Acessibilidade / Reportar erro

Meta-analysis of melatonin treatment and porcine somatic cell nuclear transfer embryo development

Abstract

Porcine somatic cell nuclear transfer (SCNT) plays an important role in many areas of research. However, the low efficiency of SCNT in porcine embryos limits its applications. Porcine embryos contain high concentrations of lipid, which makes them vulnerable to oxidative stress. Some studies have used melatonin to reduce reactive oxygen species damage. At present there are many reports concerning the effect of exogenous melatonin on porcine SCNT. Some studies suggest that the addition of melatonin can increase the number of blastocyst cells, while others indicate that melatonin can reduce the number of blastocyst cells. Therefore, a meta-analysis was carried out to resolve the contradiction. In this study, a total of 63 articles from the past 30 years were analyzed, and six papers were finally selected. Through the analysis, it was found that the blastocyst rate was increased by adding exogenous melatonin. Melatonin had no effect on cleavage rate or the number of blastocyst cells, but did decrease the number of apoptotic cells. This result is crucial for future research on embryo implantation.

Keywords:
meta-analysis; melatonin; SCNT; porcine

Porcine somatic cell nuclear transfer (SCNT) plays an important role in many areas of scientific research. First of all, pigs can be one potential choice of candidates for human organ transplantation after gene modification in the future, since organs with low rejection rates can be obtained through SCNT after gene editing (Rao et al., 2016Rao S, Fujimura T, Matsunari H, Sakuma T, Nakano K, Watanabe M, Asano Y, Kitagawa E, Yamamoto T, Nagashima H. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev. 2016;83(1):61-70. http://dx.doi.org/10.1002/mrd.22591. PMid:26488621.
http://dx.doi.org/10.1002/mrd.22591...
). Second, porcine SCNT technology is also used to study the swine totipotency of cells (Xu et al., 2020Xu W, Li H, Zhang M, Shi J, Wang Z. Locus-specific analysis of DNA methylation patterns in cloned and in vitro fertilized porcine embryos. J Reprod Dev. 2020;66(6):505-14. http://dx.doi.org/10.1262/jrd.2019-076. PMid:32908081.
http://dx.doi.org/10.1262/jrd.2019-076...
; Zhou et al., 2020Zhou J, Zhao CC, Wu X, Shi JS, Zhou R, Wu ZF, Li ZC. Transcriptome heterogeneity of porcine ear fibroblast and its potential influence on embryo development in nuclear transplantation. Yi Chuan. 2020;42(9):898-915. http://dx.doi.org/10.16288/j.yczz.20-190. PMid:32952124.
http://dx.doi.org/10.16288/j.yczz.20-190...
). In swine embryo early development, the totipotency of cells is limited to the blastomeres. With further development of embryos, totipotency is gradually lost, and cells are differentiated into different types of pluripotent stem cells. Third, porcine SCNT can be used to establish disease models (Xie et al., 2018Xie Z, Pang D, Yuan H, Jiao H, Lu C, Wang K, Yang Q, Li M, Chen X, Yu T, Chen X, Dai Z, Peng Y, Tang X, Li Z, Wang T, Guo H, Li L, Tu C, Lai L, Ouyang H. Genetically modified pigs are protected from classical swine fever virus. PLoS Pathog. 2018;14(12):e1007193. http://dx.doi.org/10.1371/journal.ppat.1007193. PMid:30543715.
http://dx.doi.org/10.1371/journal.ppat.1...
). Fourth, it is a good sample in research on nuclear reprogramming after SCNT (Sper et al., 2017Sper RB, Koh S, Zhang X, Simpson S, Collins B, Sommer J, Petters RM, Caballero I, Platt JL, Piedrahita JA. Generation of a stable transgenic swine model expressing a porcine histone 2B-eGFP fusion protein for cell tracking and chromosome dynamics studies. PLoS One. 2017;12(1):e0169242. http://dx.doi.org/10.1371/journal.pone.0169242. PMid:28081156.
http://dx.doi.org/10.1371/journal.pone.0...
). However, the efficiency of SCNT in porcine animals is low, like other mammalian SCNT (Song et al., 2014Song Y, Hai T, Wang Y, Guo R, Li W, Wang L, Zhou Q. Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor--m-carboxycinnamic acid bishydroxamide (CBHA). Protein Cell. 2014;5(5):382-93. http://dx.doi.org/10.1007/s13238-014-0034-3. PMid:24627095.
http://dx.doi.org/10.1007/s13238-014-003...
). Specially, in the embryo transfer step, 200–300 SCNT embryo need to be transferred in one surrogate sow (Huang et al., 2014Huang Y, Xie W, Yao C, Han Y, Tan G, Zhou Y, Zhu J, Pang D, Li Z, Tang X. Pluripotent-related gene expression analyses in single porcine recloned embryo. Biotechnol Lett. 2014;36(6):1161-9. http://dx.doi.org/10.1007/s10529-014-1467-8. PMid:24563300.
http://dx.doi.org/10.1007/s10529-014-146...
). The application of SCNT is thus limited.

Porcine embryos contain high concentrations of lipids that provide energy for early embryonic development. However, this biological characteristic also makes the embryo vulnerable to the harmful effects of oxidative stress (Sturmey et al., 2009Sturmey R, Reis A, Leese H J, McEvoy T. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim. 2009;44(Suppl 3):50-8. http://dx.doi.org/10.1111/j.1439-0531.2009.01402.x.
http://dx.doi.org/10.1111/j.1439-0531.20...
). In the process of in vitro culture, embryos face higher oxidative stress than embryos in vivo. In vivo embryos produce less reactive oxygen species (ROS) (Choi et al., 2008Choi J, Park S-M, Lee E, Kim J-H, Jeong YI, Lee J-Y, Park S-W, Kim HS, Hossein M, Jeong Y-W, Kim S, Hyun SH, Hwang WS. Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol Reprod Dev. 2008;75(7):1127-35. http://dx.doi.org/10.1002/mrd.20861. PMid:18324672.
http://dx.doi.org/10.1002/mrd.20861...
). With in vitro culture, there will be excessive ROS that react with lipids, leading to the destruction of cell membrane integrity, changes in the structure and function of proteins, and damage to nucleic acids (Tamura et al., 2012Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, Tamura I, Maekawa R, Aasada H, Yamagata Y, Sugino N. The role of melatonin as an antioxidant in the follicle. J Ovarian Res. 2012;5(1):5. http://dx.doi.org/10.1186/1757-2215-5-5. PMid:22277103.
http://dx.doi.org/10.1186/1757-2215-5-5...
). Reducing ROS can improve embryonic development (Khalil et al., 2013Khalil WA, Marei WFA, Khalid M. Protective effects of antioxidants on linoleic acid–treated bovine oocytes during maturation and subsequent embryo development. Theriogenology. 2013;80(2):161-8. http://dx.doi.org/10.1016/j.theriogenology.2013.04.008. PMid:23683689.
http://dx.doi.org/10.1016/j.theriogenolo...
). Thus, melatonin has been used to reduce ROS damage in SCNT embryos (Qu et al., 2020aQu J, Sun M, Wang X, Song X, He H, Huan Y. Melatonin enhances the development of porcine cloned embryos by improving DNA methylation reprogramming. Cell Reprogram. 2020a;22(3):156-66. http://dx.doi.org/10.1089/cell.2019.0103. PMid:32207988.
http://dx.doi.org/10.1089/cell.2019.0103...
). There are many reports concerning the effect of exogenous melatonin on SCNT in porcine species (Nakano et al., 2012Nakano M, Kato Y, Tsunoda Y. Effect of melatonin treatment on the developmental potential of parthenogenetic and somatic cell nuclear-transferred porcine oocytes in vitro. Zygote. 2012;20(2):199-207. http://dx.doi.org/10.1017/S0967199411000190. PMid:21729374.
http://dx.doi.org/10.1017/S0967199411000...
; Liang et al., 2017Liang S, Jin YX, Yuan B, Zhang JB, Kim NH. Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress. Sci Rep. 2017;7(1):11114. http://dx.doi.org/10.1038/s41598-017-11161-9. PMid:28894150.
http://dx.doi.org/10.1038/s41598-017-111...
), Some studies suggest that melatonin can increase the number of blastocyst cells (Liang et al., 2017Liang S, Jin YX, Yuan B, Zhang JB, Kim NH. Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress. Sci Rep. 2017;7(1):11114. http://dx.doi.org/10.1038/s41598-017-11161-9. PMid:28894150.
http://dx.doi.org/10.1038/s41598-017-111...
; Qu et al., 2020aQu J, Sun M, Wang X, Song X, He H, Huan Y. Melatonin enhances the development of porcine cloned embryos by improving DNA methylation reprogramming. Cell Reprogram. 2020a;22(3):156-66. http://dx.doi.org/10.1089/cell.2019.0103. PMid:32207988.
http://dx.doi.org/10.1089/cell.2019.0103...
), while other studies have suggested that the number of cells has been reduced (Nakano et al., 2012Nakano M, Kato Y, Tsunoda Y. Effect of melatonin treatment on the developmental potential of parthenogenetic and somatic cell nuclear-transferred porcine oocytes in vitro. Zygote. 2012;20(2):199-207. http://dx.doi.org/10.1017/S0967199411000190. PMid:21729374.
http://dx.doi.org/10.1017/S0967199411000...
). Therefore, we conducted a meta-analysis to resolve this contradiction.

Methods

Database search strategy and data extraction

A search was conducted using PubMed, Ovid, ScienceDirect, and ProQuest for studies from January 1, 1990 to September 2020. In all, 63 articles were found with the keywords porcine and (SCNT or clone or cloned) and melatonin. The first two authors searched independently (Table 1, Figure 1). In case of disputes, the third author decided to include or exclude the articles. In this step, statement of the blastocyst rate was a necessary condition. Only those articles that mentioned melatonin treatment in combination with a control group were included.

Table 1
Inclusion and exclusion criteria.
Figure 1
Summary of study selection.

Data analysis

The data for blastocyst rate, cleavage rate, blastocyst cell number, and apoptotic cell number in each paper were extracted and counted one by one. The blastocyst rate and cleavage rate were processed as dichotomous variables. The number of blastocyst cells and apoptotic cells were considered as continuous variables. Those studies with heterogeneity were assumed as random effects models. A fixed effect model was assumed for studies without heterogeneity. Data analyses were conducted with Review Manager (Version 5.4, Copenhagen: Nordic Cochrane Centre, Cochrane Collaboration). Publication bias was observed by using a funnel plot. If the data were evenly distributed, this indicated no bias.

Results

Six studies were included in the analysis (Table 2) (Qu et al., 2020aQu J, Sun M, Wang X, Song X, He H, Huan Y. Melatonin enhances the development of porcine cloned embryos by improving DNA methylation reprogramming. Cell Reprogram. 2020a;22(3):156-66. http://dx.doi.org/10.1089/cell.2019.0103. PMid:32207988.
http://dx.doi.org/10.1089/cell.2019.0103...
; Lee et al., 2018Lee S, Jin JX, Taweechaipaisankul A, Kim GA, Lee BC. Synergistic effects of resveratrol and melatonin on in vitro maturation of porcine oocytes and subsequent embryo development. Theriogenology. 2018;114:191-8. http://dx.doi.org/10.1016/j.theriogenology.2018.03.040. PMid:29653386.
http://dx.doi.org/10.1016/j.theriogenolo...
; Liang et al., 2017Liang S, Jin YX, Yuan B, Zhang JB, Kim NH. Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress. Sci Rep. 2017;7(1):11114. http://dx.doi.org/10.1038/s41598-017-11161-9. PMid:28894150.
http://dx.doi.org/10.1038/s41598-017-111...
; Pang et al., 2013Pang YW, An L, Wang P, Yu Y, Yin QD, Wang XH, Xin-Zhang, Qian-Zhang, Yang ML, Min-Guo, Wu ZH, Tian JH. Treatment of porcine donor cells and reconstructed embryos with the antioxidant melatonin enhances cloning efficiency. J Pineal Res. 2013;54(4):389-97. http://dx.doi.org/10.1111/jpi.12024. PMid:24325731.
http://dx.doi.org/10.1111/jpi.12024...
; Nakano et al., 2012Nakano M, Kato Y, Tsunoda Y. Effect of melatonin treatment on the developmental potential of parthenogenetic and somatic cell nuclear-transferred porcine oocytes in vitro. Zygote. 2012;20(2):199-207. http://dx.doi.org/10.1017/S0967199411000190. PMid:21729374.
http://dx.doi.org/10.1017/S0967199411000...
; Choi et al., 2008Choi J, Park S-M, Lee E, Kim J-H, Jeong YI, Lee J-Y, Park S-W, Kim HS, Hossein M, Jeong Y-W, Kim S, Hyun SH, Hwang WS. Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol Reprod Dev. 2008;75(7):1127-35. http://dx.doi.org/10.1002/mrd.20861. PMid:18324672.
http://dx.doi.org/10.1002/mrd.20861...
). We found that exogenous melatonin increased the blastocyst rate (95% CI, 1.15~1.42; p = 0.58, I2 = 0%, fixed effect, Figure 2A). The Funnel plot (Figure 2B) indicated no bias. Melatonin had no effect on cleavage rate (95% CI, 1.00~1.25; p = 0.54, I2 = 0%, fixed effect, Figure 2C). The number of blastocyst cells was not affected (95% CI, -0.21~2.67; p < 0.0001, I2 = 98%, random effect, Figure 3A), but the number of apoptotic cells was decreased (95% CI, -2.38–1.17; p = 0.1, I2 = 62%, random effect, Figure 3B).

Table 2
Characteristics of studies included.
Figure 2
Forest plot of melatonin treatment effects on (A) porcine blastocyst rate and (B) cleavage rate, CI = 95%. (C) funnel plot of melatonin treatment effects on porcine blastocyst rate. “Liang 10 ^ - 6” indicates that the additive amount is 10 ^ - 6 in Liang's study; “Nakano 144h-a” refers to group A with 144-hour culture time in Nakano's study; “Pang donor 10 ^ - 6” refers to the treatment of the donor in Pang's study with an additive amount of 10 ^ - 6; and “all” refers to the treatment of donor and embryo in Pang's study.
Figure 3
Forest plot of melatonin treatment effects on (A) porcine blastocyst cell number and (B) blastocyst apoptotic cell number. CI = 95%.

Discussion

Melatonin is an endogenous indole hormone that is composed of a lipophilic indole heterocycle and a hydrophilic side chain. The side chain contains carbon unsaturated bonds. Therefore, melatonin has hydrophilic, lipophilic, and reductive properties (antioxidative attributes) (Hu et al., 2020Hu KL, Ye X, Wang S, Zhang D. Melatonin application in assisted reproductive technology: a systematic review and meta-analysis of randomized trials. Front Endocrinol (Lausanne). 2020;11:160. http://dx.doi.org/10.3389/fendo.2020.00160. PMid:32292388.
http://dx.doi.org/10.3389/fendo.2020.001...
; Sanchez-Ajofrin et al., 2020). Melatonin is occurring in prokaryotes and eukaryotes (Hardeland, Fuhrberg, 1996Hardeland R, Fuhrberg B. Ubiquitous melatonin - Presence and effects in unicells, plants and animals. Trends Comp Biochem Physiol. 1996;2:25-45.; Hardeland, Poeggeler, 2003Hardeland R, Poeggeler B. Non-vertebrate melatonin. J Pineal Res. 2003;34(4):233-41. http://dx.doi.org/10.1034/j.1600-079X.2003.00040.x. PMid:12662344.
http://dx.doi.org/10.1034/j.1600-079X.20...
; Shibaeva et al., 2018Shibaeva T, Markovskaya E, Mamaev A. Phytomelatonin: a review. Biol Bull Rev. 2018;8(5):375-88. http://dx.doi.org/10.1134/S2079086418050080.
http://dx.doi.org/10.1134/S2079086418050...
).

Effects of melatonin on reproductive function

Under natural conditions, the pineal gland controls reproduction by changing the secretion of melatonin according to the length of day and night. As a regulator of the hypothalamic pituitary gonadal axis, melatonin inhibits the expression of some hypothalamic genes, especially neurokinin B, which is a key regulator of GnRH release in long- and short-day animals (Mason et al., 2007Mason AO, Greives TJ, Scotti MA, Levine J, Frommeyer S, Ketterson ED, Demas GE, Kriegsfeld LJ. Suppression of kisspeptin expression and gonadotropic axis sensitivity following exposure to inhibitory day lengths in female siberian hamsters. Horm Behav. 2007;52(4):492-8. http://dx.doi.org/10.1016/j.yhbeh.2007.07.004. PMid:17706968.
http://dx.doi.org/10.1016/j.yhbeh.2007.0...
). Evidence suggests that neurokinin B may direct seasonal reproduction (Chowdhury et al., 2013Chowdhury VS, Ubuka T, Tsutsui K. Review: melatonin stimulates the synthesis and release of gonadotropin-inhibitory hormone in birds. Gen Comp Endocrinol. 2013;181:175-8. http://dx.doi.org/10.1016/j.ygcen.2012.08.005. PMid:22906422.
http://dx.doi.org/10.1016/j.ygcen.2012.0...
). However, it is unclear whether melatonin directly affects GnRH neurons. Additionally, melatonin has direct regulatory effects on secondary reproductive organs (Reiter et al., 2013Reiter RJ, Rosales-Corral SA, Manchester LC, Tan D-X. Peripheral reproductive organ health and melatonin: ready for prime time. Int J Mol Sci. 2013;14(4):7231-72. http://dx.doi.org/10.3390/ijms14047231. PMid:23549263.
http://dx.doi.org/10.3390/ijms14047231...
). A high concentration of melatonin in maternal plasma is necessary for maintaining pregnancy (Latif Khan et al., 2020Latif Khan H, Bhatti S, Latif Khan Y, Abbas S, Munir Z, Rahman Khan Sherwani IA, Suhail S, Hassan Z, Aydin HH. Cell-free nucleic acids and melatonin levels in human follicular fluid predict embryo quality in patients undergoing in-vitro fertilization treatment. J Gynecol Obstet Hum Reprod. 2020;49(1):101624. http://dx.doi.org/10.1016/j.jogoh.2019.08.007. PMid:31472269.
http://dx.doi.org/10.1016/j.jogoh.2019.0...
). Besides scavenging ROS directly, melatonin regulates the expression of antioxidant genes and enzymes (Korkmaz et al., 2012Korkmaz A, Rosales-Corral S, Reiter RJ. Gene regulation by melatonin linked to epigenetic phenomena. Gene. 2012;503(1):1-11. http://dx.doi.org/10.1016/j.gene.2012.04.040. PMid:22569208.
http://dx.doi.org/10.1016/j.gene.2012.04...
).

Melatonin receptors have been localized in ovarian granulosa cells (Kang et al., 2009Kang JT, Koo OJ, Kwon DK, Park HJ, Jang G, Kang SK, Lee BC. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res. 2009;46(1):22-8. http://dx.doi.org/10.1111/j.1600-079X.2008.00602.x. PMid:18494781.
http://dx.doi.org/10.1111/j.1600-079X.20...
), ovarian follicles, and corpora lutea (Soares et al., 2003Soares JM Jr, Masana MI, Ersahin C, Dubocovich ML. Functional melatonin receptors in rat ovaries at various stages of the estrous cycle. J Pharmacol Exp Ther. 2003;306(2):694-702. http://dx.doi.org/10.1124/jpet.103.049916. PMid:12721330.
http://dx.doi.org/10.1124/jpet.103.04991...
), as well as in human (Niles et al., 1999Niles LP, Wang J, Shen L, Lobb DK, Younglai EV. Melatonin receptor mRNA expression in human granulosa cells. Mol Cell Endocrinol. 1999;156(1-2):107-10. http://dx.doi.org/10.1016/S0303-7207(99)00135-5. PMid:10612428.
http://dx.doi.org/10.1016/S0303-7207(99)...
) and bovine granulosa cells (Wang et al., 2012Wang SJ, Liu WJ, Wu CJ, Ma FH, Ahmad S, Liu BR, Han L, Jiang XP, Zhang SJ, Yang LG. Melatonin suppresses apoptosis and stimulates progesterone production by bovine granulosa cells via its receptors (MT1 and MT2). Theriogenology. 2012;78(7):1517-26. http://dx.doi.org/10.1016/j.theriogenology.2012.06.019. PMid:22980085.
http://dx.doi.org/10.1016/j.theriogenolo...
). Melatonin can affect ovarian function at the molecular level by downregulating the expression of CYP11a and CYP17 genes and steroid production in porcine thecal cells (Tanavde and Maitra, 2003Tanavde VS, Maitra A. In vitro modulation of steroidogenesis and gene expression by melatonin: a study with porcine antral follicles. Endocr Res. 2003;29(4):399-410. http://dx.doi.org/10.1081/ERC-120026946. PMid:14682469.
http://dx.doi.org/10.1081/ERC-120026946...
). The level of melatonin in the ovarian tissue of pre-estrus females is higher than that in normal periods, indicating that the regulation of melatonin concentration is related to the secretion of estrogen. Decreasing the concentration of melatonin in follicular fluid can increase the apoptosis level of granulosa cells and cause follicular atresia (He et al., 2016He Y, Deng H, Jiang Z, Li Q, Shi M, Chen H, Han Z. Effects of melatonin on follicular atresia and granulosa cell apoptosis in the porcine. Mol Reprod Dev. 2016;83(8):692-700. http://dx.doi.org/10.1002/mrd.22676. PMid:27391761.
http://dx.doi.org/10.1002/mrd.22676...
). Long-term melatonin treatment can delay the aging of the mouse ovary. In addition, studies have shown that the level of melatonin in follicular fluid increases with follicular growth, which may be related to the high level of ROS produced during follicular maturation and the antioxidant properties of melatonin (Futagami et al., 2001Futagami M, Sato S, Sakamoto T, Yokoyama Y, Saito Y. Effects of melatonin on the proliferation and cis-diamminedichloroplatinum (CDDP) sensitivity of cultured human ovarian cancer cells. Gynecol Oncol. 2001;82(3):544-9. http://dx.doi.org/10.1006/gyno.2001.6330. PMid:11520153.
http://dx.doi.org/10.1006/gyno.2001.6330...
).

Melatonin receptors and the signal transduction process

Melatonin has an important effect on embryo attachment (Dair et al., 2008Dair EL, Simoes RS, Simões MJ, Romeu LRG, Oliveira-Filho RM, Haidar MA, Baracat EC, Soares JM Jr. Effects of melatonin on the endometrial morphology and embryo implantation in rats. Fertil Steril. 2008;89(5, Suppl):1299-305. http://dx.doi.org/10.1016/j.fertnstert.2007.03.050. PMid:17561006.
http://dx.doi.org/10.1016/j.fertnstert.2...
). Melatonin usually works by inhibiting adenylate cyclase through its membrane receptors MT1 and MT2. During the in vitro development of bovine embryos, the MT1 receptor of melatonin was first transcribed on the seventh day of fetal development (Sampaio et al., 2012Sampaio RV, Conceição S, Miranda MS, Sampaio LF, Ohashi OM. MT3 melatonin binding site, MT1 and MT2 melatonin receptors are present in oocyte, but only MT1 is present in bovine blastocyst produced in vitro. Reprod Biol Endocrinol. 2012;10(1):103. http://dx.doi.org/10.1186/1477-7827-10-103. PMid:23207065.
http://dx.doi.org/10.1186/1477-7827-10-1...
). Melatonin has a variety of functions in the cell; some functions need receptor participation, while others do not (Reiter et al., 2007Reiter RJ, Tan DX, Manchester LC, Pilar Terron M, Flores LJ, Koppisepi S. Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci. 2007;52:11-28. PMid:18217386.). The signal mechanism of melatonin through the membrane receptor is very complex and can vary with different cell types or in different species. Melatonin affects cell physiological functions through membrane receptors (MT1, MT2), nuclear receptors (RZR, ROR), and their interaction with cytoplasmic molecules (e.g., calmodulin) (Dubocovich, 2007Dubocovich ML. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med. 2007;8(Suppl 3):34-42. http://dx.doi.org/10.1016/j.sleep.2007.10.007. PMid:18032103.
http://dx.doi.org/10.1016/j.sleep.2007.1...
; Reiter et al., 2010Reiter RJ, Tan D-X, Fuentes-Broto L. Melatonin: a multitasking molecule. Prog Brain Res. 2010;181:127-51. http://dx.doi.org/10.1016/S0079-6123(08)81008-4. PMid:20478436.
http://dx.doi.org/10.1016/S0079-6123(08)...
).

MT1 and MT2 belong to the G-protein coupled receptor family, although their molecular structures, characteristics, and chromosomal localization are different. These two receptors can activate multiple signaling pathways, mainly by inhibiting cAMP formation through sensitive G-protein. Signal transduction cascades associated with the activation of MT1 or MT2 on target cells often result in inhibition of adenosyl cyclase activity (von Gall et al., 2002von Gall C, Stehle JH, Weaver DR. Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res. 2002;309(1):151-62. http://dx.doi.org/10.1007/s00441-002-0581-4. PMid:12111545.
http://dx.doi.org/10.1007/s00441-002-058...
). The third MT receptor, originally named MT3, is a group of reductases that resist oxidative stress by inhibiting the electrical transfer of quinones (Chen et al., 2013Chen Y-C, Sheen J-M, Tiao M-M, Tain Y-L, Huang L-T. Roles of melatonin in fetal programming in compromised pregnancies. Int J Mol Sci. 2013;14(3):5380-401. http://dx.doi.org/10.3390/ijms14035380. PMid:23466884.
http://dx.doi.org/10.3390/ijms14035380...
). However, this process has not been identified in the MT3 signaling pathway. The MT1 receptor has been localized in the suprachiasmatic nucleus circadian clock (Dubocovich and Markowska, 2005Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27(2):101-10. http://dx.doi.org/10.1385/ENDO:27:2:101. PMid:16217123.
http://dx.doi.org/10.1385/ENDO:27:2:101...
). It has also been detected in the stromal cells of ovary and testis (Frungieri et al., 2005Frungieri MB, Mayerhofer A, Zitta K, Pignataro OP, Calandra RS, Gonzalez-Calvar SI. Direct effect of melatonin on syrian hamster testes: melatonin subtype 1a receptors, inhibition of androgen production, and interaction with the local corticotropin-releasing hormone system. Endocrinology. 2005;146(3):1541-52. http://dx.doi.org/10.1210/en.2004-0990. PMid:15550508.
http://dx.doi.org/10.1210/en.2004-0990...
). However, MT2 receptors are limited in expression. They are mainly expressed in the brain, but they have also been found in the myometrium, granulosa nuclei, and testis. The MT3 receptor has been found in the heart, kidney, brain, oocyte, and ovary (Dubocovich and Markowska, 2005Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27(2):101-10. http://dx.doi.org/10.1385/ENDO:27:2:101. PMid:16217123.
http://dx.doi.org/10.1385/ENDO:27:2:101...
).

Some functions of melatonin require special membrane receptors, while others rely on nuclear receptors. Nuclear receptors are mainly members of RZR and ROR families. Most are considered independent (Smirnov, 2001Smirnov AN. Nuclear melatonin receptors. Biochemistry (Mosc). 2001;66(1):19-26. http://dx.doi.org/10.1023/A:1002821427018. PMid:11240388.
http://dx.doi.org/10.1023/A:100282142701...
). Gpr50 of G protein coupled receptors (GPRS) can form dimers with MT1 and MT2. However, this does not change the function of MT2 or antagonize the function of MT1 through heterodimerization (Levoye et al., 2006Levoye A, Dam J, Ayoub MA, Guillaume J-L, Couturier C, Delagrange P, Jockers R. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J. 2006;25(13):3012-23. http://dx.doi.org/10.1038/sj.emboj.7601193. PMid:16778767.
http://dx.doi.org/10.1038/sj.emboj.76011...
). There are few studies on the involvement of melatonin in the signal transduction process of embryonic development cells. The main research findings concern the expression of MT1 and MT2 receptors in bovine embryonic development (Sampaio et al., 2012Sampaio RV, Conceição S, Miranda MS, Sampaio LF, Ohashi OM. MT3 melatonin binding site, MT1 and MT2 melatonin receptors are present in oocyte, but only MT1 is present in bovine blastocyst produced in vitro. Reprod Biol Endocrinol. 2012;10(1):103. http://dx.doi.org/10.1186/1477-7827-10-103. PMid:23207065.
http://dx.doi.org/10.1186/1477-7827-10-1...
). Most studies suggest that melatonin improves embryonic development ability and reduces the level of apoptosis by regulating ROS. Melatonin significantly promoted the expression of BMP15-, PTX3-, HAS2-, and EGFR-related genes of oocyte maturation in sheep (Xiao et al., 2019Xiao L, Hu J, Song L, Zhang Y, Dong W, Jiang Y, Zhang Q, Yuan L, Zhao X. Profile of melatonin and its receptors and synthesizing enzymes in cumulus-oocyte complexes of the developing sheep antral follicle-a potential estradiol-mediated mechanism. Reprod Biol Endocrinol. 2019;17(1):1. http://dx.doi.org/10.1186/s12958-018-0446-7. PMid:30606208.
http://dx.doi.org/10.1186/s12958-018-044...
). The regulation by follistatin on porcine embryonic development is also closely related to the BMP signal transduction pathway (Guo et al., 2018Guo Z, Islam MS, Liu D, Liu G, Lv L, Yang Y, Fu B, Wang L, Liu Z, He H, Wu H. Differential effects of follistatin on porcine oocyte competence and cumulus cell gene expression in vitro. Reprod Domest Anim. 2018;53(1):3-10. http://dx.doi.org/10.1111/rda.13035. PMid:29134682.
http://dx.doi.org/10.1111/rda.13035...
).

Effect of melatonin on porcine oocytes

The addition of melatonin to the in vitro maturation medium or embryo culture medium was beneficial to the parthenogenetic activation of porcine oocytes, and the cleavage rate and blastocyst formation rate were significantly increased (Shi et al., 2009Shi JM, Tian XZ, Zhou GB, Wang L, Gao C, Zhu SE, Zeng SM, Tian JH, Liu GS. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J Pineal Res. 2009;47(4):318-23. http://dx.doi.org/10.1111/j.1600-079X.2009.00717.x. PMid:19817971.
http://dx.doi.org/10.1111/j.1600-079X.20...
). Melatonin can protect porcine oocytes from the effects of heat stress and improve the maturation rate, cleavage rate, and blastocyst formation rate of porcine oocytes. The results showed that melatonin played a role through its antioxidant function, reduced the formation of ROS in porcine oocytes, and enhanced the production of GSH (Li et al., 2015Li Y, Zhang Z, He C, Zhu K, Xu Z, Ma T, Tao J, Liu G. Melatonin protects porcine oocyte in vitro maturation from heat stress. J Pineal Res. 2015;59(3):365-75. http://dx.doi.org/10.1111/jpi.12268. PMid:26291611.
http://dx.doi.org/10.1111/jpi.12268...
). Melatonin can promote COC cumulus expansion and subsequent embryo development through the Shh signaling pathway (Lee et al., 2017Lee S, Jin JX, Taweechaipaisankul A, Kim GA, Ahn C, Lee BC. Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes. J Pineal Res. 2017;63(3):e12424. http://dx.doi.org/10.1111/jpi.12424. PMid:28512846.
http://dx.doi.org/10.1111/jpi.12424...
). Melatonin promotes porcine oocyte maturation by reducing endoplasmic reticulum pressure (Park et al., 2018Park HJ, Park JY, Kim JW, Yang SG, Jung JM, Kim MJ, Kang MJ, Cho YH, Wee G, Yang HY, Song BS, Kim SU, Koo DB. Melatonin improves the meiotic maturation of porcine oocytes by reducing endoplasmic reticulum stress during in vitro maturation. J Pineal Res. 2018;64(2):e12458. http://dx.doi.org/10.1111/jpi.12458. PMid:29149522.
http://dx.doi.org/10.1111/jpi.12458...
). Melatonin can promote lipid metabolism of porcine oocytes and provide a necessary energy source for oocyte maturation and subsequent embryonic development (Jin et al., 2017Jin JX, Lee S, Taweechaipaisankul A, Kim GA, Lee BC. Melatonin regulates lipid metabolism in porcine oocytes. J Pineal Res. 2017;62(2):e12388. http://dx.doi.org/10.1111/jpi.12388. PMid:28095627.
http://dx.doi.org/10.1111/jpi.12388...
).

Melatonin and SCNT embryonic development

Many studies have shown that melatonin has a beneficial effect on mammalian gametes and embryos. The damage of free radicals to cell membranes leads to the increase of the sensitivity of lipid peroxidation and changes in protein structure and function, subsequently leading to the destruction of nucleic acids (Leon et al., 2012Leon PM, Campos VF, Corcini CD, Santos EC, Rambo G, Lucia T Jr, Deschamps JC, Collares T. Cryopreservation of immature equine oocytes, comparing a solid surface vitrification process with open pulled straws and the use of a synthetic ice blocker. Theriogenology. 2012;77(1):21-7. http://dx.doi.org/10.1016/j.theriogenology.2011.07.008. PMid:21835449.
http://dx.doi.org/10.1016/j.theriogenolo...
; Tamura et al., 2012Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, Tamura I, Maekawa R, Aasada H, Yamagata Y, Sugino N. The role of melatonin as an antioxidant in the follicle. J Ovarian Res. 2012;5(1):5. http://dx.doi.org/10.1186/1757-2215-5-5. PMid:22277103.
http://dx.doi.org/10.1186/1757-2215-5-5...
). Melatonin can reduce lipid peroxidation. Melatonin can also improve the stability of sperm DNA (Jang et al., 2009Jang H Y, Kim Y H, Kim B, Park I, Cheong H-T, Kim J, Park C, Kong H, Lee H, Yang B. Ameliorative effects of melatonin against hydrogen peroxide-induced oxidative stress on boar sperm characteristics and subsequent in vitro embryo development. Reprod Domest Anim. 2009;45(6):943-50. https://doi.org/10.1111/j.1439-0531.2009.01466.x.
https://doi.org/10.1111/j.1439-0531.2009...
; Fujinoki, 2011Fujinoki M. Serotonin-enhanced hyperactivation of hamster sperm. Reproduction. 2011;142(2):255-66. http://dx.doi.org/10.1530/REP-11-0074. PMid:21555358.
http://dx.doi.org/10.1530/REP-11-0074...
). Melatonin also protects oocytes from free radicals during ovulation (Tamura et al., 2008Tamura H, Nakamura Y, Korkmaz A, Manchester L, Tan D-X, Sugino N, Reiter RJ. Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril. 2008;92(1):328-43. http://dx.doi.org/10.1016/j.fertnstert.2008.05.016. PMid:18804205.
http://dx.doi.org/10.1016/j.fertnstert.2...
; Reiter et al., 2009Reiter RJ, Tan D-X, Manchester LC, Paredes SD, Mayo JC, Sainz RM. Melatonin and reproduction revisited. Biol Reprod. 2009;81(3):445-56. http://dx.doi.org/10.1095/biolreprod.108.075655. PMid:19439728.
http://dx.doi.org/10.1095/biolreprod.108...
). Melatonin improves embryo development in vitro (Abecia et al., 2002Abecia JA, Forcada F, Zúñiga O. The effect of melatonin on the secretion of progesterone in sheep and on the development of ovine embryos. Vet Res Commun. 2002;26(2):151-8. http://dx.doi.org/10.1023/A:1014099719034. PMid:11922484.
http://dx.doi.org/10.1023/A:101409971903...
; Berlinguer et al., 2009Berlinguer F, Leoni GG, Succu S, Spezzigu A, Madeddu M, Satta V, Bebbere D, Contreras-Solis I, Gonzalez-Bulnes A, Naitana S. Exogenous melatonin positively influences follicular dynamics, oocyte developmental competence and blastocyst output in a goat model. J Pineal Res. 2009;46(4):383-91. http://dx.doi.org/10.1111/j.1600-079X.2009.00674.x. PMid:19552761.
http://dx.doi.org/10.1111/j.1600-079X.20...
). This is consistent with our results. We found that exogenous melatonin can increase the blastocyst rate. However, melatonin did not affect the cleavage rate. This may be due to the short time from the addition of melatonin to cleavage. The cleavage rate was examined within 48 hours after the treatment with melatonin. The electrofusion of rabbit SCNT embryos can induce oxidative stress, disturb epigenetic state, and cause endoplasmic reticulum stress, and melatonin can alleviate these damaging effects (Qu et al., 2020bQu P, Shen C, Du Y, Qin H, Luo S, Fu S, Dong Y, Guo S, Hu F, Xue Y, Liu E. Melatonin Protects Rabbit Somatic Cell Nuclear Transfer (SCNT) Embryos from Electrofusion Damage. Sci Rep. 2020b;10(1):2186. http://dx.doi.org/10.1038/s41598-020-59161-6. PMid:32042116.
http://dx.doi.org/10.1038/s41598-020-591...
). Melatonin improves oxidative stress of oocytes and promotes the development of bovine and porcine SCNT embryos in vitro (Liang et al., 2017Liang S, Jin YX, Yuan B, Zhang JB, Kim NH. Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress. Sci Rep. 2017;7(1):11114. http://dx.doi.org/10.1038/s41598-017-11161-9. PMid:28894150.
http://dx.doi.org/10.1038/s41598-017-111...
; An et al., 2019An Q, Peng W, Cheng Y, Lu Z, Zhou C, Zhang Y, Su J. Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos. J Cell Physiol. 2019;234(10):17370-81. http://dx.doi.org/10.1002/jcp.28357. PMid:30786018.
http://dx.doi.org/10.1002/jcp.28357...
).

In the process of in vitro production, an increase in the number of apoptotic cells leads to a decrease of embryo viability (Hao et al., 2003Hao Y, Lai L, Mao J, Im GS, Bonk A, Prather RS. Apoptosis and In Vitro development of preimplantation porcine embryos derived In Vitro or by nuclear transfer. Biol Reprod. 2003;69(2):501-7. http://dx.doi.org/10.1095/biolreprod.103.016170. PMid:12700186.
http://dx.doi.org/10.1095/biolreprod.103...
). Melatonin downregulates the expression of the apoptosis-promoting genes Bad and Bax, and upregulates the expression of Bcl-2, accompanied by an increase of intracellular glutathione and a decrease of ROS (Gao et al., 2012Gao C, Han H-B, Tian X-Z, Tan D-X, Wang L, Zhou G-B, Zhu S-E, Liu G-S. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J Pineal Res. 2012;52(3):305-11. http://dx.doi.org/10.1111/j.1600-079X.2011.00944.x. PMid:22225541.
http://dx.doi.org/10.1111/j.1600-079X.20...
; Mohseni et al., 2012Mohseni M, Mihandoost E, Shirazi A, Sepehrizadeh Z, Bazzaz JT, Ghazi-khansari M. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis. Mutat Res. 2012;738-739:19-27. http://dx.doi.org/10.1016/j.mrfmmm.2012.08.006. PMid:22982225.
http://dx.doi.org/10.1016/j.mrfmmm.2012....
). These changes lead to decreases of blastocyst apoptosis and the improvement of embryo quality and embryo implantation efficiency (Wang et al., 2013Wang F, Tian X, Zhang L, Tan D-X, Reiter RJ, Liu G. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J Pineal Res. 2013;55(3):267-74. http://dx.doi.org/10.1111/jpi.12069. PMid:23772689.
http://dx.doi.org/10.1111/jpi.12069...
). We found that melatonin did not affect the number of blastocyst cells but did decrease the number of apoptotic cells in blastocysts. This effect is crucial for subsequent embryo implantation.

In conclusion, exogenous melatonin can promote oocyte maturation and blastocyst formation. Melatonin reduced ROS levels in porcine oocytes (Choi et al., 2008Choi J, Park S-M, Lee E, Kim J-H, Jeong YI, Lee J-Y, Park S-W, Kim HS, Hossein M, Jeong Y-W, Kim S, Hyun SH, Hwang WS. Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol Reprod Dev. 2008;75(7):1127-35. http://dx.doi.org/10.1002/mrd.20861. PMid:18324672.
http://dx.doi.org/10.1002/mrd.20861...
). In addition, MT1 was expressed in cumulus cells and granulosa cells (Lin et al., 2018Lin T, Lee JE, Kang JW, Oqani RK, Cho ES, Kim SB, Il Jin D. Melatonin supplementation during prolonged in vitro maturation improves the quality and development of poor-quality porcine oocytes via anti-oxidative and anti-apoptotic effects. Mol Reprod Dev. 2018;85(8-9):665-81. http://dx.doi.org/10.1002/mrd.23052. PMid:30106229.
http://dx.doi.org/10.1002/mrd.23052...
). However, according to the literature we have reviewed, there are no reports on the existence of melatonin membrane receptors on porcine oocytes. The effect of melatonin may not only reduce the ROS level in porcine oocytes but also play a role through cell signal transduction pathways. This can also explain why exogenous melatonin does not affect the cleavage rate but can affect the blastocyst rate. Reducing the ROS level through cell signal transduction pathways is a relatively slow process. Our previous experiments also demonstrated that the regulation of signaling pathways in porcine embryo cells resulted in a late gene expression difference (Guo et al., 2018Guo Z, Islam MS, Liu D, Liu G, Lv L, Yang Y, Fu B, Wang L, Liu Z, He H, Wu H. Differential effects of follistatin on porcine oocyte competence and cumulus cell gene expression in vitro. Reprod Domest Anim. 2018;53(1):3-10. http://dx.doi.org/10.1111/rda.13035. PMid:29134682.
http://dx.doi.org/10.1111/rda.13035...
). Therefore, melatonin may be demonstrated to be involved in signal transduction of embryonic cell development in the future.

Acknowledgements

We thank LetPub (www.LetPub.com) for its linguistic assistance during the preparation of this manuscript.

  • Financial support: This work was supported by the National Natural Science Foundation of China (Grant number U20A2052).
  • #These authors contributed equally to this work.

References

  • Abecia JA, Forcada F, Zúñiga O. The effect of melatonin on the secretion of progesterone in sheep and on the development of ovine embryos. Vet Res Commun. 2002;26(2):151-8. http://dx.doi.org/10.1023/A:1014099719034 PMid:11922484.
    » http://dx.doi.org/10.1023/A:1014099719034
  • An Q, Peng W, Cheng Y, Lu Z, Zhou C, Zhang Y, Su J. Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos. J Cell Physiol. 2019;234(10):17370-81. http://dx.doi.org/10.1002/jcp.28357 PMid:30786018.
    » http://dx.doi.org/10.1002/jcp.28357
  • Berlinguer F, Leoni GG, Succu S, Spezzigu A, Madeddu M, Satta V, Bebbere D, Contreras-Solis I, Gonzalez-Bulnes A, Naitana S. Exogenous melatonin positively influences follicular dynamics, oocyte developmental competence and blastocyst output in a goat model. J Pineal Res. 2009;46(4):383-91. http://dx.doi.org/10.1111/j.1600-079X.2009.00674.x PMid:19552761.
    » http://dx.doi.org/10.1111/j.1600-079X.2009.00674.x
  • Chen Y-C, Sheen J-M, Tiao M-M, Tain Y-L, Huang L-T. Roles of melatonin in fetal programming in compromised pregnancies. Int J Mol Sci. 2013;14(3):5380-401. http://dx.doi.org/10.3390/ijms14035380 PMid:23466884.
    » http://dx.doi.org/10.3390/ijms14035380
  • Choi J, Park S-M, Lee E, Kim J-H, Jeong YI, Lee J-Y, Park S-W, Kim HS, Hossein M, Jeong Y-W, Kim S, Hyun SH, Hwang WS. Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol Reprod Dev. 2008;75(7):1127-35. http://dx.doi.org/10.1002/mrd.20861 PMid:18324672.
    » http://dx.doi.org/10.1002/mrd.20861
  • Chowdhury VS, Ubuka T, Tsutsui K. Review: melatonin stimulates the synthesis and release of gonadotropin-inhibitory hormone in birds. Gen Comp Endocrinol. 2013;181:175-8. http://dx.doi.org/10.1016/j.ygcen.2012.08.005 PMid:22906422.
    » http://dx.doi.org/10.1016/j.ygcen.2012.08.005
  • Dair EL, Simoes RS, Simões MJ, Romeu LRG, Oliveira-Filho RM, Haidar MA, Baracat EC, Soares JM Jr. Effects of melatonin on the endometrial morphology and embryo implantation in rats. Fertil Steril. 2008;89(5, Suppl):1299-305. http://dx.doi.org/10.1016/j.fertnstert.2007.03.050 PMid:17561006.
    » http://dx.doi.org/10.1016/j.fertnstert.2007.03.050
  • Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27(2):101-10. http://dx.doi.org/10.1385/ENDO:27:2:101 PMid:16217123.
    » http://dx.doi.org/10.1385/ENDO:27:2:101
  • Dubocovich ML. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med. 2007;8(Suppl 3):34-42. http://dx.doi.org/10.1016/j.sleep.2007.10.007 PMid:18032103.
    » http://dx.doi.org/10.1016/j.sleep.2007.10.007
  • Frungieri MB, Mayerhofer A, Zitta K, Pignataro OP, Calandra RS, Gonzalez-Calvar SI. Direct effect of melatonin on syrian hamster testes: melatonin subtype 1a receptors, inhibition of androgen production, and interaction with the local corticotropin-releasing hormone system. Endocrinology. 2005;146(3):1541-52. http://dx.doi.org/10.1210/en.2004-0990 PMid:15550508.
    » http://dx.doi.org/10.1210/en.2004-0990
  • Fujinoki M. Serotonin-enhanced hyperactivation of hamster sperm. Reproduction. 2011;142(2):255-66. http://dx.doi.org/10.1530/REP-11-0074 PMid:21555358.
    » http://dx.doi.org/10.1530/REP-11-0074
  • Futagami M, Sato S, Sakamoto T, Yokoyama Y, Saito Y. Effects of melatonin on the proliferation and cis-diamminedichloroplatinum (CDDP) sensitivity of cultured human ovarian cancer cells. Gynecol Oncol. 2001;82(3):544-9. http://dx.doi.org/10.1006/gyno.2001.6330 PMid:11520153.
    » http://dx.doi.org/10.1006/gyno.2001.6330
  • Gao C, Han H-B, Tian X-Z, Tan D-X, Wang L, Zhou G-B, Zhu S-E, Liu G-S. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J Pineal Res. 2012;52(3):305-11. http://dx.doi.org/10.1111/j.1600-079X.2011.00944.x PMid:22225541.
    » http://dx.doi.org/10.1111/j.1600-079X.2011.00944.x
  • Guo Z, Islam MS, Liu D, Liu G, Lv L, Yang Y, Fu B, Wang L, Liu Z, He H, Wu H. Differential effects of follistatin on porcine oocyte competence and cumulus cell gene expression in vitro. Reprod Domest Anim. 2018;53(1):3-10. http://dx.doi.org/10.1111/rda.13035 PMid:29134682.
    » http://dx.doi.org/10.1111/rda.13035
  • Hao Y, Lai L, Mao J, Im GS, Bonk A, Prather RS. Apoptosis and In Vitro development of preimplantation porcine embryos derived In Vitro or by nuclear transfer. Biol Reprod. 2003;69(2):501-7. http://dx.doi.org/10.1095/biolreprod.103.016170 PMid:12700186.
    » http://dx.doi.org/10.1095/biolreprod.103.016170
  • Hardeland R, Fuhrberg B. Ubiquitous melatonin - Presence and effects in unicells, plants and animals. Trends Comp Biochem Physiol. 1996;2:25-45.
  • Hardeland R, Poeggeler B. Non-vertebrate melatonin. J Pineal Res. 2003;34(4):233-41. http://dx.doi.org/10.1034/j.1600-079X.2003.00040.x PMid:12662344.
    » http://dx.doi.org/10.1034/j.1600-079X.2003.00040.x
  • He Y, Deng H, Jiang Z, Li Q, Shi M, Chen H, Han Z. Effects of melatonin on follicular atresia and granulosa cell apoptosis in the porcine. Mol Reprod Dev. 2016;83(8):692-700. http://dx.doi.org/10.1002/mrd.22676 PMid:27391761.
    » http://dx.doi.org/10.1002/mrd.22676
  • Hu KL, Ye X, Wang S, Zhang D. Melatonin application in assisted reproductive technology: a systematic review and meta-analysis of randomized trials. Front Endocrinol (Lausanne). 2020;11:160. http://dx.doi.org/10.3389/fendo.2020.00160 PMid:32292388.
    » http://dx.doi.org/10.3389/fendo.2020.00160
  • Huang Y, Xie W, Yao C, Han Y, Tan G, Zhou Y, Zhu J, Pang D, Li Z, Tang X. Pluripotent-related gene expression analyses in single porcine recloned embryo. Biotechnol Lett. 2014;36(6):1161-9. http://dx.doi.org/10.1007/s10529-014-1467-8 PMid:24563300.
    » http://dx.doi.org/10.1007/s10529-014-1467-8
  • Jang H Y, Kim Y H, Kim B, Park I, Cheong H-T, Kim J, Park C, Kong H, Lee H, Yang B. Ameliorative effects of melatonin against hydrogen peroxide-induced oxidative stress on boar sperm characteristics and subsequent in vitro embryo development. Reprod Domest Anim. 2009;45(6):943-50. https://doi.org/10.1111/j.1439-0531.2009.01466.x
    » https://doi.org/10.1111/j.1439-0531.2009.01466.x
  • Jin JX, Lee S, Taweechaipaisankul A, Kim GA, Lee BC. Melatonin regulates lipid metabolism in porcine oocytes. J Pineal Res. 2017;62(2):e12388. http://dx.doi.org/10.1111/jpi.12388 PMid:28095627.
    » http://dx.doi.org/10.1111/jpi.12388
  • Kang JT, Koo OJ, Kwon DK, Park HJ, Jang G, Kang SK, Lee BC. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res. 2009;46(1):22-8. http://dx.doi.org/10.1111/j.1600-079X.2008.00602.x PMid:18494781.
    » http://dx.doi.org/10.1111/j.1600-079X.2008.00602.x
  • Khalil WA, Marei WFA, Khalid M. Protective effects of antioxidants on linoleic acid–treated bovine oocytes during maturation and subsequent embryo development. Theriogenology. 2013;80(2):161-8. http://dx.doi.org/10.1016/j.theriogenology.2013.04.008 PMid:23683689.
    » http://dx.doi.org/10.1016/j.theriogenology.2013.04.008
  • Korkmaz A, Rosales-Corral S, Reiter RJ. Gene regulation by melatonin linked to epigenetic phenomena. Gene. 2012;503(1):1-11. http://dx.doi.org/10.1016/j.gene.2012.04.040 PMid:22569208.
    » http://dx.doi.org/10.1016/j.gene.2012.04.040
  • Latif Khan H, Bhatti S, Latif Khan Y, Abbas S, Munir Z, Rahman Khan Sherwani IA, Suhail S, Hassan Z, Aydin HH. Cell-free nucleic acids and melatonin levels in human follicular fluid predict embryo quality in patients undergoing in-vitro fertilization treatment. J Gynecol Obstet Hum Reprod. 2020;49(1):101624. http://dx.doi.org/10.1016/j.jogoh.2019.08.007 PMid:31472269.
    » http://dx.doi.org/10.1016/j.jogoh.2019.08.007
  • Lee S, Jin JX, Taweechaipaisankul A, Kim GA, Ahn C, Lee BC. Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes. J Pineal Res. 2017;63(3):e12424. http://dx.doi.org/10.1111/jpi.12424 PMid:28512846.
    » http://dx.doi.org/10.1111/jpi.12424
  • Lee S, Jin JX, Taweechaipaisankul A, Kim GA, Lee BC. Synergistic effects of resveratrol and melatonin on in vitro maturation of porcine oocytes and subsequent embryo development. Theriogenology. 2018;114:191-8. http://dx.doi.org/10.1016/j.theriogenology.2018.03.040 PMid:29653386.
    » http://dx.doi.org/10.1016/j.theriogenology.2018.03.040
  • Leon PM, Campos VF, Corcini CD, Santos EC, Rambo G, Lucia T Jr, Deschamps JC, Collares T. Cryopreservation of immature equine oocytes, comparing a solid surface vitrification process with open pulled straws and the use of a synthetic ice blocker. Theriogenology. 2012;77(1):21-7. http://dx.doi.org/10.1016/j.theriogenology.2011.07.008 PMid:21835449.
    » http://dx.doi.org/10.1016/j.theriogenology.2011.07.008
  • Levoye A, Dam J, Ayoub MA, Guillaume J-L, Couturier C, Delagrange P, Jockers R. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J. 2006;25(13):3012-23. http://dx.doi.org/10.1038/sj.emboj.7601193 PMid:16778767.
    » http://dx.doi.org/10.1038/sj.emboj.7601193
  • Li Y, Zhang Z, He C, Zhu K, Xu Z, Ma T, Tao J, Liu G. Melatonin protects porcine oocyte in vitro maturation from heat stress. J Pineal Res. 2015;59(3):365-75. http://dx.doi.org/10.1111/jpi.12268 PMid:26291611.
    » http://dx.doi.org/10.1111/jpi.12268
  • Liang S, Jin YX, Yuan B, Zhang JB, Kim NH. Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress. Sci Rep. 2017;7(1):11114. http://dx.doi.org/10.1038/s41598-017-11161-9 PMid:28894150.
    » http://dx.doi.org/10.1038/s41598-017-11161-9
  • Lin T, Lee JE, Kang JW, Oqani RK, Cho ES, Kim SB, Il Jin D. Melatonin supplementation during prolonged in vitro maturation improves the quality and development of poor-quality porcine oocytes via anti-oxidative and anti-apoptotic effects. Mol Reprod Dev. 2018;85(8-9):665-81. http://dx.doi.org/10.1002/mrd.23052 PMid:30106229.
    » http://dx.doi.org/10.1002/mrd.23052
  • Mason AO, Greives TJ, Scotti MA, Levine J, Frommeyer S, Ketterson ED, Demas GE, Kriegsfeld LJ. Suppression of kisspeptin expression and gonadotropic axis sensitivity following exposure to inhibitory day lengths in female siberian hamsters. Horm Behav. 2007;52(4):492-8. http://dx.doi.org/10.1016/j.yhbeh.2007.07.004 PMid:17706968.
    » http://dx.doi.org/10.1016/j.yhbeh.2007.07.004
  • Mohseni M, Mihandoost E, Shirazi A, Sepehrizadeh Z, Bazzaz JT, Ghazi-khansari M. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis. Mutat Res. 2012;738-739:19-27. http://dx.doi.org/10.1016/j.mrfmmm.2012.08.006 PMid:22982225.
    » http://dx.doi.org/10.1016/j.mrfmmm.2012.08.006
  • Nakano M, Kato Y, Tsunoda Y. Effect of melatonin treatment on the developmental potential of parthenogenetic and somatic cell nuclear-transferred porcine oocytes in vitro. Zygote. 2012;20(2):199-207. http://dx.doi.org/10.1017/S0967199411000190 PMid:21729374.
    » http://dx.doi.org/10.1017/S0967199411000190
  • Niles LP, Wang J, Shen L, Lobb DK, Younglai EV. Melatonin receptor mRNA expression in human granulosa cells. Mol Cell Endocrinol. 1999;156(1-2):107-10. http://dx.doi.org/10.1016/S0303-7207(99)00135-5 PMid:10612428.
    » http://dx.doi.org/10.1016/S0303-7207(99)00135-5
  • Pang YW, An L, Wang P, Yu Y, Yin QD, Wang XH, Xin-Zhang, Qian-Zhang, Yang ML, Min-Guo, Wu ZH, Tian JH. Treatment of porcine donor cells and reconstructed embryos with the antioxidant melatonin enhances cloning efficiency. J Pineal Res. 2013;54(4):389-97. http://dx.doi.org/10.1111/jpi.12024 PMid:24325731.
    » http://dx.doi.org/10.1111/jpi.12024
  • Park HJ, Park JY, Kim JW, Yang SG, Jung JM, Kim MJ, Kang MJ, Cho YH, Wee G, Yang HY, Song BS, Kim SU, Koo DB. Melatonin improves the meiotic maturation of porcine oocytes by reducing endoplasmic reticulum stress during in vitro maturation. J Pineal Res. 2018;64(2):e12458. http://dx.doi.org/10.1111/jpi.12458 PMid:29149522.
    » http://dx.doi.org/10.1111/jpi.12458
  • Qu J, Sun M, Wang X, Song X, He H, Huan Y. Melatonin enhances the development of porcine cloned embryos by improving DNA methylation reprogramming. Cell Reprogram. 2020a;22(3):156-66. http://dx.doi.org/10.1089/cell.2019.0103 PMid:32207988.
    » http://dx.doi.org/10.1089/cell.2019.0103
  • Qu P, Shen C, Du Y, Qin H, Luo S, Fu S, Dong Y, Guo S, Hu F, Xue Y, Liu E. Melatonin Protects Rabbit Somatic Cell Nuclear Transfer (SCNT) Embryos from Electrofusion Damage. Sci Rep. 2020b;10(1):2186. http://dx.doi.org/10.1038/s41598-020-59161-6 PMid:32042116.
    » http://dx.doi.org/10.1038/s41598-020-59161-6
  • Rao S, Fujimura T, Matsunari H, Sakuma T, Nakano K, Watanabe M, Asano Y, Kitagawa E, Yamamoto T, Nagashima H. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev. 2016;83(1):61-70. http://dx.doi.org/10.1002/mrd.22591 PMid:26488621.
    » http://dx.doi.org/10.1002/mrd.22591
  • Reiter RJ, Rosales-Corral SA, Manchester LC, Tan D-X. Peripheral reproductive organ health and melatonin: ready for prime time. Int J Mol Sci. 2013;14(4):7231-72. http://dx.doi.org/10.3390/ijms14047231 PMid:23549263.
    » http://dx.doi.org/10.3390/ijms14047231
  • Reiter RJ, Tan D-X, Fuentes-Broto L. Melatonin: a multitasking molecule. Prog Brain Res. 2010;181:127-51. http://dx.doi.org/10.1016/S0079-6123(08)81008-4 PMid:20478436.
    » http://dx.doi.org/10.1016/S0079-6123(08)81008-4
  • Reiter RJ, Tan D-X, Manchester LC, Paredes SD, Mayo JC, Sainz RM. Melatonin and reproduction revisited. Biol Reprod. 2009;81(3):445-56. http://dx.doi.org/10.1095/biolreprod.108.075655 PMid:19439728.
    » http://dx.doi.org/10.1095/biolreprod.108.075655
  • Reiter RJ, Tan DX, Manchester LC, Pilar Terron M, Flores LJ, Koppisepi S. Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci. 2007;52:11-28. PMid:18217386.
  • Sampaio RV, Conceição S, Miranda MS, Sampaio LF, Ohashi OM. MT3 melatonin binding site, MT1 and MT2 melatonin receptors are present in oocyte, but only MT1 is present in bovine blastocyst produced in vitro Reprod Biol Endocrinol. 2012;10(1):103. http://dx.doi.org/10.1186/1477-7827-10-103 PMid:23207065.
    » http://dx.doi.org/10.1186/1477-7827-10-103
  • Sánchez-Ajofrín I, Iniesta-Cuerda M, Peris-Frau P, Martin-Maestro A, Medina-Chavez DA, Maside C, Fernandez-Santos MR, Ortiz JA, Montoro V, Garde JJ, Soler AJ. Beneficial effects of melatonin in the ovarian transport medium on In Vitro embryo production of iberian red deer (Cervus elaphus hispanicus). Animals (Basel). 2020;10(5):763. http://dx.doi.org/10.3390/ani10050763 PMid:32349425.
    » http://dx.doi.org/10.3390/ani10050763
  • Shi JM, Tian XZ, Zhou GB, Wang L, Gao C, Zhu SE, Zeng SM, Tian JH, Liu GS. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J Pineal Res. 2009;47(4):318-23. http://dx.doi.org/10.1111/j.1600-079X.2009.00717.x PMid:19817971.
    » http://dx.doi.org/10.1111/j.1600-079X.2009.00717.x
  • Shibaeva T, Markovskaya E, Mamaev A. Phytomelatonin: a review. Biol Bull Rev. 2018;8(5):375-88. http://dx.doi.org/10.1134/S2079086418050080
    » http://dx.doi.org/10.1134/S2079086418050080
  • Smirnov AN. Nuclear melatonin receptors. Biochemistry (Mosc). 2001;66(1):19-26. http://dx.doi.org/10.1023/A:1002821427018 PMid:11240388.
    » http://dx.doi.org/10.1023/A:1002821427018
  • Soares JM Jr, Masana MI, Ersahin C, Dubocovich ML. Functional melatonin receptors in rat ovaries at various stages of the estrous cycle. J Pharmacol Exp Ther. 2003;306(2):694-702. http://dx.doi.org/10.1124/jpet.103.049916 PMid:12721330.
    » http://dx.doi.org/10.1124/jpet.103.049916
  • Song Y, Hai T, Wang Y, Guo R, Li W, Wang L, Zhou Q. Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor--m-carboxycinnamic acid bishydroxamide (CBHA). Protein Cell. 2014;5(5):382-93. http://dx.doi.org/10.1007/s13238-014-0034-3 PMid:24627095.
    » http://dx.doi.org/10.1007/s13238-014-0034-3
  • Sper RB, Koh S, Zhang X, Simpson S, Collins B, Sommer J, Petters RM, Caballero I, Platt JL, Piedrahita JA. Generation of a stable transgenic swine model expressing a porcine histone 2B-eGFP fusion protein for cell tracking and chromosome dynamics studies. PLoS One. 2017;12(1):e0169242. http://dx.doi.org/10.1371/journal.pone.0169242 PMid:28081156.
    » http://dx.doi.org/10.1371/journal.pone.0169242
  • Sturmey R, Reis A, Leese H J, McEvoy T. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim. 2009;44(Suppl 3):50-8. http://dx.doi.org/10.1111/j.1439-0531.2009.01402.x
    » http://dx.doi.org/10.1111/j.1439-0531.2009.01402.x
  • Tamura H, Nakamura Y, Korkmaz A, Manchester L, Tan D-X, Sugino N, Reiter RJ. Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril. 2008;92(1):328-43. http://dx.doi.org/10.1016/j.fertnstert.2008.05.016 PMid:18804205.
    » http://dx.doi.org/10.1016/j.fertnstert.2008.05.016
  • Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, Tamura I, Maekawa R, Aasada H, Yamagata Y, Sugino N. The role of melatonin as an antioxidant in the follicle. J Ovarian Res. 2012;5(1):5. http://dx.doi.org/10.1186/1757-2215-5-5 PMid:22277103.
    » http://dx.doi.org/10.1186/1757-2215-5-5
  • Tanavde VS, Maitra A. In vitro modulation of steroidogenesis and gene expression by melatonin: a study with porcine antral follicles. Endocr Res. 2003;29(4):399-410. http://dx.doi.org/10.1081/ERC-120026946 PMid:14682469.
    » http://dx.doi.org/10.1081/ERC-120026946
  • von Gall C, Stehle JH, Weaver DR. Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res. 2002;309(1):151-62. http://dx.doi.org/10.1007/s00441-002-0581-4 PMid:12111545.
    » http://dx.doi.org/10.1007/s00441-002-0581-4
  • Wang F, Tian X, Zhang L, Tan D-X, Reiter RJ, Liu G. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J Pineal Res. 2013;55(3):267-74. http://dx.doi.org/10.1111/jpi.12069 PMid:23772689.
    » http://dx.doi.org/10.1111/jpi.12069
  • Wang SJ, Liu WJ, Wu CJ, Ma FH, Ahmad S, Liu BR, Han L, Jiang XP, Zhang SJ, Yang LG. Melatonin suppresses apoptosis and stimulates progesterone production by bovine granulosa cells via its receptors (MT1 and MT2). Theriogenology. 2012;78(7):1517-26. http://dx.doi.org/10.1016/j.theriogenology.2012.06.019 PMid:22980085.
    » http://dx.doi.org/10.1016/j.theriogenology.2012.06.019
  • Xiao L, Hu J, Song L, Zhang Y, Dong W, Jiang Y, Zhang Q, Yuan L, Zhao X. Profile of melatonin and its receptors and synthesizing enzymes in cumulus-oocyte complexes of the developing sheep antral follicle-a potential estradiol-mediated mechanism. Reprod Biol Endocrinol. 2019;17(1):1. http://dx.doi.org/10.1186/s12958-018-0446-7 PMid:30606208.
    » http://dx.doi.org/10.1186/s12958-018-0446-7
  • Xie Z, Pang D, Yuan H, Jiao H, Lu C, Wang K, Yang Q, Li M, Chen X, Yu T, Chen X, Dai Z, Peng Y, Tang X, Li Z, Wang T, Guo H, Li L, Tu C, Lai L, Ouyang H. Genetically modified pigs are protected from classical swine fever virus. PLoS Pathog. 2018;14(12):e1007193. http://dx.doi.org/10.1371/journal.ppat.1007193 PMid:30543715.
    » http://dx.doi.org/10.1371/journal.ppat.1007193
  • Xu W, Li H, Zhang M, Shi J, Wang Z. Locus-specific analysis of DNA methylation patterns in cloned and in vitro fertilized porcine embryos. J Reprod Dev. 2020;66(6):505-14. http://dx.doi.org/10.1262/jrd.2019-076 PMid:32908081.
    » http://dx.doi.org/10.1262/jrd.2019-076
  • Zhou J, Zhao CC, Wu X, Shi JS, Zhou R, Wu ZF, Li ZC. Transcriptome heterogeneity of porcine ear fibroblast and its potential influence on embryo development in nuclear transplantation. Yi Chuan. 2020;42(9):898-915. http://dx.doi.org/10.16288/j.yczz.20-190 PMid:32952124.
    » http://dx.doi.org/10.16288/j.yczz.20-190

Publication Dates

  • Publication in this collection
    08 Nov 2021
  • Date of issue
    2021

History

  • Received
    02 Apr 2021
  • Accepted
    24 Sept 2021
Colégio Brasileiro de Reprodução Animal Coronel José dias Bicalho, 1224, CEP: , 31275-050, Belo Horizonte, MG - Brasil, Tel.: 55-31-3491 7122 - Belo Horizonte - MG - Brazil
E-mail: animreprod.journal@gmail.com