Resumos
O Índice de Área Foliar (IAF) é determinante nos processos de trocas de massa e energia nos ecossistemas, sendo fundamental para o entendimento das mudanças no clima regional e na dinâmica do ecossistema. O objetivo deste trabalho foi analisar, por meio da geoestatística, a variabilidade e dependência espacial dos valores de índice de área foliar (IAF) em áreas naturais de campo 'baixo', campo 'alto' e floresta de transição no Sul do Amazonas. Os valores de IAF foram determinados numa malha regular com 33 pontos para cada área estudada, e a aquisição dos dados foi feita pelo analisador de dossel LAI-2000, que permite se calcular a estrutura da vegetação com base na radiação que penetra na copa das árvores. Os valores médios do IAF variaram de acordo com a área estudada, com maiores valores na floresta (4,42 m²m-2), seguida pelo campo alto (2,03 m²m-2) e campo baixo (1,72 m²m-2). Em todas as áreas os valores de IAF mostraram dependência espacial com o uso da krigagem entre as amostras e apresentam distribuição espacial diferenciada em cada área estudada: o grau de dependência espacial foi moderado na floresta de transição e fraco para os campos naturais, sendo que no campo alto a distância limite em que os pontos estão correlacionados é de 35,3 m. No mapa de krigagem foi possível observar manchas com valores altos e baixos distribuídos de forma diferenciada entre as áreas estudadas.
Amazônia; geoestatística; índice de área foliar; Krigagem
The Leaf Area Index (LAI) has strong influence on ecosystems' energy and mass exchange and is fundamental to the understanding of regional climate changes and ecosystem dynamics. The main goal of this work was to establish, based on geostatistical analyses, the variability and spatial dependence of LAI in the natural fields and transitional forest in southern Amazonas State, in Brazil. The LAI was measured in a regular grid with 33 points at each studied area. Field measurements were done using the canopy analyser LAI-2000, which calculates the structure of the vegetation based on the radiation beneath the tree canopy. The average values of LAI varied according to the studied sites: the highest values were found in the transitional forest (4.42 m²m-2), followed by the high (2.03 m²m-2) and low (1.72 m²m-2) natural fields. All studied sites showed spatial dependence according to the kriging methods, but with different degrees of dependence: spatial dependence was moderate at the transition forest and weak at the natural fields. In the more arboreal open field, the maximum limit at which the points are correlated reached a distance of 35.3 m. The kriging maps proved to be very important tools for describing the spatial distribution of LAI in the Amazon.
amazon; geostatistics; kriging; leaf area index
1. INTRODUÇÃO
A Bacia Amazônica ocupa uma área de mais de 6,5 milhões de km2, dos quais
aproximadamente 85% do total encontram-se em território brasileiro (IBGE, 1997INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Diagnóstico ambiental
da amazônia legal. Rio de Janeiro, 1997. 1 CD-ROM.; Soares
Filho et al., 2006SOARES-FILHO, B. S.; NEPSTAD, L. M. et al. Modelling conservation in the
Amazon basin. Nature, v. 440, n. 7083, p. 520-523, 2006.
http://dx.doi.org/10.1038/nature04389
https://doi.org/http://dx.doi.org/10.103...
; Prance, 1979PRANCE, G. T. Notes on the vegetation of Amazonia iii. The terminology
of Amazonian forest types subject to inundation. Brittonia, v. 31, n. 1, p. 26-38,
1979. ). A
região é um grande mosaico de paisagens, formadas nos períodos geológicos Terciário e
Quaternário e, nas últimas décadas mais de 13% desta região foi transformada em
pastagens ou agricultura nos estados do Acre, Rondônia, Mato Grosso, Tocantins e Pará
(IBGE, 1997INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Diagnóstico ambiental
da amazônia legal. Rio de Janeiro, 1997. 1 CD-ROM.; Soares-Filho et al., 2006SOARES-FILHO, B. S.; NEPSTAD, L. M. et al. Modelling conservation in the
Amazon basin. Nature, v. 440, n. 7083, p. 520-523, 2006.
http://dx.doi.org/10.1038/nature04389
https://doi.org/http://dx.doi.org/10.103...
).
Devido à sua enorme extensão territorial, a Amazônia apresenta diferentes
características climáticas, meteorológicas e também diferentes características em seus
ecossistemas (Bambi, 2007BAMBI, P. Variação sazonal do índice da área foliar e sua contribuição
na composição da serapilheira e ciclagem de nutrientes na floresta de transição no
norte do Mato Grosso. 2007. Dissertação (Mestrado em Física e Meio Ambiente) -
Instituto de Ciências Extas e da Terra, Universidade Federal de Mato Grosso, Cuiabá,
2007.). A exemplo disto, IBGE, (1997INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Diagnóstico ambiental
da amazônia legal. Rio de Janeiro, 1997. 1 CD-ROM.), Luizão
et al., (2007LUIZÃO F. J.; LUIZÃO, R. C. C.; PROCTOR, J. Soil acidity and nutrient
deficiency in central Amazonian heath forest soils. Plant Ecology, v. 192, n. 2, p.
209-224, 2007. http://dx.doi.org/10.1007/s11258-007-9317-6
https://doi.org/http://dx.doi.org/10.100...
) e Zanchi et al., (2014ZANCHI, F. B.; MEESTERS, A.; WATERLOO, M.; KRUIJT, B. LUIZÃO, F. J.;
DOLMAN, A. J. Soil CO2 exchange in seven pristine Amazonian rain forest sites in
relation to soil temperature. Agricultural and Forest Meteorology,v. 192/193, p.
96-107, 2014.),
registram que aproximadamente 6% da Amazônia é formada por vegetação do tipo "savanna"
(Cerrados, Campinas, Campinaranas e Campos 'altos' e 'baixos'), nos estados de Roraima e
no norte e sul do estado do Amazonas. Por outro lado, as florestas de terra-firme
contendo também áreas de várzea, alagadiços e florestas de igapó, localizadas às margens
dos rios da região, cobrem 70% da Amazônia (Prance,
1979PRANCE, G. T. Notes on the vegetation of Amazonia iii. The terminology
of Amazonian forest types subject to inundation. Brittonia, v. 31, n. 1, p. 26-38,
1979. ).
Um dos importantes parâmetros da vegetação que caracteriza cada ecossistema é o índice
de área foliar (IAF), que representa a interface ativa entre o ecossistema e a atmosfera
(Amthor, 1994AMTHOR, J. S. Scaling CO2-photosynthesis relationships from the leaf to
the canopy. Photosynthesis, v. 39, p. 321-350, 1994.
http://dx.doi.org/10.1007/BF00014590
https://doi.org/http://dx.doi.org/10.100...
; Soares-Filho et al., 2006SOARES-FILHO, B. S.; NEPSTAD, L. M. et al. Modelling conservation in the
Amazon basin. Nature, v. 440, n. 7083, p. 520-523, 2006.
http://dx.doi.org/10.1038/nature04389
https://doi.org/http://dx.doi.org/10.103...
). Este índice foi definido por Watson (1947WATSON, D. J. Comparative physiological studies on growth of fields
crops. I Variation in net assimilation rate and leaf area between species and
varieties, and within and between years. Annals of Botany, London, v. 11, p. 41-76,
1947. http://www.jstor.org/stable/42907002) como sendo a razão entre a área foliar
do dossel e a unidade de superfície projetada no solo (m2m-2), sendo uma variável
biofísica diretamente relacionada com a transpiração e a produtividade do ecossistema.
Esta variável também é utilizada como parâmetro de entrada em modelos de transferência
radiativa que visam descrever o complexo processo da transferência da radiação no
interior de dosséis de plantas, bem como temperatura e umidade do solo (Jennings et al., 1999JENNINGS, S. B.; BROWN, N. D.; SHEIL, D. Assessing forest canopies and
understory illumination: Canopy closure, canopy cover and other measures. Forestry,
v. 72, p. 59-73, 1999. http://dx.dio.org/10.1093/forestry/72.1.59
https://doi.org/http://dx.dio.org/10.109...
).
Por outro lado, alterações no IAF podem ser tanto naturais como antrópicas, sendo elas
ocasionadas por doenças, pragas, tempestades, secas, práticas de manejo e a própria
adaptação fenológica das plantas. Estas alterações modificam a produtividade e o
povoamento do ecossistema, pois afetam diretamente os processos de fotossíntese,
proteção do solo, interceptação da precipitação e evapotranspiração (Xavier et al., 2002XAVIER, A. C.; SOARES, J. V.; ALMEIDA, A. C. Variação do índice de área
foliar em clones de eucalipto ao longo de seu ciclo de crescimento. Revista
Árvore,Viçosa, v. 26, n.4, p. 421-427, 2002.
http://dx.doi.org/10.1590/S0100-67622002000400004
https://doi.org/http://dx.doi.org/10.159...
; Bréda, 2003BRÉDA, N. J. J. Ground-based measurements of leaf area index: a review
of methods, instruments and current controversies. Journal of Experimental Botany,
Oxford, v. 54, n. 392, p. 2043-2417, 2003.
http://dx.doi.org/10.1093/jxb/erg263
https://doi.org/http://dx.doi.org/10.109...
; Zanchi et al., 2009ZANCHI, F. B.; WATERLOO, M. J.; ROCHA, H. R.; AGUIAR, L. J. G.; RANDOW,
C. Von; KRUIJT, B. et al. Estimativa do Índice de Área Foliar (IAF) e Biomassa em
pastagem no estado de Rondônia, Brasil. Acta Amazônica, Manaus, v. 39, n. 2, p.
335-348, 2009. http://dx.doi.org/10.1590/S0044-59672009000200012
https://doi.org/http://dx.doi.org/10.159...
).
Mesmo aparecendo como áreas isoladas, algumas delas de origem edáfica (Gottsberger e Morawetz, 1986GOTTSBERGER, G.; MORAWETZ, W. Floristic, structural and
phytogeographical analysis of the savannas of Humaitá (Amazonas). Flora, v. 178, p.
41-71, 1986.; Solbrig, 1996SOLBRIG, O. T. The diversity of the savanna ecosystem. In: SOLBRIG, O.
T.; MEDINA, E.; SILVA, J. F. (eds.). Biodiversity and savanna ecosystem processes: a
global perspective. Berlin: Springer-Verlag, 1996. p. 1-27.), esta cobertura vegetal possui um importante papel
nas condições climáticas regionais, regulando os processos hidrológicos (como a
interceptação da água da chuva, o escoamento pelos troncos e, principalmente, a
evapotranspiração), bem como as trocas de massa e energia (Amthor, 1994AMTHOR, J. S. Scaling CO2-photosynthesis relationships from the leaf to
the canopy. Photosynthesis, v. 39, p. 321-350, 1994.
http://dx.doi.org/10.1007/BF00014590
https://doi.org/http://dx.doi.org/10.100...
). Desta forma, o estudo detalhado dessa cobertura e o
entendimento do funcionamento dos ecossistemas amazônicos tornam-se fundamentais para
compreender as mudanças no clima regional (Zanchi et
al., 2009ZANCHI, F. B.; WATERLOO, M. J.; ROCHA, H. R.; AGUIAR, L. J. G.; RANDOW,
C. Von; KRUIJT, B. et al. Estimativa do Índice de Área Foliar (IAF) e Biomassa em
pastagem no estado de Rondônia, Brasil. Acta Amazônica, Manaus, v. 39, n. 2, p.
335-348, 2009. http://dx.doi.org/10.1590/S0044-59672009000200012
https://doi.org/http://dx.doi.org/10.159...
). Igualmente, a definição de um melhor manejo requer estudos de
ecossistemas ainda existentes, como os campos naturais, com vegetação aberta
("savannas") e as florestas de transição no Sul do Amazonas, que, em diferentes graus,
estão sendo afetadas pelas mudanças de uso da terra em curso na Amazônia.
Segundo dados da FAO (Organização das Nações Unidas para Agricultura e Alimentação), as
pastagens/campos tropicais tem crescente importância no gerenciamento dos recursos
hídricos e também nos modelos locais de interação solo-planta-atmosfera com relação às
mudanças climáticas (Correia, 2006CORREIA, F. W. S. Impacto das modificações da cobertura vegetal no
balanço de água na Amazônia: um estudo com modelo de circulação geral da atmosfera
(MCGA). Revista Brasileira de Meteorologia, v. 21, n. 3a, p. 154,
2006.) e relação da
conversão de florestas em áreas de campos. Contudo, existem ainda poucas informações
referentes à variação espacial ou mesmo de variações de longo prazo do IAF para
identificação de padrões de pastagens (Zanchi et al.,
2009ZANCHI, F. B.; WATERLOO, M. J.; ROCHA, H. R.; AGUIAR, L. J. G.; RANDOW,
C. Von; KRUIJT, B. et al. Estimativa do Índice de Área Foliar (IAF) e Biomassa em
pastagem no estado de Rondônia, Brasil. Acta Amazônica, Manaus, v. 39, n. 2, p.
335-348, 2009. http://dx.doi.org/10.1590/S0044-59672009000200012
https://doi.org/http://dx.doi.org/10.159...
) e áreas de 'savanas' amazônicas.
Normalmente as variações no IAF são afetadas pelas mudanças nas variáveis
edafoclimáticas como a precipitação pluviométrica, a umidade do solo, o potencial de
vapor d'água na atmosfera e o fotoperíodo (Bambi,
2007BAMBI, P. Variação sazonal do índice da área foliar e sua contribuição
na composição da serapilheira e ciclagem de nutrientes na floresta de transição no
norte do Mato Grosso. 2007. Dissertação (Mestrado em Física e Meio Ambiente) -
Instituto de Ciências Extas e da Terra, Universidade Federal de Mato Grosso, Cuiabá,
2007.). Em períodos secos, as plantas podem responder ao estresse hídrico e
limitações à transpiração pela diminuição da área de exposição (pela queda das folhas)
(Zanchi et al., 2009ZANCHI, F. B.; WATERLOO, M. J.; ROCHA, H. R.; AGUIAR, L. J. G.; RANDOW,
C. Von; KRUIJT, B. et al. Estimativa do Índice de Área Foliar (IAF) e Biomassa em
pastagem no estado de Rondônia, Brasil. Acta Amazônica, Manaus, v. 39, n. 2, p.
335-348, 2009. http://dx.doi.org/10.1590/S0044-59672009000200012
https://doi.org/http://dx.doi.org/10.159...
), o que implica em
mudanças temporais no IAF. Portanto, estimar e caracterizar uma área por meio deste
parâmetro biológico (IAF) torna-se uma tarefa muito difícil, pois o IAF apresenta grande
variabilidade temporal e espacial. Para minimizar estes problemas é necessário
estabelecer o seu padrão local e variações específicas nas áreas de estudo, uma vez que,
mesmo quando os ecossistemas são caracterizados por fisionomias florestais ou arbóreas
com substrato graminoso, o IAF não é uniforme em toda área e varia durante o ano. De
acordo com Braun e Andrade, (1959BRAUN, E. H. G.; ANDRADE, R. J. R. Estudo agrogeológico dos campos
Puciari-Humaitá - Estado do Amazonas e Território Federal de Rondônia. Revista
Brasileira de Geografia, v. 21, p. 3-57, 1959.), estas áreas
são de formações edáficas e neste caso a análise da estatística clássica, que considera
a independência entre as amostras baseada na média, vem sendo substituída por análises
geoestatísticas fundamentadas na teoria das variáveis regionalizadas (Isaaks e Srivastava, 1989ISAAKS, E. H.; SRIVASTAVA, R. M. An introduction to applied
geoestatistics. New York: Oxiford University Press, 1989. 561p.), que utilizam o
semivariograma, produzindo a descrição da dependência espacial entre as amostras (Webster e Olivier, 1990WEBSTER, R.; OLIVIER, M. A. Statistical methods in soil and land
resource survey. Oxford: Oxford University Press, 1990. 316p.).
O objetivo deste trabalho foi caracterizar os valores do IAF e sua variabilidade espacial utilizando a técnica de geoestatística em áreas naturais de campo 'baixo', campo 'alto' e floresta de transição no Sul da Amazônia.
2. Material e Métodos
2.1. Área de estudo
O estudo foi realizado no sítio experimental relacionado à rede de torres do Programa de Grande Escala da Biosfera-Atmosfera na Amazônia - LBA, situado na reserva do Ministério da Defesa, pertencente ao 54º BIS (Batalhão de Infantaria de Selva) de Humaitá, estado do Amazonas (Figura 1). As coordenadas geográficas das áreas de estudo em Floresta de Transição, Campo Alto e Campo Baixo são 7°32'2.16"S e 63°14'37.65"W, 90.8 m a.n.m. (acima do nível do mar), 07°34'52.93"S 63°08'43.84"W, 82.9 m a.n.m. e 07°33'49.72"S e 63°06'05.58"W, 82.2 m a.n.m., respectivamente.
Estas áreas caracterizam-se de forma genérica pela presença de dois ambientes
distintos: as várzeas, que margeiam os rios de "águas barrentas", ricas em material
suspenso e sujeitas à inundações sazonais; e as áreas de "terra firme", que não
sofrem inundação e são formadas a partir de sedimentos terciários. Porém nestas áreas
ocorrem variações florísticas distintas, sendo de florestas e campos naturais, cuja
floresta possui solos bem drenados e barreiras plínticas mais profundas, já os campos
naturais são compostos por gramíneo lenhoso e a barreira plíntica mais próxima à
superfície (Martins et al., 2006MARTINS, G. C. et al. Campos nativos e matas adjacentes da região de
Humaitá (AM): atributos diferenciais dos solos. Ciência e Agrotecnologia, Lavras, v.
30, n. 2, Apr. 2006.
http://dx.doi.org/10.1590/S1413-70542006000200005
https://doi.org/http://dx.doi.org/10.159...
). Segundo a
EMBRAPA, (1999EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Sistema brasileiro de
classificação de solos. Rio de Janeiro, 1999. 412 p. (EMBRAPA SOLOS/
SPI).) os solos desta região são
classificados como Argissolo Vermelho-Amarelo Alumínico típico (PVAa) na floresta e
nas áreas de campos nativos como o Plintossolo Argilúvico Alumínico típico (FTa).
De acordo com o parataxonomista José Ramos do INPA, que identificou as amostras, os
campos naturais (alto e baixo) amazônicos, possuem um predomínio herbáceo de
Cyperaceae (Solbrig, 1996SOLBRIG, O. T. The diversity of the savanna ecosystem. In: SOLBRIG, O.
T.; MEDINA, E.; SILVA, J. F. (eds.). Biodiversity and savanna ecosystem processes: a
global perspective. Berlin: Springer-Verlag, 1996. p. 1-27.), que nos meses de
outubro a dezembro, logo após a floração destas gramíneas, há uma mortandade e troca
de folhas, pois boas partes das plantas ficam amarelas ou morrem e outras brotam
sequencialmente como mecanismos fenológicos de adaptação (Araújo e Longhi-Wagner, 1996ARAUJO, A. C.; LONGHI-WAGNER, H. M. Levantamento taxonômico de Cyperus
L. 1. subg. Anosporum (Nees) Clarke (Cyperaceae-Cypereae) no Rio Grande do Sul,
Brasil. Acta Botanica Brasilica, Feira de Santana, v. 10, n. 1, 1996.
http://dx.doi.org/10.1590/S0102-33061996000100012
https://doi.org/http://dx.doi.org/10.159...
).
O clima da região é caracterizado como do tipo Am, segundo Köppen, com precipitação
anual variando de 2.250 a 2.750 mm e uma estação seca de pequena duração (mês de
julho). A temperatura média anual varia de 24°C a 26ºC; a umidade relativa do ar
varia de 85 a 90% e a altitude média é de 90 metros acima do nível do mar (Martins et al., 2006MARTINS, G. C. et al. Campos nativos e matas adjacentes da região de
Humaitá (AM): atributos diferenciais dos solos. Ciência e Agrotecnologia, Lavras, v.
30, n. 2, Apr. 2006.
http://dx.doi.org/10.1590/S1413-70542006000200005
https://doi.org/http://dx.doi.org/10.159...
).
2.2. Métodos
De acordo com Xavier et al., (2002XAVIER, A. C.; SOARES, J. V.; ALMEIDA, A. C. Variação do índice de área
foliar em clones de eucalipto ao longo de seu ciclo de crescimento. Revista
Árvore,Viçosa, v. 26, n.4, p. 421-427, 2002.
http://dx.doi.org/10.1590/S0100-67622002000400004
https://doi.org/http://dx.doi.org/10.159...
), a
arquitetura do dossel florestal é caracterizado pela posição, orientação, tamanho e
forma de seus elementos constituintes (como folhas, galhos, troncos, flores e
frutos). As descrições quantitativas dessas características geométricas das copas são
complexas devido à grande variabilidade espacial (horizontal e vertical) e temporal
(sazonalmente e pela idade) (Weiss et al.,
2003WEISS, M.; BARET, F.; SMITH, G. J.; JONCKHEERE, I.; COPPIN, P. Review of
methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI,
errors and sampling. Elservier Science Publishers. Agricultural and Forest
Meteorology,v. 121, p. 37-53, 2003.).
O índice de área foliar (IAF) pode ser medido por métodos indiretos (não destrutivos) ou por métodos diretos, conhecidos por serem predominantemente destrutivos. Os métodos diretos consistem na obtenção das medidas da área das folhas e da relação entre área e massa foliar. Os métodos indiretos caracterizam o IAF pela medida de radiação total que penetra no interior da cobertura vegetal e incluem a fotografia hemisférica, o equipamento LAI-2000 e os produtos orbitais (Daughtry, 1990DAUGHTRY, C. S. T. Direct measurement of canopy structure. In: GOEL, N. S.; NORMAN, J. M. (Eds.) Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions. London: Harwood, 1990. cap. 5, p. 45-60.).
Por outro lado existem vários métodos e formas estatísticas de tratamentos de coleta de dados. De acordo com Korhonen et al., (2006KORHONEN, L.; KORHONEN, K. T.; RAUTIAINEN, M.; STENBERG, P. Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fennica, v. 40, n. 4, p. 577-588, 2006.) o método do tubo de Cajanus foi o método mais preciso, porém com um arranjo estatístico e campo de visão adequado nas medidas, outros métodos podem também ter precisão e acurácia.
Neste estudo, o IAF foi medido em área de floresta, campo alto e campo baixo pelo
método indireto, utilizando o analisador de dossel vegetal Li-Cor LAI-2000 (PCA,
Li-Cor, Lincoln, NE, USA). Este equipamento (LAI-2000) calcula a estrutura do dossel
da vegetação com base nas medidas de radiação difusa que penetram nas copas e que é
captada pelo analisador, que possui um sensor de luz do tipo "Olho-de-Peixe", com um
campo de visão de 148º. As medidas consistem em determinar a interceptação de luz em
cinco distintas bandas angulares (0-13°, 16-28°, 32-43°, 47-58° e 61-74°) com o
zênite no centro; o IAF é calculado a partir da diferença de luz medida acima e
abaixo do dossel (Chason et al., 1991CHASON, J. W.; BALDOCCHI, D. D.; HUSTON, M. A comparison of direct and
indirect methods for estimating forest canopy leaf area. Agricultural and Forest
Meteorology, Amsterdam, v. 107, p. 107-128, 1991.
http://dx.doi.org/10.1016/0168-1923(91)90081-Z
https://doi.org/http://dx.doi.org/10.101...
). O
LAI-2000 tem sido o instrumento mais empregado, por não necessitar de processamento e
aquisição de dados adicionais, e ainda ser capaz de fornecer o IAF imediatamente
(Cutini et al., 1998CUTINI, A.; MATTEUCCI, G.; MUGNOZZZA, G. S. Estimation of leaf area
index with the Li-Cor 2000 in deciduous forests. Forest Ecology and Management,
Arezzo, v. 105, p. 55-65, 1998.
http://dx.doi.org/10.1016/S0378-1127(97)00269-7
https://doi.org/http://dx.doi.org/10.101...
). O uso desse
equipamento para medir o IAF ocorreu nas primeiras horas do dia ou no fim do dia para
minimizar o efeito da radiação direta no equipamento, que poderia gerar uma
subestimativa nos valores (Korhonen et al.,
2006KORHONEN, L.; KORHONEN, K. T.; RAUTIAINEN, M.; STENBERG, P. Estimation
of forest canopy cover: a comparison of field measurement techniques. Silva Fennica,
v. 40, n. 4, p. 577-588, 2006.).
Korhonen et al. (2006KORHONEN, L.; KORHONEN, K. T.; RAUTIAINEN, M.; STENBERG, P. Estimation
of forest canopy cover: a comparison of field measurement techniques. Silva Fennica,
v. 40, n. 4, p. 577-588, 2006.) e Montenegro e Montenegro (2006MONTENEGRO, A. A. A.; MONTENEGRO, S. M. G. L. Variabilidade espacial de
classes de textura, salinidade e condutividade hidráulica de solos em planície
aluvial. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 10, n. 1, p.
30-37, 2006. http://dx.doi.org/10.1590/S1415-43662006000100005
https://doi.org/http://dx.doi.org/10.159...
) destacaram a importância dos
planos de amostragem e testes adequados para estudos de variabilidade espacial em
função de malhas regulares, de transectos e de conjuntos de pontos aleatoriamente
distribuídos. Neste estudo o delineamento amostral segue o método RAPELD (inventários
rápidos - RAP e Projetos Ecológicos de Longa-Duração - PELD (Magnusson et al., 2005MAGNUSSON, W. E.; LIMA, A. P.; LUIZÃO, R. et al. RAPELD: a modification
of the Gentry method for biodiversity surveys in long-term ecological research sites.
Biota Neotropica, v. 5, n. 2, 2005.
http://dx.doi.org/10.1590/S1676-06032005000300002
https://doi.org/http://dx.doi.org/10.159...
), que subdivide uma área de 1 x 5 km em
parcelas de medidas a cada 250 m, levando em consideração a topografia do local.
Dentro destas parcelas RAPELD, as medidas do IAF foram feitas em abril de 2013, em
uma malha construída e georreferenciada, com os pontos de cruzamento estabelecidos em
linhas de 50 metros de comprimento e equidistantes 25 metros entre elas, com
intervalos regulares de 5 metros entre os pontos de coleta. Formando uma malha com
espaçamento regular e dimensão de 50 x 50 m, totalizando 33 pontos para cada área de
estudo.
Após a coleta dos dados (IAF), os mesmos foram submetidos à análise da estatística descritiva e geoestatística empregando a técnica de "krigagem" descrita por Krige (1951KRIGE, D. G. A statistical approach to some basic mine valuation problems on the Witwatersrand. Johanesburg Chemistry Metallurgy Mining Society South Africa, v. 52, p. 151-163, 1951.), que usa a dependência espacial entre amostras vizinhas, expressa no modelo do semivariograma ajustado, para estimar valores em qualquer posição dentro do campo, sem tendência e com variância mínima (Vieira, 2000VIEIRA, S. R. Geoestatística em estudos de variabilidade espacial do solo. In: NOVAIS, R. F.; ALVAREZ, V. H.; SCHAEFER, C. E. G. R. (Eds). Tópicos em ciência do solo. Viçosa: Sociedade Brasileira de Ciência do Solo, 2000. v. 1, p. 1-53.). Estes procedimentos englobam análise exploratória, geração e modelagem de semivariograma, validação do modelo e interpolação por krigagem. A interpolação de superfícies foi gerada a partir de amostras georreferenciadas para cada ponto de medida do IAF.
Os semivariogramas foram modelados e ajustados no software GS+ (Gamma Design Software, 2004GAMMA DESIGN SOFTWARE. Geoestatistic for the envorinmental sciences
(version 7.0 for windows). Michigan, 2004. 1 CD.) que caracterizou os parâmetros do
semivariograma e a dependência espacial entre as amostras. Utilizamos como base para
a análise do grau de dependência espacial a classificação estabelecida por Cambardella et al. (1994CAMBARDELLA, C. A. et al. Field-scale variability of soil properties in
Central Iowa Soil. Soil Science Society of America Journal, Madison, v. 58, n. 5, p.
1501-1511, 1994.
http://dx.doi.org/10.2136/sssaj1994.03615995005800050033x
https://doi.org/http://dx.doi.org/10.213...
), que considera como
dependência espacial forte os semivariogramas que têm um efeito pepita menor ou igual
a 25% do patamar, moderado entre 25% e 75%, e fraco quando for maior que 75%. Na
escolha do modelo para cada semivariograma, levou-se em consideração o maior valor
encontrado para o coeficiente de regressão (R2), obtido pelo método de validação dos
modelos. Segundo Gomes (1990GOMES, F. P. Curso de estatística experimental. 12. ed. Piracicaba:
Nobel, 1990. 467p.), a análise do
coeficiente de variação (CV) segue também uma classificação, sendo ela: baixo (CV
< 10%); médio (10% < CV > 20%); alto (20% < CV > 30%) e muito alto (CV
> 30).
Posteriormente, os modelos ajustados com base no semivariograma foram utilizados para interpolação por krigagem. Utilizou-se o software Surfer versão 8.0 (Golden Software Inc., 1999GOLDEN SOFTWARE INC. SURFER for Windows: release 7.0: contouring and 3D surface mapping for scientist's engineers, user's guide. New York, 1999. 619p.) para elaboração de mapas de isolinhas que descrevem a distribuição espacial do IAF..
3. Resultados e Discussão
A estatística descritiva aplicada mostra que, conforme esperado, o valor médio do índice
de área foliar (IAF) foi mais alto na floresta de transição (4,42 ± 0,74 m2m-2), seguido
do campo 'alto' (2,03 ± 0,64 m2m-2) e do campo 'baixo' (1,72 ± 0,48 m2m-2) (Tabela 1). O IAF encontrado para floresta de
transição foi próximo ao valor médio de IAF (4.6 m2m-2) verificado por Graça (2004GRAÇA, P. M. L. A. Monitoramento e caracterização de áreas sub à
exploração florestal na Amazônia por técnicas de detecção de mudanças. 2004. Tese
(Doutorado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais, São
José dos Campos, 2004. ) em uma floresta de transição,
localizada no centro-norte do estado de Mato Grosso. Carreire (2009CARREIRE, M. B. F. Estimativas de biomassa, do índice de área foliar e
aplicação do sensoriamento remoto no monitoramento no estudo da cobertura vegetal em
áreas de florestas ombrófila aberta e densa na Amazônia. 2009. Tese (Doutorado) -
INPA/UFAM, Manaus, 2009.), ao investigar o IAF em floresta secundária com 5 anos,
cortada em 1998 e queimada em 1999 na região de Alta Floresta - MT, encontrou valores
médios de IAF de 4,2 m2m-2, evidenciando a influência das queimadas na recomposição
vegetal do ecossistema. Valores maiores (5,7 m2m-2) foram encontrados por McWilliam et al. (1993MCWILLIAM, A.-L. C.; ROBERTS, J. M.; CABRAL, O. M. R.; LEITAO, M. V. B.
R.; COSTA, A. C. L.; MAITELLI, G. T. et al. Leaf area index and above-ground biomass
of terra firme rain forest and adjacent clearings in Amazonia. Functional Ecology, v.
7, p. 310-317, 1993. http://www.jstor.org/stable/2390210
https://doi.org/http://www.jstor.org/sta...
), em floresta de terra firme
na Amazônia Central, caracterizada como floresta densa primária.
Os valores médios encontrados para as áreas de campos naturais (1,72 a 2,03 m2m-2) foram
inferiores aos valores de IAF encontrados em uma pastagem no Estado de Rondônia. Em um
estudo realizado na Fazenda Nossa Senhora (FNS) e em Rolim de Moura (RDM), ambos no
estado de Rondônia, entre fevereiro de 1999 e janeiro de 2005, com medidas mensais do
IAF de pastagem, Zanchi et al. (2009ZANCHI, F. B.; WATERLOO, M. J.; ROCHA, H. R.; AGUIAR, L. J. G.; RANDOW,
C. Von; KRUIJT, B. et al. Estimativa do Índice de Área Foliar (IAF) e Biomassa em
pastagem no estado de Rondônia, Brasil. Acta Amazônica, Manaus, v. 39, n. 2, p.
335-348, 2009. http://dx.doi.org/10.1590/S0044-59672009000200012
https://doi.org/http://dx.doi.org/10.159...
) encontraram
valores médios na ordem de 2,5 m2m-2. Porém, a média anual determinada por Zanchi et al. (2009ZANCHI, F. B.; WATERLOO, M. J.; ROCHA, H. R.; AGUIAR, L. J. G.; RANDOW,
C. Von; KRUIJT, B. et al. Estimativa do Índice de Área Foliar (IAF) e Biomassa em
pastagem no estado de Rondônia, Brasil. Acta Amazônica, Manaus, v. 39, n. 2, p.
335-348, 2009. http://dx.doi.org/10.1590/S0044-59672009000200012
https://doi.org/http://dx.doi.org/10.159...
) variou entre 1,4 m2m-2 em 2000
e 2,8 m2m-2 em 2003, o que pode indicar um possível efeito das condições hidrológicas do
solo, especialmente da altura do lençol freático, nos valores relativamente baixos do
presente estudo. Giambelluca et al. (2009GIAMBELLUCA, T. W.; SCHOLZ, F. G.; BUCCI, S. J.; MEINZER, F. C.;
GOLDSTEIN, G.; HOFFMANN, W. A. et al. Evapotranspiration and energy balance of
Brazilian savannas with contrasting tree density. Agricultural and Forest
Meteorology,v. 149, p. 1365-1376, 2009.
http://dx.doi.org/10.1016/j.agrformet.2009.03.006
https://doi.org/http://dx.doi.org/10.101...
) também
notou uma grande diminuição do IAF no período seco para áreas de cerrados e cerrados
densos no Brasil central.
Este parâmetro se torna importante devido à sua relação direta com a troca de energia e
massa que o ecossistema realiza com a atmosfera (Giambelluca et al., 2009GIAMBELLUCA, T. W.; SCHOLZ, F. G.; BUCCI, S. J.; MEINZER, F. C.;
GOLDSTEIN, G.; HOFFMANN, W. A. et al. Evapotranspiration and energy balance of
Brazilian savannas with contrasting tree density. Agricultural and Forest
Meteorology,v. 149, p. 1365-1376, 2009.
http://dx.doi.org/10.1016/j.agrformet.2009.03.006
https://doi.org/http://dx.doi.org/10.101...
; Zanchi et al.,
2009ZANCHI, F. B.; WATERLOO, M. J.; ROCHA, H. R.; AGUIAR, L. J. G.; RANDOW,
C. Von; KRUIJT, B. et al. Estimativa do Índice de Área Foliar (IAF) e Biomassa em
pastagem no estado de Rondônia, Brasil. Acta Amazônica, Manaus, v. 39, n. 2, p.
335-348, 2009. http://dx.doi.org/10.1590/S0044-59672009000200012
https://doi.org/http://dx.doi.org/10.159...
). Segundo Giambelluca et al.
(2009GIAMBELLUCA, T. W.; SCHOLZ, F. G.; BUCCI, S. J.; MEINZER, F. C.;
GOLDSTEIN, G.; HOFFMANN, W. A. et al. Evapotranspiration and energy balance of
Brazilian savannas with contrasting tree density. Agricultural and Forest
Meteorology,v. 149, p. 1365-1376, 2009.
http://dx.doi.org/10.1016/j.agrformet.2009.03.006
https://doi.org/http://dx.doi.org/10.101...
), um menor IAF reduz também a evapotranspiração e o fluxo de calor latente
bem como, a partição de energia de um ecossistema.
Segundo Gomes (1990GOMES, F. P. Curso de estatística experimental. 12. ed. Piracicaba:
Nobel, 1990. 467p.), a variabilidade de uma
propriedade estudada do solo ou da vegetação e a precisão do experimento pode ser
avaliada pelo coeficiente de variação (CV). Os maiores valores do CV foram encontrados
nas áreas de campo alto (31%) e campo baixo (28%), classificados como muito alto e alto,
respectivamente. Provavelmente houve maior variabilidade devido à característica da
vegetação dos locais, com poucas ou muito raras árvores presentes. De acordo com Gomes e Garcia (2002GOMES, F. P.; GARCIA, C. H. Estatística aplicada a experimentos
agronômicos e florestais. Piracicaba: FAEALQ, 2002. 305p.), os valores elevados do CV
podem ser considerados como os primeiros indicadores da existência de heterogeneidade
nos dados. Nestes ecossistemas estudados, certa heterogeneidade nos valores do IAF
provavelmente é também imposta pela natureza dos fatores ambientais responsáveis pela
composição florística do dossel, principalmente relacionados com o suprimento de água e
fertilidade do solo (Giambelluca et al., 2009GIAMBELLUCA, T. W.; SCHOLZ, F. G.; BUCCI, S. J.; MEINZER, F. C.;
GOLDSTEIN, G.; HOFFMANN, W. A. et al. Evapotranspiration and energy balance of
Brazilian savannas with contrasting tree density. Agricultural and Forest
Meteorology,v. 149, p. 1365-1376, 2009.
http://dx.doi.org/10.1016/j.agrformet.2009.03.006
https://doi.org/http://dx.doi.org/10.101...
). O
CV na floresta de transição (17%) foi classificado como médio e esta relativa
homogeneidade nos dados refletiria uma estrutura vegetal mais definida. Segundo Gomes e Garcia (2002GOMES, F. P.; GARCIA, C. H. Estatística aplicada a experimentos
agronômicos e florestais. Piracicaba: FAEALQ, 2002. 305p.) CV menor que 10% indicaria
maior homogeneidade nos dados.
A partir da análise dos valores mínimos, máximos e da média de um atributo é possível
perceber se existe uma grande variação nos dados. Porém, somente o conhecimento dessa
amplitude não é suficiente para identificar os locais onde se encontram os altos teores
e os locais onde se encontram os teores mais baixos de uma determinada variável (Ferraz et al., 2012FERRAZ, G. E. S.; SILVA, F. M.; CARVALHO, L. C. C.; ALVES, M. C.;
FRANCO, B. C. Variabilidade espacial e temporal do fósforo, potássio e da
produtividade de uma lavoura cafeeira. Engenharia Agrícola, v. 32, n. 1, p. 140-150,
2012. http://dx.doi.org/10.1590/S0100-69162012000100015
https://doi.org/http://dx.doi.org/10.159...
). Os valores de mínimos e
máximos são mais elevados na floresta de transição e menores no campo baixo,
demonstrando que os valores do IAF no campo baixo são mais próximos da média.
A utilização da técnica geoestatística para a análise da estrutura espacial dos dados e a verificação da ocorrência de dependência espacial entre as amostras foi feita pelo método do semivariograma experimental. Estes semivariogramas (Figura 2) foram ajustados no modelo esférico, para fornecer os parâmetros do semivariograma com seus respectivos valores (Tabela 2). Este modelo foi o que apresentou o melhor ajuste à estrutura da distribuição dos valores de IAF.
Webster e Oliver (1990WEBSTER, R.; OLIVIER, M. A. Statistical methods in soil and land resource survey. Oxford: Oxford University Press, 1990. 316p.) reporta que o modelo esférico é o mais frequentemente utilizado na geoestatística. Para esse modelo de semivariograma o efeito pepita (C0) apresentou valores baixos em todas as áreas (C0 = 0,06 para campo baixo e campo alto e C0 = 0,13 para floresta), ele é um importante parâmetro do semivariograma, frequentemente causados por erros de medição ou variações que não podem ser detectadas pela amostragem.
Vieira et al. (1997VIEIRA, S. R.; NIELSEN, D. R.; BIGGAR, J. W.; TILLOTSON, P. M. The
Scaling of semivariograms and the kriging estimation. Revista Brasileira de Ciência
do Solo, Viçosa, v. 21, p. 525-533, 1997.
http://dx.doi.org/10.1590/S0100-06831997000400001
https://doi.org/http://dx.doi.org/10.159...
) ressaltam que quanto menor
for o efeito pepita, maior será a semelhança entre os valores vizinhos e a continuidade
do fenômeno, e menor será a variância na estimativa pela krigagem. Portanto, o efeito
pepita tem influência direta na determinação do grau de dependência espacial (Lima et al., 2006LIMA, J. S. S. et al. Estudo da viabilidade de métodos geoestatístico na
mensuração da variabilidade espacial da dureza da madeira de Paraju (Manilkara sp.).
Revista Árvore, v. 30, n. 4, p. 651-657, 2006.
http://dx.doi.org/10.1590/S0100-67622006000400019
https://doi.org/http://dx.doi.org/10.159...
). Assim, a variável apresentará
forte dependência espacial quando o efeito pepita for menor ou igual a 25% do valor do
patamar.
Os valores do patamar (C0 + C) e aproximadamente igual à variância dos dados, apresentaram uma pequena diferença entre campo alto e baixo, ambos com valores baixos, e o maior valor encontrado na floresta de transição (Tabela 2).
A análise geoestatística considera a dependência espacial entre as amostras e as suas
posições na área de estudo (Vieira, 2000VIEIRA, S. R. Geoestatística em estudos de variabilidade espacial do
solo. In: NOVAIS, R. F.; ALVAREZ, V. H.; SCHAEFER, C. E. G. R. (Eds). Tópicos em
ciência do solo. Viçosa: Sociedade Brasileira de Ciência do Solo, 2000. v. 1, p.
1-53.). Todas
as áreas do presente estudo apresentaram dependência espacial nos valores de IAF. Pela
classificação de Cambardella et al. (1994CAMBARDELLA, C. A. et al. Field-scale variability of soil properties in
Central Iowa Soil. Soil Science Society of America Journal, Madison, v. 58, n. 5, p.
1501-1511, 1994.
http://dx.doi.org/10.2136/sssaj1994.03615995005800050033x
https://doi.org/http://dx.doi.org/10.213...
), o IAF
do campo alto indicou um grau de dependência espacial fraco (77%), diferenciando-se do
campo baixo e da floresta de transição que apresentaram moderada dependência espacial de
66% e 75% nos pontos amostrados, respectivamente. De acordo com Braun e Andrade (1959BRAUN, E. H. G.; ANDRADE, R. J. R. Estudo agrogeológico dos campos
Puciari-Humaitá - Estado do Amazonas e Território Federal de Rondônia. Revista
Brasileira de Geografia, v. 21, p. 3-57, 1959.), estas composições gramíneo lenhosas são
decorrentes de formação edáfica, ou seja, os solos tem uma barreira plíntica muito
próxima a superfície e esta barreira vai se aprofundando em direção as áreas de
florestas. Assim as formações dos tipos florísticos dependem muito do local onde as
mesmas estão se desenvolvendo e assim pode gerar esta fraca ou forte dependência
espacial nas amostragens.
Mesmo porque o alcance (A0) da dependência espacial indica a distância (m) limite em que
os pontos estão correlacionados ente si. O alcance é uma medida importante no
planejamento e na avaliação experimental, já que pode auxiliar na definição do melhor
procedimento de amostragem (McBratney e Webster,
1983MCBRATNEY, A. B.; WEBSTER, R. How many observations are needed for
regional estimation of soil properties. Soil Science, v. 135, p. 177-183, 1983. ). Os pontos localizados em uma área cujo raio seja o alcance, são mais
semelhantes entre si do que os separados por distâncias maiores (Lima et al., 2006LIMA, J. S. S. et al. Estudo da viabilidade de métodos geoestatístico na
mensuração da variabilidade espacial da dureza da madeira de Paraju (Manilkara sp.).
Revista Árvore, v. 30, n. 4, p. 651-657, 2006.
http://dx.doi.org/10.1590/S0100-67622006000400019
https://doi.org/http://dx.doi.org/10.159...
). No estudo atual, em nenhuma das áreas o valor de
alcance da dependência espacial ultrapassa os limites da área estabelecida para a coleta
dos dados: o IAF no campo alto apresentou maior valor 30,5 m, seguido pelo campo baixo
(22,9 m) e floresta de transição (11,3 m)..
Semivariogramas experimental e mapas de krigagem do índice de área foliar (IAF) para: a) campo baixo; b) campo alto e c): floresta de transição. Sendo, a sub legenda interna (canto esquerdo inferior) dos gráficos "Esf (C0; C + C0; a; R2)" como, Esf = modelo esférico; C0 = efeito pepita; C + C0 = patamar; a = alcance; R2 = coeficiente de regressão
Os parâmetros dos semivariogramas foram utilizados para estimar valores em locais não amostrados por meio da interpolação por krigagem para observar a distribuição espacial do IAF na área estudada. Os mapas obtidos pela interpolação por krigagem (Figura 2) caracterizam a distribuição espacial dos valores de índice de área foliar para cada área estudada, permitindo identificar regiões onde se encontram os pontos de menores e maiores valores do IAF e, portanto, entender a distribuição espacial desses valores na área de floresta de transição e nos campos 'alto' e 'baixo'.
A floresta de transição apresentou uma estrutura espacial do IAF definida, pouco heterogênea, com ocorrência dos maiores valores do IAF no canto inferior direito do mapa. No centro do mapa são definidas pequenas manchas com valores altos e baixos do IAF; regiões com valores baixos identificados no mapa são decorrente de pequenas clareiras existentes no dossel vegetal. No campo alto a estrutura espacial foi mais definida, porem heterogênea, com valores de IAF mais altos na parte superior do mapa e pequenas manchas com valores baixos nas extremidades do mapa. O mapa do campo baixo apresenta uma estrutura espacial com pequenas manchas de valores altos e baixos do IAF, distribuídos de forma homogênea na área (Figura 2).
Para o campo baixo e floresta observa-se maior a incidência de manchas, indicativas de maior variabilidade dos dados; porém, a variabilidade entre os dados foram muito menores do que aquela apresentada no campo alto. Assim, o padrão local deve ser qualificado em cada ecossistema estudado.
4. Conclusão
A distribuição espacial dos valores de IAF na malha amostrada, representada nos mapas de isolinhas mostra que o campo baixo teve uma distribuição espacial com várias manchas de valores altos e baixos distribuídos na malha, enquanto que o campo alto teve uma distribuição com os valores altos concentrados na parte superior do mapa e valores baixos na parte inferior, já a floresta apresentou uma estrutura espacial mais definida, com os valores do IAF distribuídos de forma homogênea na malha amostrada.
Por outro lado, os semivariogramas permitiram também caracterizar a variabilidade espacial dos valores de IAF nas áreas amostradas, mostrando a importância da variabilidade e similaridade de cada ecossistema.
A geoestatística foi uma ferramenta eficaz para a compreensão da estrutura da variabilidade espacial do IAF, o que facilita a caracterização de padrões para cada ecossistema estudado.
5. Agradecimentos
À Universidade Federal do Amazonas (UFAM/IEAA) e a Fundação de Amparo à Pesquisa no Amazonas (FAPEAM) pelo apoio e fomento da pesquisa, respectivamente. Ao INPA e LBA pela disponibilidade dos equipamentos, dos sítios experimentais para pesquisa e financiamento.
- AMTHOR, J. S. Scaling CO2-photosynthesis relationships from the leaf to the canopy. Photosynthesis, v. 39, p. 321-350, 1994. http://dx.doi.org/10.1007/BF00014590
» https://doi.org/http://dx.doi.org/10.1007/BF00014590 - ARAUJO, A. C.; LONGHI-WAGNER, H. M. Levantamento taxonômico de Cyperus L. 1. subg. Anosporum (Nees) Clarke (Cyperaceae-Cypereae) no Rio Grande do Sul, Brasil. Acta Botanica Brasilica, Feira de Santana, v. 10, n. 1, 1996. http://dx.doi.org/10.1590/S0102-33061996000100012
» https://doi.org/http://dx.doi.org/10.1590/S0102-33061996000100012 - BAMBI, P. Variação sazonal do índice da área foliar e sua contribuição na composição da serapilheira e ciclagem de nutrientes na floresta de transição no norte do Mato Grosso. 2007. Dissertação (Mestrado em Física e Meio Ambiente) - Instituto de Ciências Extas e da Terra, Universidade Federal de Mato Grosso, Cuiabá, 2007.
- BRÉDA, N. J. J. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, Oxford, v. 54, n. 392, p. 2043-2417, 2003. http://dx.doi.org/10.1093/jxb/erg263
» https://doi.org/http://dx.doi.org/10.1093/jxb/erg263 - BRAUN, E. H. G.; ANDRADE, R. J. R. Estudo agrogeológico dos campos Puciari-Humaitá - Estado do Amazonas e Território Federal de Rondônia. Revista Brasileira de Geografia, v. 21, p. 3-57, 1959.
- CAMBARDELLA, C. A. et al. Field-scale variability of soil properties in Central Iowa Soil. Soil Science Society of America Journal, Madison, v. 58, n. 5, p. 1501-1511, 1994. http://dx.doi.org/10.2136/sssaj1994.03615995005800050033x
» https://doi.org/http://dx.doi.org/10.2136/sssaj1994.03615995005800050033x - CARREIRE, M. B. F. Estimativas de biomassa, do índice de área foliar e aplicação do sensoriamento remoto no monitoramento no estudo da cobertura vegetal em áreas de florestas ombrófila aberta e densa na Amazônia. 2009. Tese (Doutorado) - INPA/UFAM, Manaus, 2009.
- CORREIA, F. W. S. Impacto das modificações da cobertura vegetal no balanço de água na Amazônia: um estudo com modelo de circulação geral da atmosfera (MCGA). Revista Brasileira de Meteorologia, v. 21, n. 3a, p. 154, 2006.
- CUTINI, A.; MATTEUCCI, G.; MUGNOZZZA, G. S. Estimation of leaf area index with the Li-Cor 2000 in deciduous forests. Forest Ecology and Management, Arezzo, v. 105, p. 55-65, 1998. http://dx.doi.org/10.1016/S0378-1127(97)00269-7
» https://doi.org/http://dx.doi.org/10.1016/S0378-1127(97)00269-7 - CHASON, J. W.; BALDOCCHI, D. D.; HUSTON, M. A comparison of direct and indirect methods for estimating forest canopy leaf area. Agricultural and Forest Meteorology, Amsterdam, v. 107, p. 107-128, 1991. http://dx.doi.org/10.1016/0168-1923(91)90081-Z
» https://doi.org/http://dx.doi.org/10.1016/0168-1923(91)90081-Z - DAUGHTRY, C. S. T. Direct measurement of canopy structure. In: GOEL, N. S.; NORMAN, J. M. (Eds.) Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions. London: Harwood, 1990. cap. 5, p. 45-60.
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Sistema brasileiro de classificação de solos. Rio de Janeiro, 1999. 412 p. (EMBRAPA SOLOS/ SPI).
- FERRAZ, G. E. S.; SILVA, F. M.; CARVALHO, L. C. C.; ALVES, M. C.; FRANCO, B. C. Variabilidade espacial e temporal do fósforo, potássio e da produtividade de uma lavoura cafeeira. Engenharia Agrícola, v. 32, n. 1, p. 140-150, 2012. http://dx.doi.org/10.1590/S0100-69162012000100015
» https://doi.org/http://dx.doi.org/10.1590/S0100-69162012000100015 - GAMMA DESIGN SOFTWARE. Geoestatistic for the envorinmental sciences (version 7.0 for windows). Michigan, 2004. 1 CD.
- GIAMBELLUCA, T. W.; SCHOLZ, F. G.; BUCCI, S. J.; MEINZER, F. C.; GOLDSTEIN, G.; HOFFMANN, W. A. et al. Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. Agricultural and Forest Meteorology,v. 149, p. 1365-1376, 2009. http://dx.doi.org/10.1016/j.agrformet.2009.03.006
» https://doi.org/http://dx.doi.org/10.1016/j.agrformet.2009.03.006 - GOLDEN SOFTWARE INC. SURFER for Windows: release 7.0: contouring and 3D surface mapping for scientist's engineers, user's guide. New York, 1999. 619p.
- GOMES, F. P. Curso de estatística experimental. 12. ed. Piracicaba: Nobel, 1990. 467p.
- GOMES, F. P.; GARCIA, C. H. Estatística aplicada a experimentos agronômicos e florestais. Piracicaba: FAEALQ, 2002. 305p.
- GOTTSBERGER, G.; MORAWETZ, W. Floristic, structural and phytogeographical analysis of the savannas of Humaitá (Amazonas). Flora, v. 178, p. 41-71, 1986.
- GRAÇA, P. M. L. A. Monitoramento e caracterização de áreas sub à exploração florestal na Amazônia por técnicas de detecção de mudanças. 2004. Tese (Doutorado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2004.
- INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Diagnóstico ambiental da amazônia legal. Rio de Janeiro, 1997. 1 CD-ROM.
- ISAAKS, E. H.; SRIVASTAVA, R. M. An introduction to applied geoestatistics. New York: Oxiford University Press, 1989. 561p.
- JENNINGS, S. B.; BROWN, N. D.; SHEIL, D. Assessing forest canopies and understory illumination: Canopy closure, canopy cover and other measures. Forestry, v. 72, p. 59-73, 1999. http://dx.dio.org/10.1093/forestry/72.1.59
» https://doi.org/http://dx.dio.org/10.1093/forestry/72.1.59 - KORHONEN, L.; KORHONEN, K. T.; RAUTIAINEN, M.; STENBERG, P. Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fennica, v. 40, n. 4, p. 577-588, 2006.
- KRIGE, D. G. A statistical approach to some basic mine valuation problems on the Witwatersrand. Johanesburg Chemistry Metallurgy Mining Society South Africa, v. 52, p. 151-163, 1951.
- LIMA, J. S. S. et al. Estudo da viabilidade de métodos geoestatístico na mensuração da variabilidade espacial da dureza da madeira de Paraju (Manilkara sp.). Revista Árvore, v. 30, n. 4, p. 651-657, 2006. http://dx.doi.org/10.1590/S0100-67622006000400019
» https://doi.org/http://dx.doi.org/10.1590/S0100-67622006000400019 - LUIZÃO F. J.; LUIZÃO, R. C. C.; PROCTOR, J. Soil acidity and nutrient deficiency in central Amazonian heath forest soils. Plant Ecology, v. 192, n. 2, p. 209-224, 2007. http://dx.doi.org/10.1007/s11258-007-9317-6
» https://doi.org/http://dx.doi.org/10.1007/s11258-007-9317-6 - MAGNUSSON, W. E.; LIMA, A. P.; LUIZÃO, R. et al. RAPELD: a modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotropica, v. 5, n. 2, 2005. http://dx.doi.org/10.1590/S1676-06032005000300002
» https://doi.org/http://dx.doi.org/10.1590/S1676-06032005000300002 - MONTENEGRO, A. A. A.; MONTENEGRO, S. M. G. L. Variabilidade espacial de classes de textura, salinidade e condutividade hidráulica de solos em planície aluvial. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 10, n. 1, p. 30-37, 2006. http://dx.doi.org/10.1590/S1415-43662006000100005
» https://doi.org/http://dx.doi.org/10.1590/S1415-43662006000100005 - MARTINS, G. C. et al. Campos nativos e matas adjacentes da região de Humaitá (AM): atributos diferenciais dos solos. Ciência e Agrotecnologia, Lavras, v. 30, n. 2, Apr. 2006. http://dx.doi.org/10.1590/S1413-70542006000200005
» https://doi.org/http://dx.doi.org/10.1590/S1413-70542006000200005 - MCBRATNEY, A. B.; WEBSTER, R. How many observations are needed for regional estimation of soil properties. Soil Science, v. 135, p. 177-183, 1983.
- MCWILLIAM, A.-L. C.; ROBERTS, J. M.; CABRAL, O. M. R.; LEITAO, M. V. B. R.; COSTA, A. C. L.; MAITELLI, G. T. et al. Leaf area index and above-ground biomass of terra firme rain forest and adjacent clearings in Amazonia. Functional Ecology, v. 7, p. 310-317, 1993. http://www.jstor.org/stable/2390210
» https://doi.org/http://www.jstor.org/stable/2390210 - PRANCE, G. T. Notes on the vegetation of Amazonia iii. The terminology of Amazonian forest types subject to inundation. Brittonia, v. 31, n. 1, p. 26-38, 1979.
- SOARES-FILHO, B. S.; NEPSTAD, L. M. et al. Modelling conservation in the Amazon basin. Nature, v. 440, n. 7083, p. 520-523, 2006. http://dx.doi.org/10.1038/nature04389
» https://doi.org/http://dx.doi.org/10.1038/nature04389 - SOLBRIG, O. T. The diversity of the savanna ecosystem. In: SOLBRIG, O. T.; MEDINA, E.; SILVA, J. F. (eds.). Biodiversity and savanna ecosystem processes: a global perspective. Berlin: Springer-Verlag, 1996. p. 1-27.
- VIEIRA, S. R. Geoestatística em estudos de variabilidade espacial do solo. In: NOVAIS, R. F.; ALVAREZ, V. H.; SCHAEFER, C. E. G. R. (Eds). Tópicos em ciência do solo. Viçosa: Sociedade Brasileira de Ciência do Solo, 2000. v. 1, p. 1-53.
- VIEIRA, S. R.; NIELSEN, D. R.; BIGGAR, J. W.; TILLOTSON, P. M. The Scaling of semivariograms and the kriging estimation. Revista Brasileira de Ciência do Solo, Viçosa, v. 21, p. 525-533, 1997. http://dx.doi.org/10.1590/S0100-06831997000400001
» https://doi.org/http://dx.doi.org/10.1590/S0100-06831997000400001 - WATSON, D. J. Comparative physiological studies on growth of fields crops. I Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany, London, v. 11, p. 41-76, 1947. http://www.jstor.org/stable/42907002
- WEBSTER, R.; OLIVIER, M. A. Statistical methods in soil and land resource survey. Oxford: Oxford University Press, 1990. 316p.
- WEISS, M.; BARET, F.; SMITH, G. J.; JONCKHEERE, I.; COPPIN, P. Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Elservier Science Publishers. Agricultural and Forest Meteorology,v. 121, p. 37-53, 2003.
- XAVIER, A. C.; SOARES, J. V.; ALMEIDA, A. C. Variação do índice de área foliar em clones de eucalipto ao longo de seu ciclo de crescimento. Revista Árvore,Viçosa, v. 26, n.4, p. 421-427, 2002. http://dx.doi.org/10.1590/S0100-67622002000400004
» https://doi.org/http://dx.doi.org/10.1590/S0100-67622002000400004 - ZANCHI, F. B.; WATERLOO, M. J.; ROCHA, H. R.; AGUIAR, L. J. G.; RANDOW, C. Von; KRUIJT, B. et al. Estimativa do Índice de Área Foliar (IAF) e Biomassa em pastagem no estado de Rondônia, Brasil. Acta Amazônica, Manaus, v. 39, n. 2, p. 335-348, 2009. http://dx.doi.org/10.1590/S0044-59672009000200012
» https://doi.org/http://dx.doi.org/10.1590/S0044-59672009000200012 - ZANCHI, F. B.; MEESTERS, A.; WATERLOO, M.; KRUIJT, B. LUIZÃO, F. J.; DOLMAN, A. J. Soil CO2 exchange in seven pristine Amazonian rain forest sites in relation to soil temperature. Agricultural and Forest Meteorology,v. 192/193, p. 96-107, 2014.
Datas de Publicação
-
Publicação nesta coleção
Jun 2015
Histórico
-
Recebido
23 Ago 2014 -
Aceito
19 Jan 2015