed for inclusion in the classes (0.50 mg Mn/L, CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
). According to Quinatto et al. (2019)QUINATTO, J.; ZAMBELLI, N. L. D. N.; SOUZA, D. H.; RAFAELI NETO, S. L.; CARDOSO, J. T.; SKORONSKI, E. Avaliação da qualidade da água de um rio urbano utilizando o conceito de carga de poluentes: o caso do Rio Carahá (Lages, Brasil). Revista Ambiente & Água, v. 14, n. 1, 2019. https://doi.org/10.4136/ambi-agua.2252
https://doi.org/10.4136/ambi-agua.2252...
, Mn rarely reaches concentrations of 1.0 mg Mn/L in natural surface waters and is usually present in amounts of <0.2 mg Mn/L. The concentration of Zn in the sediment collected from C1 (30 mg Zn/kg) exceeded the QRV (29.0 mg Zn/kg, FEPAM, 2014FEPAM. Portaria FEPAM nº 85/2014. 2014. Available in: Available in: http://www.fepam.rs.gov.br/legislacao/arq/Portaria085-2014.pdf . Access: Nov. 2021.
http://www.fepam.rs.gov.br/legislacao/ar...
); this increase can be attributed to the application of fertilizer in the conventional field. In the study by Lavnitcki et al. (2020)LAVNITCKI, L.; BECEGATO, V. A.; VILELA, P. B.; BAUM, C. A.; DUMINELLI, E. C.; TONIAZZO, F. et al. Concentração de Metais Pesados na Bacia do Rio Ponte Grande no Município de Lages-SC. In: ZUFFO, A. M. (org.). Engenharia sanitária e ambiental: tecnologias para a sustentabilidade. Ponta Grossa: Atena Editora, 2020. p. 53-70. in the Ponte Grande River Basin (Lages/SC), Zn concentration in the sediments ranged from 57.86 to 210.90 mg Zn/kg between the sampled points, being found in springs, junctions and mainly in urbanized areas due to the release of domestic effluents and rainwater. Sanches Filho et al. (2015)SANCHES FILHO, P. J.; ZIEBELL, R.; BETEMPS, G. R. Determinação de metais pesados no sedimento do Arroio São Lourenço-São Lourenço do Sul (RS). Revista Ibero-Americana de Ciências Ambientais, v. 6, n. 1, p. 213-221, 2015. https://doi.org/10.6008/SPC2179-6858.2015.001.0017
https://doi.org/10.6008/SPC2179-6858.201...
conducted a study on the São Lourenço River (RS) and found high Zn concentrations (between 27.9 and 83.6 mg Zn/kg) for most of the sampling points; however, the high concentrations were attributed to the geology of the region. In this study, the highest Ni concentration in the sediment was 12.0 mg Ni/kg at C2, which is a drainage channel in the conventional rice field. O2, O3, C2 and C3 also presented high concentrations of Ni above the QRV of 7.0 mg Ni/kg (FEPAM, 2014FEPAM. Portaria FEPAM nº 85/2014. 2014. Available in: Available in: http://www.fepam.rs.gov.br/legislacao/arq/Portaria085-2014.pdf . Access: Nov. 2021.
http://www.fepam.rs.gov.br/legislacao/ar...
). Sanches et al. (2014)SANCHES, S. M.; HIPÓLITO, S. G.; PASSOS, C. Vigilância e controle da qualidade da água do Córrego Pirapitinga no município de Ituiutaba-MG. Revista Agrogeoambiental, v. 6, n. 3, p. 71-82, 2014. https://doi.org/10.18406/2316-1817v6n32014677 reported that the Ni concentration at sediment sampling Point 3 (20 mg Ni/kg) was high enough to present a possible risk to aquatic life in the São Lourenço Stream.

The water quality index (WQI) was classified as “poor” and indicated a decrease in the water quality of samples collected from O4 (organic farming) and C1 (conventional farming) on November 30, 2020. The samples collected from other points were either “fair” or “good” water. Lopes et al. (2008)LOPES, F. B.; TEIXEIRA, A. S.; ANDRADE, E. M.; AQUINO, D. N.; ARAÚJO, L. F. P. Mapa da qualidade das águas do rio Acaraú, pelo emprego do IQA e Geoprocessamento. Revista Ciência Agronômica, v. 39, n. 3, p. 392-402, 2008., based on the isolated analysis of the variables that comprise the WQI, reported that the isolated value of this index is not sufficient for an accurate analysis of water quality. According to the authors, the fluctuations of the WQI variables compensate each other, keeping the index relatively stable at a level; however, this relative “stability” masks important fluctuations in the environment and must be monitored and analyzed with greater care. An environment can fall into the “optimal” range of the WQI even if some substances are at concentrations that are toxic to the biota and WQI does not include important potential contaminants, such as pesticides (Cunha et al., 2013CUNHA, R. W.; GARCIA JR., M. D. N.; ALBERTONI, E. F.; PALMA-SILVA, C. Qualidade de água de uma lagoa rasa em meio rural no sul do Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n. 7, p. 770-779, 2013. https://doi.org/10.1590/S1415-43662013000700012 ).

Although the electrical conductivity (EC) is not determined in CONAMA Resolution no 357 (CONAMA, 2005CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
), CETESB (2016)CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
https://cetesb.sp.gov.br/aguas-interiore...
considers values >100 µS cm-1 indicative of impacted environments. The EC of samples collected from C2 on March 12, 2020, and those collected from O4, C1, C2, and C3 on November 30, 2020, exceeded 100 µS/cm, indicative of impacted environments. In a study by Scivitaro et al. (2010), the EC indices of the post-sowing drainage water of pre-germinated rice remained >150 μS cm-1, indicating the changes in water composition, especially in the concentration of minerals, owing to the dissolution of salts of the applied fertilizers. In conventional farming, EC values are higher than those in organic rice farming because of the application of fertilizers. EC is one of the most important criteria regarding the quality of irrigation water, as high values imply a risk of salinization of the soil and corrosive characteristics of the water. Although EC is a good indication of changes in the mineral composition of water, it does not indicate the relative amounts of the various components (Scivitaro et al., 2010).

5. CONCLUSION

Based on different parameters, the lowest water quality was observed in Points O2 and O4 (organic rice field). However, for the sediment, the lowest quality was observed in the conventional rice fields along with Point O2 in the organic rice field. Although high levels of metals and other parameters provide essential and beneficial micronutrients to crops, they introduce toxic and potentially carcinogenic heavy metals to the production chain, which through cumulative soil contamination, can reach the food chain and cause various health problems in humans (Nava et al., 2011NAVA, I. A.; GONÇALVES JUNIOR, A. C.; NACKE, H.; GUERINI, V. L.; SCWANTES, D. Disponibilidade dos metais pesados tóxicos cádmio, chumbo e cromo no solo e tecido foliar da soja adubada com diferentes fontes de NPK+Zn. Ciência e Agrotecnologia, v. 35, n. 5, p. 884-892, 2011. https://doi.org/10.1590/S1413-70542011000500004
https://doi.org/10.1590/S1413-7054201100...
). The techniques used in organic agriculture, when carried out correctly, improve soil fertility, increase the capacity to retain water and nutrients, reduce erosion and leaching, consequently, the loss of quality of this resource (Kamiyama et al., 2011KAMIYAMA, A.; MARIA, I.C.; SOUZA, D.C.C.; SILVEIRA, A.P.D. Percepção ambiental dos produtores e qualidade do solo em propriedades orgânicas e convencionais. Bragantia, v.70, n. 1, p.176-184, 2011. https://doi.org/10.1590/S0006-87052011000100024 ). This is possible by applying the key concepts of organic agriculture and soil conservation, such as the maintenance of soil cover, crop rotation, increase in organic matter content, and favorable biological activities occurring in the soil. In addition, the soil in an organic production system has a greater capacity to retain potential contaminants, thus reducing the chances of their percolation (Morgera et al., 2012MORGERA, E.; CARO, C.B.; DURÁN, G.M. Organic agriculture and the Law. FAO Legislative Studies, v. 107, p. 6-10, 2012.).

6. REFERENCES

  • ALMEIDA, O. A. de. Qualidade da água de irrigação. Cruz das Almas: Embrapa Mandioca e Fruticultura, 2010. 234p.
  • APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater. 21. ed. Washington, 2005.
  • BOURSCHEID - ENGENHARIA E MEIO AMBIENTE S. A. Processo de Planejamento da Bacia do Rio Gravataí, Plano de Bacia. Plano de Recursos Hídricos da Bacia Hidrográfica do Rio Gravataí - Relatório Final. Porto Alegre: Secretaria do Meio Ambiente do Estado do Rio Grande do Sul, 2012. 19p.
  • BRITTO, F. B.; SILVA, T. M. M; VASCO, A. N.; AGUIAR NETTO, A. O.; CARVALHO, C. M. Impactos da produção do arroz inundado na qualidade da água do Rio Betume, Sergipe. Revista Agropecuária Técnica, v. 37, n. 1, p. 44-54, 2016. https://doi.org/10.25066/agrotec.v37i1.25254
    » https://doi.org/10.25066/agrotec.v37i1.25254
  • CETESB. Apêndice E- Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. 2016. Available in: Available in: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf. Access: Nov. 2021.
    » https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2017/11/Ap%C3%AAndice-E-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-2016.pdf.
  • CONAMA (Brasil). Resolução nº 357 de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial [da] União: seção 1, Brasília, DF, n. 053, p. 58-63, 18 mar. 2005.
  • CONAMA (Brasil). Resolução nº 420 de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial [da] União: seção 1, Brasília, DF, n. 249, p. 81-84, 30 dez. 2009.
  • CUNHA, R. W.; GARCIA JR., M. D. N.; ALBERTONI, E. F.; PALMA-SILVA, C. Qualidade de água de uma lagoa rasa em meio rural no sul do Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n. 7, p. 770-779, 2013. https://doi.org/10.1590/S1415-43662013000700012
  • EMBRAPA. Sistema Brasileiro de Classificação do Solo. 5. ed. Brasília: Embrapa, 2018. 356p.
  • FEPAM. Portaria FEPAM nº 85/2014. 2014. Available in: Available in: http://www.fepam.rs.gov.br/legislacao/arq/Portaria085-2014.pdf Access: Nov. 2021.
    » http://www.fepam.rs.gov.br/legislacao/arq/Portaria085-2014.pdf
  • GOMES, A. S.; SCIVITTARO, W. B.; PETRINI, J. A.; FERREIRA, L. H. G. A água: Distribuição, regulamentação e uso na agricultura, com ênfase ao arroz irrigado. Pelotas: Embrapa Clima Temperado, 2008. 46 p.
  • IRGA. Boletim de Resultados da Lavoura - Safra 2018/19 - Arroz Irrigado e Soja em Rotação. 2019. Available in: Available in: http://www.irga.rs.gov.br. Access: Nov. 2021.
    » http://www.irga.rs.gov.br.
  • KAMIYAMA, A.; MARIA, I.C.; SOUZA, D.C.C.; SILVEIRA, A.P.D. Percepção ambiental dos produtores e qualidade do solo em propriedades orgânicas e convencionais. Bragantia, v.70, n. 1, p.176-184, 2011. https://doi.org/10.1590/S0006-87052011000100024
  • LAVNITCKI, L.; BECEGATO, V. A.; VILELA, P. B.; BAUM, C. A.; DUMINELLI, E. C.; TONIAZZO, F. et al Concentração de Metais Pesados na Bacia do Rio Ponte Grande no Município de Lages-SC. In: ZUFFO, A. M. (org.). Engenharia sanitária e ambiental: tecnologias para a sustentabilidade. Ponta Grossa: Atena Editora, 2020. p. 53-70.
  • LOPES, F. B.; TEIXEIRA, A. S.; ANDRADE, E. M.; AQUINO, D. N.; ARAÚJO, L. F. P. Mapa da qualidade das águas do rio Acaraú, pelo emprego do IQA e Geoprocessamento. Revista Ciência Agronômica, v. 39, n. 3, p. 392-402, 2008.
  • MATTOS, M. L. T.; MARTINS, J. F. S. Cultivo de arroz irrigado orgânico no Rio Grande do Sul. Pelotas: Embrapa Clima Temperado, 2009. 160p.
  • MATTOS, M. L. T; SCIVITTARO, W. B.; PETRINI, J. A.; DOS SANTOS, I. M. B. Qualidade da água de drenagem em cultivo de arroz pré-germinado. Pelotas: Embrapa Clima Temperado, 2012. 6p.
  • MOLOZZI, J.; PINHEIRO, A.; SILVA, M. R. da. Qualidade da água em diferentes estádios de desenvolvimento do arroz irrigado. Pesquisa Agropecuária Brasileira, v.41, n. 9, p.1393-1398, 2006. https://doi.org/10.1590/S0100-204X2006000900007
    » https://doi.org/10.1590/S0100-204X2006000900007
  • MONDSTOCK, C. M. Água de irrigação e drenagem do perímetro de irrigação do Arroio Duro de 2005 a 2012. Cachoeirinha: IRGA/Divisão de Pesquisa, 2015. 96p.
  • MORGERA, E.; CARO, C.B.; DURÁN, G.M. Organic agriculture and the Law. FAO Legislative Studies, v. 107, p. 6-10, 2012.
  • NAVA, I. A.; GONÇALVES JUNIOR, A. C.; NACKE, H.; GUERINI, V. L.; SCWANTES, D. Disponibilidade dos metais pesados tóxicos cádmio, chumbo e cromo no solo e tecido foliar da soja adubada com diferentes fontes de NPK+Zn. Ciência e Agrotecnologia, v. 35, n. 5, p. 884-892, 2011. https://doi.org/10.1590/S1413-70542011000500004
    » https://doi.org/10.1590/S1413-70542011000500004
  • QUINATTO, J.; ZAMBELLI, N. L. D. N.; SOUZA, D. H.; RAFAELI NETO, S. L.; CARDOSO, J. T.; SKORONSKI, E. Avaliação da qualidade da água de um rio urbano utilizando o conceito de carga de poluentes: o caso do Rio Carahá (Lages, Brasil). Revista Ambiente & Água, v. 14, n. 1, 2019. https://doi.org/10.4136/ambi-agua.2252
    » https://doi.org/10.4136/ambi-agua.2252
  • SANCHES FILHO, P. J.; ZIEBELL, R.; BETEMPS, G. R. Determinação de metais pesados no sedimento do Arroio São Lourenço-São Lourenço do Sul (RS). Revista Ibero-Americana de Ciências Ambientais, v. 6, n. 1, p. 213-221, 2015. https://doi.org/10.6008/SPC2179-6858.2015.001.0017
    » https://doi.org/10.6008/SPC2179-6858.2015.001.0017
  • SANCHES, S. M.; HIPÓLITO, S. G.; PASSOS, C. Vigilância e controle da qualidade da água do Córrego Pirapitinga no município de Ituiutaba-MG. Revista Agrogeoambiental, v. 6, n. 3, p. 71-82, 2014. https://doi.org/10.18406/2316-1817v6n32014677
  • SANTOS, G. O.; HERNANDEZ, F. B. T. Uso do solo e monitoramento dos recursos hídricos no córrego do Ipê, Ilha Solteira, SP. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n.1, p. 60-68, 2013.
  • SCIVITTARO, W. B.; SILVA, M. T.; BRAUN, J. A. F.; MATTOS, M. L. T. Monitoramento da Qualidade da Água de Drenagem Inicial de Lavoura de Arroz Pré-germinado. Pelotas: Embrapa Clima Temperado, 2010. 8 p.
  • SILVA, D. D. C.; PEREIRA FILHO, J. Qualidade química da água em função de seu uso na rizicultura irrigada na região do baixo estuário do rio Itajaí. Revista de Estudos Ambientais, v.12, n. 2, p. 26-37, 2010.
  • VON SPERLING, M. Introdução à qualidade das águas e ao tratamento de esgotos. 2. ed. Belo Horizonte: Editora UFMG, 1996. 243p.

Publication Dates

  • Publication in this collection
    06 May 2022
  • Date of issue
    Mar-Apr 2022

History

  • Received
    23 Dec 2021
  • Accepted
    11 Mar 2022
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil
E-mail: ambi.agua@gmail.com