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ABSTRACT. The orange variety “x11”, which is a spontaneous mutant of the sweet orange, has a short 

juvenile period with early flowering. The data used in this paper are from a randomized design experiment 

that aimed to assess the plants' flowering characteristics when grafted onto two different varieties of 

lemon rootstock. The plants were pruned in each of the four seasons, and on each pruning occasion, the 

number of branches on each plant was counted and classified into four mutually exclusive flowering 

categories. The data presented large variability and many zeros. The statistical analysis included the use 

of generalized linear mixed models with a Bayesian approach. The results showed that flowering is not 

equal over the seasons, i.e., there are significant differences in the classification of the branches across 

the four seasons and the two varieties, with interactions between seasonal and branch effects. 
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Introduction 

Citriculture, especially that of the sweet orange (Citrus sinensis), is of great importance to Brazil’s 

economy, and the improvement of citrus production is a constant target for agricultural research. 

Systematic pruning and flowering encouragement are important for good fruit production. Fruit formation 

is the end result of a complex chain of events during plant development, in which flowering is a critical step 

(Goldschimdt & Koch, 1996). Spiegel-Roy and Goldschmidt (1996) note that flowering is strongly influenced 

by environmental conditions, such as temperature and humidity. This fact was also recorded by other 

authors, such as Ribeiro, Machado, and Brunini (2006), who studied the environmental conditions of São 

Paulo under the flowering of citrus, and Nishikawa et al. (2009), who described the correlation between 

flowering and temperature in citrus trees that have seasonal flowering periodicity. 

Additionally, some Citrus genus species have complex biological characteristics, resulting in difficulties 

for the genetic improvement of flowering and fruiting (Grosser & Gmitter, 1990). However, plants with a 

short juvenile cycle have excellent potential for use in crop improvement studies. Among the numerous 

citrus species, orange variety "x11", which is a spontaneous mutant of sweet orange, has a short juvenile 

period, with early flowering within one or two years of cultivation. This quality makes this variety an 

excellent choice for functional genomic studies of flowering and fruiting features (Tan & Swain, 2006). 

According to Pompeu Júnior (1991), the rootstocks also influence citrus production. The robustness of 

plants against environmental conditions, such as stresses of biotic and abiotic origin, is influenced by the 

rootstocks (Medina & Machado, 1998). 

On this basis, we present an experiment to assess the flowering characteristics of “x11” under two 

rootstocks, namely, Rangpur lime and Swingle citrumelo, over four seasons. These two rootstocks are the 

most used in Brazil due to their good production, cold tolerance and resistance to pests (Schäfer, Bastianel, 

& Dornells, 2001). In addition to the importance of this study from the genetic and agronomic viewpoints, 

this research also highlights the analysis of a type of response variable commonly observed in plant studies: 

a longitudinal count of a categorical response, which refers to the type of flower. 
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The generalized linear model framework (Nelder & Wedderburn, 1972) with extensions for categorial 

data (Agresti, 2002) can be used to analyze this type of dataset. In some situations, when the sample size is 

small and sparse, this framework may result in estimation problems, producing nonsensical estimates 

associated with infinite standard errors. There are some alternatives to handle this shortcoming, such as 

using bootstrapping (Efron, 1979) or using flexible distributions belonging to the Tweedie family (Bonat et 

al., 2017). Additionally, in such circumstances, Bayesian modeling can serve as an alternative, providing an 

informative prior for the parameters associated with the problematic estimates attained under the 

frequentist approach. However, these methods are rarely used in the analysis of citrus flowering data. In this 

context, this paper aims to contribute to the analysis of flowering data on the sweet orange variety “x11” 

using mixed effects models combined with a Bayesian approach. 

Material and methods 

The data used in this paper refer to an experiment conducted in 2011 in a greenhouse at the Center of 

Citrus Sylvio Moreira, located in Cordeirópolis City, São Paulo State, Brazil (latitude 22º27'42.6” S, 

longitude 47º23'57.1” W, altitude 668 m). The main objective of the research was to evaluate the flowering 

of adult plants of sweet orange on two rootstocks, namely, Rangpur lime (Citrus limonia Osbeck) and 

Swingle citrumelo (Citrus paradisi Macf. x Poncirus trifoliata (L.) Raf.) over four seasons (spring, summer, 

autumn, and winter). The study involved 17 similar two-year old plants, cultivated in 20-liter pots under 

controlled conditions of irrigation and fertilization and arranged in a completely randomized design on the 

benches of the greenhouse. Of these adult plants, 9 were grafted onto Rangpur lime and 8 onto Swingle 

citrumelo, although one of these plants subsequently died, leaving only 16 plants for the study.  

On the same day, the branches of each plant were nonseverely pruned to synchronize the development 

of the plants. The flowering evaluation was also carried out on a single day for each of the four seasons. For 

each plant, the number of new branches were counted that had developed with a terminal flower (category 

1), with a lateral flower (category 2), with no flowers (category 3), and with aborted flowers (category 4); the 

total number of branches was classified into four nominal flowering categories. 

In this study, despite the small sample size (true replication from 16 plants) there are large numbers of 

observations (numbers of branches) per plant and per season, in a grouped data structure, yielding a rich 

dataset for analysis. 

The analysis of data of this nature is not straightforward, since the classical standard analysis of variance 

cannot be applied. A Poisson regression for a discrete count response can be used. Additionally, to model 

the longitudinal structure of the data, with each plant being observed on four separate occasions, it is 

possible to fit a Poisson regression model using the generalized estimation equation (GEE) methodology 

proposed by Zeger and Liang (1986) for marginal models. The GEE framework requires only the specification 

of a variance function for the response variable to obtain reliable parameter estimates, considering a 

correlation structure. The idea of this procedure is to introduce, in the estimation process a correlation 

matrix,     , where  is a parameter vector that fully characterizes the matrix correlation. This estimation 

method focuses on regression parameters β, while  , a scale parameter, and   are treated as nuisance 

parameters. In marginal models, the population mean response is modeled as a function of the covariates 

considered, which is relevant when there are balanced data and hypotheses aimed at testing the effects of 

factors on the population mean. 

In the present study, however, there is a complication in the data structure that limits the use of 

marginal models; this complication, called overdispersion, is caused in part by the presence of many “zeros” 

and the varying frequency categories over the seasons. Due to the grouped structure of the data, the high 

occurrence of zero count responses and the small sample size, modeling this dataset is challenging, as we 

need to accommodate extra-variability. In this context, the mixed effect modeling framework is appropriate.   

In the generalized linear mixed model, we allow for this dependence through the inclusion of pertinent 

random effects in the linear predictor (Breslow & Clayton, 1993; Diggle, Heagerty, Liang, & Zeger, 2002; 

Pinheiro & Bates, 2000). The correlation between repeated observations can be considered to arise from the 

presence of a latent (random) variable (Diggle et al., 2002) that can then be allowed for in the comparison of 

the individual response profiles. These models are called subject-specific models. Additionally, we will use 

both classical and Bayesian approaches to analyze the dataset. Details of the statistical procedures adopted 

are as follows. 
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To establish a basic and general notation, let yijkl denote the count of the l-th response category for the i-

th unit at the j-th time (season) under the k-th treatment (rootstock type). Therefore, the vector yijk = (yijk1, 

yijk2, …, yijkC)’ represents the individual profile of responses across the C categories for unit (plant) i, at time j 

and treatment group k, i.e., the observed frequencies of each response category. Here, the response variable 

refers to the classification of branches into mutually exclusive categories; we have       (the number of 

branches with a terminal flower),       (the number of branches with a side flower),       (the number of 

branches without a flower) and       (the number of branches with an aborted flower). The sum of the 

observed frequencies over the C response categories,             
 
   , gives the (marginal) total number of 

branches for unit i at time j and treatment group k. 

Because the total values mijk are not fixed, the observed frequencies in each of the C response categories 

are considered as random count variables that can most simply be assumed to follow a count distribution, 

such as the Poisson distribution, which is a generalized linear model (GLM). Here, because of the repeated 

measurements of the plants over four seasons (longitudinal data), we are likely to have correlations among 

the four response profiles for each plant in addition to the associations among the branch category counts 

for each plant. It is possible to fit a Poisson regression model to such correlated data using a generalized 

linear mixed model (GLMM). The GLMM is used to incorporate the correlations between observations and to 

accommodate possible extra-variability due to the presence of excess zeros and disparate frequencies across 

categories and treatments. The dependence between observations is due to individual plant differences, and 

this heterogeneity is captured by the inclusion of appropriate random effects. 

In GLMMs, it is assumed that the response variables, conditioned on one or more random effects, are 

independent random variables that have the structure of a GLM (Molenberghs & Verbeke, 2005). Thus, for 

our example, we consider       as random variables, and we have the following: 

                            ,                                                   (1) 

where:    is a vector of individual level random effects, and 

                      

is the conditional mean of the random variable        This mean is related to a systematic linear predictor 

through a link function as follows: 

                           
      

                                 (2) 

where:    is the covariate vector associated with the fixed effects,   is the fixed effects parameter vector, and 

   is the vector associated with the random effects vector   . 

The systematic part of the mixed model given in (2) includes both fixed and random effects, and the 

random effects vector    constitutes a sample from a q-dimensional random variable, with the usual (but not 

only) choice being a multivariate normal distribution, i.e.,             . The objective of the analysis is to 

estimate the coefficients of the fixed effects,  , the parameters of G, the q×q variance-covariance matrix of 

the random effects, and, in some cases, an additional dispersion parameter,  . 

There is extensive literature on the estimation of the parameters in the GLMM (2), and it is common to 

use maximum likelihood (Breslow & Clayton, 1993; Diggle et al., 2002; Pinheiro & Bates, 2000). The 

likelihood function of the vector of unknown parameters  , which includes both   and  , is as follows: 

                             
         

 
   

  
                          (3) 

which is obtained by integrating (marginalizing) the joint distribution of       over the random effects  . 

The problem with maximizing the function in (3) is the presence of 16 q-dimensional integrals over the 

random effects   . In most cases, these integrals have no exact analytical solution; thus it is necessary to use 

numerical methods to obtain an approximate solution. 

We used the mixed model structure, starting with the maximal linear predictor as follows: 

                                                                                             

                     (4) 

where:    is the intercept,    is the effect of the j-th season,    is the effect of the k-th treatment,    is the 

effect of the l-th category,     is the effect of the interaction between the j-th season and the k-th treatment, 
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    is the effect of the interaction between the j-th season and the l-th category,           
   is a random 

effect related to observations of the i-th plant,            
   is a random effect related to observations of 

the i-th plant and j-th season, and             
   is an observation-level random effect included to 

accommodate extra-variability. 

To fit the mixed models as in (4) by maximizing the likelihood in (3), we used the glmer function of the 

lme4 package available in the R software (R Core Team, 2018) to attain the full solution using adaptive 

Gaussian quadrature to approximate the integral (the default uses only one point, corresponding to the 

Laplace approximation). From model (4), a set of submodels were tested using likelihood ratio tests, but we 

kept the same random effects because they reflect the hierarchical structure of the data. We also considered 

the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and the measure of 

deviance to perform model selection. 

Due to the observation of only zeros for the combinations Autumn:lateral flowers and Summer:no 

flowers, the estimation of the associated parameters (    and    , respectively) is problematic and 

associated with large standard errors. Hence, for the selected model, we carried out Bayesian analysis as an 

alternative to the previous method of fitting by maximum likelihood. Here, we set up prior distributions for 

the parameters of the model that, combined with the likelihood function through the Bayes rule, provide 

posterior distributions for them (Gelman et al., 2014). Our objective with Bayesian analysis, besides 

presenting a different methodology for this dataset, is to overcome drawbacks related to the classical 

approach. Specifically, we can pinpoint the unreliable inferences for the parameter estimates related to 

experimental conditions with zero counts, where confidence intervals and hypothesis tests based on 

asymptotic normal theory are inadequate and provide inconsistent results. 

To perform this Bayesian analysis, we set up noninformative prior distributions for all model parameters 

except for the two regression parameters related to the experimental conditions without any flowers. 

Initially, we specified the prior distributions for the variance components (  
 ,    

 , and   
 ) to be inverse 

gamma IG (0.0001, 0.0001), and a multivariate normal distribution with a mean vector of zeros and an 

identity covariance matrix with a precision parameter equal to 1010 for the regression coefficients. 

For parameters     and    , we specified informative prior distributions. Although we have observed 

neither lateral flowers in autumn nor absence of flowers in summer, there is no reason why these could not 

happen. Thus, it is plausible that these events could happen in other seasons. The interaction coefficient as 

follows: 

         
 

                        
  

                         

 
                        

  
                         

 

corresponds to how many times the ratio between the mean number of side and terminal flowers is greater 

(or smaller) in autumn than in spring (by taking terminal flowers and spring as baseline categories in our 

model matrix). The same interpretation applies to the interaction coefficient as follows: 

         
 

                   
  

                         

 
                   

  
                         

 

which corresponds to how many times the ratio between the number of branches without flowers and 

terminal flowers is greater (or smaller) in summer than in spring. 

Now, to specify a prior distribution, assuming normality, we need two pieces of information, namely, (i) 

an estimate for          and (ii) a lower 5% limit associated with this estimate. We believe that the ratio 

between the mean number of lateral flowers and that of terminal flowers is five times greater in spring than 

in autumn. Additionally, we believe that the probability that this ratio is greater than 20 is 0.05. These 

beliefs translate to the following specifications: 

         
 

 
       

 

 
      , 

                                       

Analogously, we believe that the ratio between the number of branches with no flowers and that with 

side flowers is twice as large in spring than in summer, with a probability of 5% that this ratio is greater than 

10, leading to the following: 
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      , 

                                      

Hence, the prior distributions reflecting these statements are specified as                     and 

                   . 

Posterior summaries of interest were obtained using the R package MCMCglmm, which implements 

Markov chain Monte Carlo routines for fitting multiresponse GLMMs (Hadfield, 2010). It requires only 

the specification of the distribution for random variables and prior distributions. We simulated 500,000 

samples for each parameter of interest, discarding the first 1,000 as burn-in samples, and the number of 

simulated samples is large enough to be a satisfactory effective sample size, even in the presence of 

autocorrelation in the MCMC samples. Convergence for the posterior distributions was checked 

through density and time series plots. 

From the posterior distributions, we computed point estimates for the coefficients (posterior means) 

and 95% credible intervals using the highest posterior density method and Bayesian p-values for 

significance of model terms. 

Results and discussion 

Initially, an exploratory data analysis was performed to identify possible effects of treatments and 

season, as well as the presence of potential outliers. The means and variances of the number of 

branches of each type over the four seasons are presented in Table 1. Note that the variances are much 

larger than the means, and hence, the Poisson model is not a reasonable assumption for these data. 

Table 1. Means and variances of the number of branches according to season and flower condition. 

Season 

Terminal flower Lateral flower No flowers Aborted flower 

Mean Variance Mean Variance Mean Variance Mean Variance 

Spring 100.13 294.38 1.75 3.67 10.31 20.89 19.06 28.99 

Summer 0.75 2.47 0.25 0.60 0.00 0.00 24.87 55.45 

Autumn 56.94 154.99 0.00 0.00 25.19 94.83 5.94 30.19 

Winter 19.06 272.46 80.87 790.25 3.06 6.86 0.94 0.33 

 

The following can also be observed from Table 1: there was a large incidence of terminal flowers in 

spring and autumn, plants with lateral flowers were prevalent in winter, plants without flowers were 

more common in autumn than in other periods, and plants with aborted flowers were predominant in 

summer.  

These patterns are the same for both types of rootstock. These results suggest that flowering in 

summer and autumn is less intense. These results agree with the studies presented by Guardiola (1997), 

who stated that flowering in summer and autumn is less intense than that in spring and winter.  

In the raw count data, we observe a large percentage of zeros (28.51%), including two combinations 

of season and flower type that resulted in only zeros (Autumn: lateral flowers and Summer: no flowers). 

However, there is no structural reason for this result, i.e., this result is a random phenomenon that can 

occur in other years and seasons. Additionally, it is clear that the response categories change according 

to the season (see Figure 1). 

The estimates of the selected mixed model are presented in Table 2. In this table, it is possible to see 

that the main effects of treatment, season and category were significant, as were most components of 

the interactions between them, except the interaction between autumn and side flower (season 3: 

category 2) and the interaction between summer and no flower (season 2: category 3). However, the 

size of these estimates and their associated standard errors highlights a problem: these parameters are 

attempting to reproduce the zero marginal counts for these categories, which calls into question the 

reliability of the conclusions based on this model. 
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Figure 1. Individual response profiles for the number of branches of each type of treatment over the four seasons. 

According to the defined methodology, we first fitted equation (4) and then various submodels to the 

data retaining the mixed model random effects. We sequentially tested the significance of each fixed factor. 

By studying the effect of the interaction between treatment and season, it was observed that this effect was 

not significant (p = 0.3088). However, it was observed that there was an interaction between season and 

category (p < 0.0001).  

Table 2. Parameter estimates and standard errors (se) for the model estimated using the classical approach, and parameter estimates 

and associated lower and upper 95% credible intervals (l-95% and u-95%, respectively) for the model estimated using the Bayesian 

approach (Seasons: 1 = spring (baseline), 2 = summer, 3 = autumn, 4 = winter; categories: 1 = terminal flower (baseline), 2 = lateral 

flower, 3 = no flower, 4 = aborted flower). 

Parameters 
Classical Bayesian 

Estimate se Estimate l-95% u-95% 

(Intercept) 4.50 0.10 4.51 4.30 4.72 

Treatment 0.21 0.07 0.20 0.05 0.37 

Season 2 -4.96 0.32 -5.06 -5.71 -4.42 

Season 3 -0.57 0.13 -0.60 -0.88 -0.33 

Season 4 -1.83 0.14 -1.85 -2.15 -1.55 

Category 2 -4.11 0.23 -4.22 -4.70 -3.76 

Category 3 -2.32 0.15 -2.34 -2.65 -2.04 

Category 4 -1.68 0.14 -1.70 -1.99 -1.41 

Season 2: category 2 3.03 0.65 3.08 1.73 4.39 

Season 3: category 2 -19.27 3989.98 -2.28 -3.58 -1.04 

Season 4: category 2 5.69 0.27 5.81 5.27 6.38 

Season 2: category 3 -16.71 4059.48 -1.77 -3.33 -0.27 

Season 3: category 3 1.48 0.20 1.51 1.09 1.93 

Season 4: category 3 0.60 0.25 0.62 0.10 1.13 

Season 2: category 4 5.23 0.35 5.32 4.63 6.04 

Season 3: category 4 -0.67 0.22 -0.65 -1.09 -0.20 

Season 4: category 4 -1.20 0.33 -1.21 -1.88 -0.56 
  

  < 0.0001 0.0028 0.0057 0.0005 0.0236 
   

  < 0.0001 0.0103 0.0048 0.0005 0.0194 

  
  0.1245 0.0201 0.1412 0.0948 0.2013 
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To account for this problem and explore the reliability of inferences on the other parameters, applied the 
alternative Bayesian estimation procedure to the selected model. This Bayesian fitted model is summarized 
in Table 2. 

It can be seen that almost all results agree with those provided using the classical (likelihood) approach, 
except for the two parameters related to the experimental conditions in which we have only zero counts 
(season 3: category 2 and season 2: category 3) for which we have used specific (slightly) informative priors.  

Figure 2 presents diagnostic plots for the coefficients     (autumn: lateral flowers) and     (summer: no 
flowers), which initially presented large standard errors and are associated with potential estimation 
problems. There is not any evidence of lack of convergence for their posterior distributions. Additionally, we 
simulated other chains for these parameters to analyze if they also converge (results omitted). Once again, 
no problems were obtained. Additionally, a similar study of convergence was done for the other parameters 
and, again, no convergence problems were identified. 

 
Figure 2. Trace plots and posterior densities for parameters     and     for the model estimated using the Bayesian approach. 

Figure 3 presents the posterior means for the expected number of flowers, along with credible intervals, 

for each experimental condition. 

 
Figure 3. Posterior means and credible intervals for the expected number of flowers under each experimental condition. 
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Finally, the Bayesian approach allows us to make the following conclusions from the data analysis: i) 

plants grafted on Rangpur lime and Swingle citrumelo differ statistically in relation to flowering; ii) 

flowering is not equal across the four seasons, i.e., there are significant differences in the classification of 

branches over the four seasons; and iii) there is an interaction between season and branch category; i.e., 

there is a greater abundance of terminal flowers in spring and lateral flowers in winter season; in contrast, 

there are more aborted flowers in summer and more branches without flowers in autumn (Figure 3). 

Therefore, it was found that the diversity and intensity of the types of flowers are related to exogenous 

factors (captured by random effects) and stress due to the seasons, corroborating the results discussed by 

Ribeiro et al. (2006). 

Conclusion 

Our contribution in this work is the use of a methodology for longitudinal count data based on 

generalized linear mixed models. This methodology is much more appropriate than the traditional 

techniques based on analysis of variance, in which factorial treatment designs are considered, with time 

being one of these factors. Additionally, when working with count data, the occurrence of zeros is not 

uncommon, and this occurrence is a possible cause of overdispersion. In such cases, mixed effects models 

allow for the accommodation of the extra-variability and the correlations among observations. 

Moreover, in our study, the purely classical approach failed to produce reliable standard errors for two 
parameters of the interaction term. Here, the use of the Bayesian approach allowed for a more stable 
analysis with more precision and conclusions that corroborated those of the classical model. 

Flowering is obviously an important step in the development and production of citrus fruit; however, it is 

influenced by many endogenous and exogenous factors and selecting an appropriate model can aid in the 

understanding of the underlying processes. Here, our modeling strategy allowed for the identification of 

significant differences between the flowering of plants grafted on Rangpur lime and Swingle citrumelo, as 

well as across seasons, with a predominance of terminal flowers in spring, lateral flowers in winter, aborted 

flowers in summer, and branches without flowers in autumn. 
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APPENDIX 

 

R CODE TO FIT THE MODELS 

 

######################################################################## 

### Scripts for sweet orange flowering data analysis 

 

### Loading packages 

require(MCMCglmm) 

require(lme4) 

 

######################################################################## 

### Classical analysis 

fit1 <- glmer(Count ~ treatment + season * category + (1|unity) + (1|plant) + (1|plant:season), data = 

final_data, family = poisson) 

summary(fit1) 

 

######################################################################## 

### Bayesian analysis 

# Prior specification 

I <- diag(17) 

eprior <- list(B = list(mu = c(0, 0, 0, 0, 0, 0, 0, 0, 0,- 0.69, 0, -1.61, 0, 0, 0, 0, 0), V = I*c(1e+10, 1e+10, 1e+10, 

1e+10, 1e+10, 1e+10, 1e+10, 1e+10, 1e+10, 0.983^2, 1e+10, 0.844^2, 1e+10, 1e+10, 1e+10, 1e+10, 1e+10)), 

R=list(V=1, nu=0.002), G=list(G1=list(V=1, nu=0.002), G2 = list(V=1, nu=0.002))) 

 

# Model fitting  

fit2 <- MCMCglmm(Count ~ treatment + season * category, 

                 random= ~ plant + plant:season, data=final_data, 

                 pl = TRUE,     

                 prior = eprior, 

                 family = "poisson", verbose = FALSE, 

                 nitt = 500000, burnin = 1000, thin = 1, pr = TRUE) 

summary(fit2) 

######################################################################## 

 

 

 


