Acessibilidade / Reportar erro

Analysis of the reproduction mode in Psidium spp. using the pollen:ovule ratio

ABSTRACT.

This research aimed to explore the reproductive characteristics of three species of Psidium (P. guajava L., P. cattleyanum Sabine, and P. guineense Sw.) and estimate a probable reproduction strategy based on the pollen:ovule (P:O) methodology. The number of pollen grains per floral bud (NGPB), number of pollen grains per anther (NGPA), number of anthers per flower bud (NAB), number of ovules per flower bud (NOB), and the P:O ratio of each species were estimated. All species had a P:O ratio over 2,000 and were classified as xenogamous. P.guajava presented the highest values for all characteristics evaluated, with the NGPB at 3,777,519, the NOB at 584.50 and a P:O ratio of 6,462.82. Similarly, P. cattleyanum had a P:O ratio of 5,649.89 (NGPB 762,736 and NOB 135). However, P. guineense was considered facultative xenogamous, with P:O of 2,085.75, the NGPB at 741,484 and the NOB at 355.50. Thus, it was concluded that the studied species have a preference for allogamy and require many pollen grains to fertilize each ovule, demonstrating that the transfer of pollen to the stigma is not very specialized.

Keywords:
allogamy; autogamy; Psidium cattleyanum; Psidium guajava; Psidium guineense

Introduction

The genus Psidium contains approximately 150 species, including P. guajava (guava) (diploid with 22 chromosomes in somatic cells, 2n = 2x = 22), P. guineense (araçazeiro) (tetraploid with 44 chromosomes in somatic cells, 2n = 4x = 44), and P. cattleyanum [ploidy, from triploid (2n = 3x = 33) to octaploid with chromosome numbers varying from 33 to 82 in somatic cells (2n = 8x = 82)] (Pereira, 1995Pereira, F. M. (1995). Cultura da goiabeira. Jaboticabal, SP: Funep.; Souza, Resende, Lima, Santos, & Chalfun, 2014Souza, A. G., Resende, L. G., Lima, I. P., Santos, R. M., & Chalfun, N. N. J. (2014). Variabilidade genética de acessos de araçazeiro e goiabeira suscetíveis e resistentes a Meloidogyne enterolobii. Ciência Rural, 44(5), 822-829. DOI: 10.1590/S0103-84782014000500010
https://doi.org/10.1590/S0103-8478201400...
; Souza, Resende, Lima, Martins, & Techio, 2015Souza, A. G., Resende, L. V., Lima, I. P., Martins, L. S. S., & Techio, V. H. (2015). Chromosome number and nuclear DNA amount in Psidium spp. resistant and susceptible to Meloidogyne enterolobii and its relation with compatibility between rootstocks and comercial varieties of guava tree. Plant Systematics and Evolution, 301, 231-237. DOI: 10.1007/s00606-014-1068-y
https://doi.org/10.1007/s00606-014-1068-...
). The annual production of guava in Brazil is 414,960 tons, and the average yield is 24,240 kg ha-1 (SEBRAE, 2015Serviço Brasileiro de Apoio às Micro e Pequenas Empresas [SEBRAE]. (2015). Agronegócio fruticultura (Boletim de inteligência). Retrieved on Nov. 10, 2017 from 10, 2017 from http://www.sebrae.com.br/sites/PortalSebrae
http://www.sebrae.com.br/sites/PortalSeb...
; IBGE, 2016Instituto Brasileiro de Geografia e Estatística [IBGE]. (2016). Produção Agrícola Municipal 2016. Retrieved on Feb. 12, 2018 from 12, 2018 from https://www.ibge.gov.br/
https://www.ibge.gov.br/...
). Brazil is the third largest producer of guava and other fruit trees worldwide behind China and India (SEBRAE, 2015Serviço Brasileiro de Apoio às Micro e Pequenas Empresas [SEBRAE]. (2015). Agronegócio fruticultura (Boletim de inteligência). Retrieved on Nov. 10, 2017 from 10, 2017 from http://www.sebrae.com.br/sites/PortalSebrae
http://www.sebrae.com.br/sites/PortalSeb...
).

Guava production is being jeopardized by a complex disease known as guava decline,which is caused by the synergistic association of the nematode Meloidogyne enterolobii with the fungus Fusarium solani. Guava decline causes the progressive rotting of the root system, burning of the edges, leaf yellowing and fall, and ultimately plant death (Gomes, Souza, Mussi-Dias, Silveira, & Dolinski, 2011Gomes, V. M., Souza, R. M., Mussi-Dias, V., Silveira, S. F., & Dolinski, C. (2011). Guava decline: a complex disease involving Meloidogyne enterolobii and Fusarium solani. Journal of Phytopathology, 159(1), 45-50. DOI: 10.1111/j.1439-0434.2010.01711.x
https://doi.org/10.1111/j.1439-0434.2010...
). This disease has been reported in several Brazilian states (Maranhão, de Moura, & Pedrosa, 2001Maranhão, S. R. V. L., de Moura, R. M., & Pedrosa, E. M. R. (2001). Reação de indivíduos segregantes de goiabeira a Meloidogyne incognita raça 1 e M. mayaguensis. Nematologia Brasileira, 25(1), 191-195.; Silva, Pereira, Araújo, & Carneiro, 2008; Biazatti et al., 2016Biazatti, M. A., de Souza, R. M., Marinho, C. S., Guilherme, D. O., Campos, G. S., Gomes, V. M., & Bremenkamp, C. A. (2016). Resistência de genótipos de araçazeiros a Meloidogyne enterolobii. Ciência Rural, 46(3), 418-120. DOI: 10.1590/0103-8478cr20140488
https://doi.org/10.1590/0103-8478cr20140...
) and has a high economic impact. To date, the control of this disease has not been effective (Pereira, de Souza, Souza, Dolinski, & Santos, 2009Pereira, F. O. M., de Souza, R. M., Souza, P. M., Dolinski, C., & Santos, G. K. (2009). Estimativa do impacto econômico e social direto de Meloidogyne mayaguensis na cultura da goiaba no Brasil. Nematologia Brasileira, 33(2), 176-181.; Almeida, Wicker, Santos, & Martins, 2012Almeida, E. J., Wickert, E., Santos, J. M., & Martins, A. B. G. (2012). Análise da variabilidade genética de Psidium spp. (Myrtaceae) avaliados quanto à reação a Meloidogyne enterolobii. Revista Brasileira de Fruticultura, 34(2), 532-539. DOI: 10.1590/S0100-29452012000200027
https://doi.org/10.1590/S0100-2945201200...
).

The use of resistant cultivars is the best alternative for disease control. However, P. guajava genotypes resistant to guava decline are not available to date, although disease resistance has been reported in accessions of P. cattleyanum and P. guineense (Miranda, Souza, & Viana, 2011Miranda, G. B., Souza, R. M., & Viana, A. P. (2011). Assessment of methods and criteria for screening Psidium spp. for resistance Meloidogyne enterolobii. Nematologia Brasileira, 34(4), 211-219.; Costa, Santos, & Castro, 2016Costa, S. R., Santos, C. A. F., & Castro, J. M. C. (2016). Inheritance of resistance to Meloidogyne enterolobii in Psidium guajava x P. guineense hybrid. European Journal of Plant Pathology, 146, 1-7. DOI: 10.1007/s10658-016-1098-0
https://doi.org/10.1007/s10658-016-1098-...
). Moreover, the use of rootstocks for guava is unfeasible (Robaina, Campos, Marinho, Souza, & Bremenkanp, 2015Robaina, R. R., Campos, G. S., Marinho, C. S., Souza, R. M., & Bremenkanp, C. A. (2015). Grafting guava on cattley guava resistant to Meloidogyne enterolobii. Ciência Rural, 45(9), 1579-1584. DOI: 10.1590/0103-8478cr20131412
https://doi.org/10.1590/0103-8478cr20131...
). Therefore, for guava crops, plant breeding programs are important for developing cultivars or rootstocks that are genetically resistant and compatible for grafting (Carneiro, Cirotto, Quintanilha, Silva, & Carneiro, 2007Carneiro, R. M. D. G., Cirotto, P. A., Quintanilha, A. P., Silva, D. B., & Carneiro, R. G. (2007). Resistance to Meloidogyne mayaguensis in Psidium spp. accessions and their grafting compatibility with P. guajava cv. Paluma. Fitopatologia Brasileira, 32(4), 281-284. DOI: 10.1590/S0100-41582007000400001
https://doi.org/10.1590/S0100-4158200700...
; Almeida, Martins, & Santos, 2009Almeida, E. J., Martins, A. B. G., & Santos, J. M. (2009). Resistência de goiabeiras e araçazeiros a Meloidogyne mayaguensis e estudo da compatibilidade na enxertia. Pesquisa Agropecuária Brasileira, 44(4), 421-423. DOI: 10.1590/S0100-204X2009000400014
https://doi.org/10.1590/S0100-204X200900...
; Gomes et al., 2011Gomes, V. M., Souza, R. M., Mussi-Dias, V., Silveira, S. F., & Dolinski, C. (2011). Guava decline: a complex disease involving Meloidogyne enterolobii and Fusarium solani. Journal of Phytopathology, 159(1), 45-50. DOI: 10.1111/j.1439-0434.2010.01711.x
https://doi.org/10.1111/j.1439-0434.2010...
; Miranda et al., 2011; Miranda, de Souza, Gomes, Ferreira, & Almeida, 2012Miranda, G. B., de Souza, R. M., Gomes, V. M., Ferreira, T. F., & Almeida, A. M. (2012). Avaliação de acessos de Psidium spp. quanto à resistência a Meloidogyne enterolobii. Bragantia, 71(1), 52-58. DOI: 10.1590/S0006-87052012005000001
https://doi.org/10.1590/S0006-8705201200...
).

Allard (1960Allard, R.W. (1960). Princípios do melhoramento genético de plantas. São Paulo, SP: Edgard Blucher.) reported that the effective execution of an improvement program depends on the knowledge of the reproductive mode of the species because the choice of the breeding method is based on this characteristic, i.e., whether the species is autogamous or allogamous. In guava, this information is still controversial because different studies have reported that guava is allogamous and has a high rate of autogamy or vice versa (Dasarathy, 1951Dasarathy, T. B. (1951). The guava. Madras Agriculture Journal, 38, 521-527.; Soubihe Sobrinho & Gurgel, 1962Soubihe Sobrinho, J., & Gurgel, J. T. A. (1962). Taxa de panmixia na goiabeira (Psidium guajava L.). Bragantia, 21, 15-20. DOI: 10.1590/S0006-87051962000100002
https://doi.org/10.1590/S0006-8705196200...
; Alves & Freitas, 2007Alves, J. E., & Freitas, B. M. (2007). Requerimentos de polinização de goiabeiras. Ciência Rural, 37(5), 1281-1286. DOI: 10.1590/S0103-84782007000500010
https://doi.org/10.1590/S0103-8478200700...
). This information is still scarce for P. guineense. Therefore, the reproduction mode of some species in the Psidium genus needs to be better understood.

Several methodologies can be used to determine the reproductive mode. Cruden (1977Cruden, R. W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 31(1), 32-46. DOI: 10.2307/2407542
https://doi.org/10.2307/2407542...
) reported that determining the pollen:ovule (P:O) ratio is a good method to predict the type of reproduction because it is fast and costs little compared with molecular marker or cross-breeding techniques (Cruden, 2000Cruden, R. W. (2000). Pollen grains: why so many?. Plant Systematics and Evolution, 222(1), 143-165. DOI: 10.1007/BF00984100
https://doi.org/10.1007/BF00984100...
). Many studies have used the P:O ratio to determine the probable pollination strategy (Galloni, Podda, Vivarelli, & Cristofolini, 2007Galloni, M., Podda, L., Vivarelli, D., & Cristofolini, G. (2007). Pollen representation, polle:ovule ratios, and other reproductive traits in Mediterranean Legumes (Fam. Fabaceae - Subfam. Faboideae). Plant Systematics and Evolution, 266, 147-164. DOI: 10.1007/s00606-007-0526-1
https://doi.org/10.1007/s00606-007-0526-...
) or pollination efficiency (Chouteau, Barabé, & Gibernau, 2006Chouteau, M., Barabé, D., & Gibernau, M. (2006). Pollen-ovule ratios in some Neotropical Araceae and their putative significance. Plant Systematics and Evolution, 257, 147-157. DOI: 10.1007/s00606-005-0328-2
https://doi.org/10.1007/s00606-005-0328-...
). Additionally, this method was used to determine the mechanisms of pollination in species with unknown reproduction modes (López, Rodriguez-Riaño, Ortega-Olivencia, Devesa, & Ruiz, 1999López, J., Rodriguez-Riaño, T., Ortega-Olivencia, A., Devesa, J. A., & Ruiz, T. (1999). Pollination mechanisms and pollen-ovule ratios in some Genisteae (Fabaceae) from Southwestern Europe. Plant Systematics and Evolution, 216, 23-47. DOI: 10.1007/BF00985099
https://doi.org/10.1007/BF00985099...
).

The P:O ratio reflects the probability of pollen grains reaching the stigma, resulting in the maximum production of seeds (Cruden, 1977Cruden, R. W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 31(1), 32-46. DOI: 10.2307/2407542
https://doi.org/10.2307/2407542...
). A lower P:O ratio indicates a more efficient transfer of pollen grains. Therefore, plants considered cleistogamic should have a lower P:O ratio. Moreover, the P:O ratio of autogamous plants should be lower than that of allogamous plants. The P:O ratio is directly correlated with the pollination and reproduction mode of the species (Cruden, 1977Cruden, R. W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 31(1), 32-46. DOI: 10.2307/2407542
https://doi.org/10.2307/2407542...
; Lenzi & Orth, 2004Lenzi, M., & Orth, A. I. (2004). Caracterização funcional do sistema reprodutivo da aroeira vermelha (Schinus terebinthifolius Raddi), em Florianópolis-SC, Brasil. Revista Brasileira de Fruticultura, 26(2), 198-201. DOI: 10.1590/S0100-29452004000200004
https://doi.org/10.1590/S0100-2945200400...
).

The objective of this study was to study the reproductive characteristics of three species of Psidium (P. guajava L., P. cattleyanum Sabine, and P. guineense Sw.), determine how these characteristics allow estimation of the P:O ratio, and identify the likely reproductive strategy based on this ratio.

Material and methods

Plant samples

The accessions used in this study belonged to the germplasm collection of the Genetic Improvement Program of Guava Trees of the State University of Northern Rio de Janeiro Darcy Ribeiro (Universidade Estadual do Norte Fluminense Darcy Ribeiro -UENF). The plant collection was located in the Antônio Sarlo Agricultural School in Campos dos Goytacazes, Rio de Janeiro State, Brazil.

For this study, flower buds (FB) of four araçá accessions were collected: Araçá Amarelo (P. cattleyanum), Araçá Coroa (P. cattleyanum), Araçá Una (P. cattleyanum), along with Araçá do Campo (P. guineense), and four guava varieties: Cortibel 1, Cortibel 4, Cortibel 6, and Paluma (Table 1).

The guava trees were propagated by cutting, whereas P. cattleyanum varieties were propagated using vegetative techniques. The spacing was 5 m within each row and 7 m between rows, and cover crop treatment was applied as needed.

During flowering, four FBs per accession in preanthesis were randomly collected in 70% ethanol and kept at 4°C until slides preparation.

Table 1
Accessions of Psidium spp. maintained at the Antônio Sarlo Agricultural School, Campos dos Goytacazes, Rio de Janeiro State, Brazil.

Characteristics evaluated

Number of pollen grains per anther (NPGA), number of anthers per bud (NAB), number of pollen grains per bud (NPGB), and number of ovules per bud (NOB).

The NPGA was counted using the protocol of Dafni (1992Dafni, A. (1992). Pollination Ecology. The practical approach series. Oxford, UK: Oxford University Press.) and Damasceno Junior et al. (2009Damasceno Junior, P. C., Pereira, T. N. S., Pereira, M. G., da Silva, F. F., Souza, M. M., & Nicoli, R. G. (2009). Preferential reproduction mode of hermaphrodite papaya plant (Carica papaya L; Caricaceae). Revista Brasileira de Fruticultura, 31(1), 182-189. DOI: 10.1590/S0100-29452009000100025
https://doi.org/10.1590/S0100-2945200900...
). For this purpose, one anther per FB was macerated in a solution containing four drops of Triton-X, three drops of 0.5% methylene blue, and 900 µL of 70% ethanol. Then, the anther was placed in a centrifuge tube containing the same solution, and the solution was shaken manually for 1 min. A 10-µL aliquot of the total suspension (1,000 µL) was placed on a histological slide, the slide was covered with a cover slip, and the number of pollen grains was counted under an Olympus BX60 optical microscope.

Four slides were prepared per anther (with a 10-µL sample on each slide), and the total number of pollen grains was counted. This procedure was performed with five anthers per FB, and four FBs were used per accession.

The number of pollen grains present in one anther (macerated in 1,000 µL) was estimated considering the mean number of pollen grains in the four tissue slides. Subsequently, the mean number of pollen grains present in five anthers from the same FB and the number of pollen grains in one anther of each FB were estimated.

The NAB was obtained by counting the number of anthers per flower. NPGB was estimated by multiplying the NPGA by the NAB of each FB.

NOB was estimated by counting the number of ovules. For this purpose, the ovaries were cut, and the ovules were placed on a tissue slide with three drops of a lactophenol cotton-blue solution. Then, a coverslip was placed on the slide, and the ovules were counted under an Olympus BX60 optical microscope.

The values for each accession were estimated by determining the mean counts in the four FBs analyzed.

Pollen:ovule ratio

The P:O ratio was estimated for each accession and species by dividing the NPGB by the NOB. The reproduction mode was determined by dividing the number of pollen grains by the number of ovules according to Cruden (1977Cruden, R. W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 31(1), 32-46. DOI: 10.2307/2407542
https://doi.org/10.2307/2407542...
).

Statistical analysis

NGPA, NGPB, NAB, and NOB were subjected to analysis of variance using a statistical model based on a completely randomized design:

Y i j k = μ + G j + ε i j k

where: ( = the constant; Gi = the effect of the ith fixed genotype (i = 1,2 ..., 8); and (ijk = the experimental error associated with each observation, assuming an NID (0, (²).

The accessions were classified by comparing the means using Tukey’s test at a level of significance of 0.05. All statistical analyses were conducted using Statistical Analysis System [SAS] (1996Statistical Analysis System [SAS]. (1996). User’s guide. Cary, NC: SAS Institute Inc.).

Results

The results of the analysis of variance, the estimates of the means and coefficient of variation for NPGA, NPGB, NAB, NOB, and the P:O ratio are shown in Table 2.

Table 2
Analysis of variance for the number of pollen grains per flower bud (NPGB), number of pollen grains per anther (NPGA), number of anthers per flower bud (NAB), number of ovules per flower bud (NOB), and pollen:ovule ratio (P:O) in eight accessions of Psidium ssp.

All evaluated variables presented significant differences using the F-test at a level of significance of 1% (p < 0.01). Gomes (1990Gomes, F. P. (1990). Estatística experimental. Piracicaba, SP: USP.) analyzed the coefficients of variation (CV) and observed that the estimated values obtained in the field were considered moderate for the NAB (12.96%) and the NOB (17.53%) and high for the NPGB (29.71%), the NPGA (21.73%), and the P:O ratio (30.16%) using CVs of < 10%, 10-20%, 20-30%, and > 30% as low, moderate, high, and very high, respectively.

However, although the CVs were classified as moderate to high, these values considered the variability in three species of the genus Psidium. In addition, the CVs for the NPGB and P:O ratio were highest (29.71 and 30.16%, respectively) because these characteristics were estimated using two variables-NAB and NPGA for NPGB and for P:O ratio, NPGB and NOB-and these correlations may have increased the CV.

The mean values for NPGA, NPGB, NAB, and NOB were analyzed using Tukey's test at a level of significance of 0.05 are presented in Table 3.

Table 3
Number of pollen grains per flower bud (NPGB), number of pollen grains per anther (NPGA), number of anthers per flower bud (NAB), and number of ovules per flower bud (NOB) in eight accesses of Psidium ssp.

The accessions with the highest mean NPGB were the same as those with the highest mean NPGA, and these values were higher in all P. guajava varieties than in all accessions of Araçá (both P. guineense and P. cattleyanum). The variety Cortibel 6 had the highest mean NPGB (4,426,298) and NPGA (10,197.50). Araçá Una presented the lowest mean NPGB (462,604), whereas Araçá Coroa had the lowest mean NPGA (2,062.50).

Araçá Una presented the lowest mean NAB (191), whereas Araçá Coroa had the highest mean NAB (451.50). In addition to Araçá Coroa, Araçá Amarelo and all P. cattleyanum varieties had the highest mean NAB, indicating that only Araçá do Campo and Araçá Una presented the lowest mean NAB.

The guava trees presented the highest mean NOB, whereas the Paluma variety had the highest mean NOB, with 677.25 ovules per FB. The araçá trees were divided into three groups, and the accession with the lowest mean NOB was Araçá Una, with 19.25 ovules.

The estimated P:O ratio for P. guajava was 6,462.82; therefore, this species was considered xenogamous. As expected, the range for the P:O ratio did not differ significantly between the guava cultivars (Table 4).

Table 4
Pollen:ovule ratio (P:O) and reproduction mode of eight accessions of Psidium spp. according to the methodology of Cruden (1977Cruden, R. W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 31(1), 32-46. DOI: 10.2307/2407542
https://doi.org/10.2307/2407542...
).

P. cattleyanum was classified as xenogamous because the obtained P:O ratio was 5,649.89. All accessions of this species were classified as xenogamous (Table 4), except for P. guineense, which was considered facultative xenogamous, with a P:O ratio of 2,085.75 (Table 4).

Discussion

Raseira and Raseira (1996Raseira, M. C. B., & Raseira, A. (1996). Contribuição ao estudo do araçazeiro, Psidium cattleyanum. Pelotas, RS: Embrapa Clima Temperado.) studied the number of ovules, number of pollen grains, and number of anthers in four varieties of P. cattleyanum (“roxo planalto", “amarelo planalto", “amarelo litoral”, and “roxo sudeste”) and found that the mean number of ovules ranged from 94 to 165, which differs from our results in which the number of ovules varied from 19.25 to 677.25. However, the range was higher in the present study because three Psidium species were evaluated. It was lower (19.25 to 195.00) when only P. cattleyanum was analyzed.

The mean number of anthers found by Raseira and Raseira (1996Raseira, M. C. B., & Raseira, A. (1996). Contribuição ao estudo do araçazeiro, Psidium cattleyanum. Pelotas, RS: Embrapa Clima Temperado.) was similar to that observed in the three Psidium species evaluated. Both in the current study and in the Raseira and Raseira (1996Raseira, M. C. B., & Raseira, A. (1996). Contribuição ao estudo do araçazeiro, Psidium cattleyanum. Pelotas, RS: Embrapa Clima Temperado.) study, yellow araçá presented the highest number of anthers (Araçá Coroa, 451; “amarelo planalto", 480), and purple araçá presented the lowest number of anthers (Araçá Una, 191; “roxo sudeste”, 256). The most contradictory characteristic in the two studies was NPGA, in which the values in the three Psidium species analyzed in this study were higher than those in the four varieties of araçá evaluated by Raseira and Raseira (1996Raseira, M. C. B., & Raseira, A. (1996). Contribuição ao estudo do araçazeiro, Psidium cattleyanum. Pelotas, RS: Embrapa Clima Temperado.). However, the methodology used by these authors (Tuite, 1969Tuite, J. (1969). Establishment of disease. In J. Tuite (Ed.), Plant pathological methods fungi and bacteria (p. 176-192). Minneapolis, US: Burgess Publishing Company.) was different from that used in the present study (Dafni, 1992Dafni, A. (1992). Pollination Ecology. The practical approach series. Oxford, UK: Oxford University Press.).

According to the classification of Cruden (1977Cruden, R. W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 31(1), 32-46. DOI: 10.2307/2407542
https://doi.org/10.2307/2407542...
), all evaluated species, P. guineense, P. cattleyanum, and P. guajava, were considered xenogamous, i.e., species that reproduce by cross-pollination (allogamous). P. guineense was considered facultative xenogamous, i.e., it may have some degree of self-pollination, where as P. guajava and P. cattleyanum presented the highest scores in Cruden’s classification (1977) and thus were considered xenogamous, i.e., some factors may limit self-pollination in these species. In these cases, pollination is performed primarily by pollinators (Cruden, 1977; Lenzi & Orth, 2004Lenzi, M., & Orth, A. I. (2004). Caracterização funcional do sistema reprodutivo da aroeira vermelha (Schinus terebinthifolius Raddi), em Florianópolis-SC, Brasil. Revista Brasileira de Fruticultura, 26(2), 198-201. DOI: 10.1590/S0100-29452004000200004
https://doi.org/10.1590/S0100-2945200400...
).

The probable reproduction mode of P. guajava is xenogamy, which agrees with previous studies that found cross-pollination was more common in guava (Dasarathy, 1951Dasarathy, T. B. (1951). The guava. Madras Agriculture Journal, 38, 521-527.; Balasubrahmanyan, 1959Balasubrahmanyan, V. R. (1959). Studies on blossom biology of guava. Indian Journal of Horticulture, 16(2), 69-75.).This conclusion is reinforced by the fact that the flower has a pleasant aroma and releases most of the pollen, attracting many visitors (Alves & Freitas, 2006Alves, J. E., & Freitas, B. M. (2006). Comportamento de pastejo e eficiência de polinização de cinco espécies de abelhas em flores de goiabeira. (Psidium guajava L.). Ciência Agronômica, 37(2), 216-220.). In addition, the Paluma variety has a modified spoon-shaped petal, which protects the stigma while the flower is closed, and this characteristic also favors allogamy (Alves & Freitas, 2007).

Corroborating this, studies report that honey bees (Apis mellifera), jandaíra bees (Melipona subnitida), and mamangava bees (Xylocopa frontalis) visit guava flowers and have grazing behavior consistent with that of pollinators (Alves & Freitas 2006Alves, J. E., & Freitas, B. M. (2006). Comportamento de pastejo e eficiência de polinização de cinco espécies de abelhas em flores de goiabeira. (Psidium guajava L.). Ciência Agronômica, 37(2), 216-220.; Alves & Freitas, 2007). This behavior explains why the comparison of different types of pollination in guava, including self-pollination, indicated that cross-pollination produced significantly more fruits and seeds (Alves & Freitas, 2007Alves, J. E., & Freitas, B. M. (2007). Requerimentos de polinização de goiabeiras. Ciência Rural, 37(5), 1281-1286. DOI: 10.1590/S0103-84782007000500010
https://doi.org/10.1590/S0103-8478200700...
).

Raseira and Raseira (1996Raseira, M. C. B., & Raseira, A. (1996). Contribuição ao estudo do araçazeiro, Psidium cattleyanum. Pelotas, RS: Embrapa Clima Temperado.) suggested that P. cattleyanum, which was considered xenogamous, presented self-incompatibility because the results of the pollination test indicated that the penetration of the pollen tube into the ovule occurred in few pistils, demonstrating that the pollen tube stopped growing before reaching the ovary of the flower.

In addition, in the same study, Raseira and Raseira (1996Raseira, M. C. B., & Raseira, A. (1996). Contribuição ao estudo do araçazeiro, Psidium cattleyanum. Pelotas, RS: Embrapa Clima Temperado.) found that the percentage of fructification from self-pollination was lower than that from free pollination. However, fructification was also observed when the flowers were emasculated, protected, and not pollinated, indicating the formation of unfertilized fruits, probably originating from parthenocarpy or apomixis.

P. guineense was classified as facultative xenogamous considering the P:O ratio, which corroborates the results of da Silva, Araujo, Martins, Martins, and Veasey (2016da Silva, E. F., Araujo, R. L., Martins, C. S. R., Martins, L. S. S., & Veasey, E. A. (2016). Diversity and genetic structure of natural populations of Araçá (Psidium guineense Sw.). Revista Caatinga, 29(1), 37-44. DOI: 10.1590/1983-21252016v29n105rc
https://doi.org/10.1590/1983-21252016v29...
), who found that there was an absence of endogamy and excess heterozygosity in four natural populations of P. guineense. This result suggests that the primary reproduction mode in this species is allogamy (da Silva et al., 2016)da Silva, E. F., Araujo, R. L., Martins, C. S. R., Martins, L. S. S., & Veasey, E. A. (2016). Diversity and genetic structure of natural populations of Araçá (Psidium guineense Sw.). Revista Caatinga, 29(1), 37-44. DOI: 10.1590/1983-21252016v29n105rc
https://doi.org/10.1590/1983-21252016v29...
because a good indication of allogamy is the low frequency of loci in homozygotes (Allard, 1960Allard, R.W. (1960). Princípios do melhoramento genético de plantas. São Paulo, SP: Edgard Blucher.).

Studies have reported that the P:O ratio of perennial species, including the three Psidium species studied, is higher than that of annual species, which are xenogamous in most cases (Cruden, 1977Cruden, R. W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 31(1), 32-46. DOI: 10.2307/2407542
https://doi.org/10.2307/2407542...
; Aarssen, 2000Aarssen, L. W. (2000). Why are most selfers annuals? A new hypothesis for the fitness benefit of selfing. Oikos, 89(3), 606-612. DOI: 10.1034/j.1600-0706.2000.890321.x
https://doi.org/10.1034/j.1600-0706.2000...
; Jurgens & Gottsberger, 2002Jurgens, A., Witt, T., & Gottsberger, G. (2002). Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination, life form, style number and sexual system. Sexual Plant Reproduction, 14, 279-289. DOI: 10.1007/s00497-001-0124-2
https://doi.org/10.1007/s00497-001-0124-...
; Galloni et al., 2007Galloni, M., Podda, L., Vivarelli, D., & Cristofolini, G. (2007). Pollen representation, polle:ovule ratios, and other reproductive traits in Mediterranean Legumes (Fam. Fabaceae - Subfam. Faboideae). Plant Systematics and Evolution, 266, 147-164. DOI: 10.1007/s00606-007-0526-1
https://doi.org/10.1007/s00606-007-0526-...
). This is because annual species have a short amount of time available to produce progeny, and thus self-pollination is advantageous by ensuring efficient reproduction in a limited time.

Other studies (Lopez et al., 1999López, J., Rodriguez-Riaño, T., Ortega-Olivencia, A., Devesa, J. A., & Ruiz, T. (1999). Pollination mechanisms and pollen-ovule ratios in some Genisteae (Fabaceae) from Southwestern Europe. Plant Systematics and Evolution, 216, 23-47. DOI: 10.1007/BF00985099
https://doi.org/10.1007/BF00985099...
; Jurgens & Gottsberger, 2002Jurgens, A., Witt, T., & Gottsberger, G. (2002). Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination, life form, style number and sexual system. Sexual Plant Reproduction, 14, 279-289. DOI: 10.1007/s00497-001-0124-2
https://doi.org/10.1007/s00497-001-0124-...
; Wang, Zhang, Renner, & Chen, 2005Wang, Y., Zhang, D., Renner, S. S., & Chen, Z. (2005). Self-pollination by sliding pollen in Caulokaempferia coenobialis (Zingiberaceae). International Journal of Plant Sciences, 166(5), 753-759. DOI: 10.1086/431803
https://doi.org/10.1086/431803...
; Michalski & Durka, 2009Michalski, S. G., & Durka, W. (2009). Pollination mode and life form strongly affect the relation between mating system and pollen to ovule ratios. New Phytologist, 183(2), 470-479. DOI: 10.1111/j.1469-8137.2009.02861.x
https://doi.org/10.1111/j.1469-8137.2009...
) have found that the P:O ratio corresponds to the intervals estimated by Cruden (1977Cruden, R. W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 31(1), 32-46. DOI: 10.2307/2407542
https://doi.org/10.2307/2407542...
) or follows an expected pattern in which the P:O ratio of autogamous species is lower than that of allogamous species (Lehnebach & Riveiros, 2003Lehnebach, C., & Riveiros, M. (2003). Pollination biology of the Chilean endemic orchid Chloraea lamellata. Biodiversity and Conservation, 12, 1741-1751. DOI: 10.1023/A:1023666800948
https://doi.org/10.1023/A:1023666800948...
; Medan, 2003Medan, D. (2003). Reproductive biology of the andean shrub Discaria nana (Rhamnaceae). Plant Biology, 5(1), 94-102. DOI: 10.1055/s-2003-37980
https://doi.org/10.1055/s-2003-37980...
). However, in some studies, the results of the P:O ratio disagree with the reproduction mode identified (Chouteau et al., 2006Chouteau, M., Barabé, D., & Gibernau, M. (2006). Pollen-ovule ratios in some Neotropical Araceae and their putative significance. Plant Systematics and Evolution, 257, 147-157. DOI: 10.1007/s00606-005-0328-2
https://doi.org/10.1007/s00606-005-0328-...
; Hokched & Ramírez, 2008Hokched, O., & Ramírez, N. (2008). Breeding systems in species of Melastomataceae in Gran Sabana (Bolivar State, Venezuela). Acta Botánica Venezuélica, 31(2), 387-408.).

This was the case in the study by Garcia, Miguez, and Gottsberguer (2014Garcia, M. T. A., Miguez, M. B., & Gottsberguer, G. (2014). Pollen: ovule ratio and its relationship with other reproductive traits in some Passiflora species (Passifloraceae). Anales del Jardín Botánico de Madrid, 71(2), 1-8. DOI: 10.3989/ajbm.2360
https://doi.org/10.3989/ajbm.2360...
), who examined four species of Passiflora, two self-incompatible (P. caerulea and P. misera) and two self-compatible (P. foetida and P. suberosa) species and observed that although the P:O ratio was higher in self-incompatible species, the ratio classified P. caerulea between facultative autogamous and facultative xenogamous and P. misera as facultative xenogamous. This result indicates that the P:O ratio was lower than expected because these species are self-incompatible and self-pollination is not feasible.

Because of these disagreements, the estimates used for determining the reproduction mode have come under criticism. However, Cruden (1977Cruden, R. W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 31(1), 32-46. DOI: 10.2307/2407542
https://doi.org/10.2307/2407542...
) reported that the P:O ratio was one of the factors to be analyzed to predict the type of reproduction of the species. Therefore, further studies are necessary to confirm whether the P:O ratio in the three Psidium species corresponds to the type of reproduction of these species in the field.

Cruden (2000Cruden, R. W. (2000). Pollen grains: why so many?. Plant Systematics and Evolution, 222(1), 143-165. DOI: 10.1007/BF00984100
https://doi.org/10.1007/BF00984100...
) noted that the P:O ratio may be confusing, especially for allogamous species with a low P:O ratio. However, other authors reported that species with precise or highly specialized pollen transfer mechanisms presented a P:O ratio lower than expected compared to species with a similar reproduction system but a less efficient pollen flow (Cruden & Miller-Ward, 1981Cruden, R. W., & Miller-Ward, S. (1981). Pollen-ovule ration, pollen-size, and the ratio of stigmatic area to the pollen-bearing area of the pollinator: an hypothesis. Evolution, 35(5), 964-974. DOI: 10.2307/2407867.
https://doi.org/10.2307/2407867....
; Chouteau et al., 2006Chouteau, M., Barabé, D., & Gibernau, M. (2006). Pollen-ovule ratios in some Neotropical Araceae and their putative significance. Plant Systematics and Evolution, 257, 147-157. DOI: 10.1007/s00606-005-0328-2
https://doi.org/10.1007/s00606-005-0328-...
).

Few studies have evaluated the reproductive biology of native species of the Myrtaceae family, especially those of the genus Psidium. With the exception of guava, no genetic improvement programs are available for wild Psidium species (Franzon, Campos, Proença, & Sousa-Silva, 2009Franzon, R. C., Campos, L. Z. O., Proença, C. E. B., & Sousa-Silva, J. C. (2009). Araçás do gênero Psidium: principais espécies, ocorrência, descrição e usos. Planaltina, DF: Embrapa Cerrados.). Therefore, studies seeking basic knowledge on the type of reproduction of native species are fundamental (Franzon et al., 2009Franzon, R. C., Campos, L. Z. O., Proença, C. E. B., & Sousa-Silva, J. C. (2009). Araçás do gênero Psidium: principais espécies, ocorrência, descrição e usos. Planaltina, DF: Embrapa Cerrados.) require many pollen grains to fertilize each ovule, demonstrating that the transfer of pollen to the stigma is not very specialized and corresponds to the intervals proposed by Cruden (1977Cruden, R. W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 31(1), 32-46. DOI: 10.2307/2407542
https://doi.org/10.2307/2407542...
) because genetic improvement depends primarily on the type of reproduction of these species.

Conclusion

The results indicate that the evaluated species; all species were classified as xenogamous. According to the P:O ratio, P. guajava and P. cattleyanum were classified as xenogamous, where as P. guineense was classified as facultative xenogamous.

However, considering that the P:O ratio is indicative of only the reproduction mode, additional studies are necessary to determine the presence of self-incompatibility and identify the factors that limit self-pollination in these species.

Acknowledgements

We thank CAPES and FAPERJ for financial support

References

  • Aarssen, L. W. (2000). Why are most selfers annuals? A new hypothesis for the fitness benefit of selfing. Oikos, 89(3), 606-612. DOI: 10.1034/j.1600-0706.2000.890321.x
    » https://doi.org/10.1034/j.1600-0706.2000.890321.x
  • Allard, R.W. (1960). Princípios do melhoramento genético de plantas. São Paulo, SP: Edgard Blucher.
  • Almeida, E. J., Martins, A. B. G., & Santos, J. M. (2009). Resistência de goiabeiras e araçazeiros a Meloidogyne mayaguensis e estudo da compatibilidade na enxertia. Pesquisa Agropecuária Brasileira, 44(4), 421-423. DOI: 10.1590/S0100-204X2009000400014
    » https://doi.org/10.1590/S0100-204X2009000400014
  • Almeida, E. J., Wickert, E., Santos, J. M., & Martins, A. B. G. (2012). Análise da variabilidade genética de Psidium spp. (Myrtaceae) avaliados quanto à reação a Meloidogyne enterolobii. Revista Brasileira de Fruticultura, 34(2), 532-539. DOI: 10.1590/S0100-29452012000200027
    » https://doi.org/10.1590/S0100-29452012000200027
  • Alves, J. E., & Freitas, B. M. (2006). Comportamento de pastejo e eficiência de polinização de cinco espécies de abelhas em flores de goiabeira. (Psidium guajava L.). Ciência Agronômica, 37(2), 216-220.
  • Alves, J. E., & Freitas, B. M. (2007). Requerimentos de polinização de goiabeiras. Ciência Rural, 37(5), 1281-1286. DOI: 10.1590/S0103-84782007000500010
    » https://doi.org/10.1590/S0103-84782007000500010
  • Balasubrahmanyan, V. R. (1959). Studies on blossom biology of guava. Indian Journal of Horticulture, 16(2), 69-75.
  • Biazatti, M. A., de Souza, R. M., Marinho, C. S., Guilherme, D. O., Campos, G. S., Gomes, V. M., & Bremenkamp, C. A. (2016). Resistência de genótipos de araçazeiros a Meloidogyne enterolobii. Ciência Rural, 46(3), 418-120. DOI: 10.1590/0103-8478cr20140488
    » https://doi.org/10.1590/0103-8478cr20140488
  • Carneiro, R. M. D. G., Cirotto, P. A., Quintanilha, A. P., Silva, D. B., & Carneiro, R. G. (2007). Resistance to Meloidogyne mayaguensis in Psidium spp. accessions and their grafting compatibility with P. guajava cv. Paluma. Fitopatologia Brasileira, 32(4), 281-284. DOI: 10.1590/S0100-41582007000400001
    » https://doi.org/10.1590/S0100-41582007000400001
  • Chouteau, M., Barabé, D., & Gibernau, M. (2006). Pollen-ovule ratios in some Neotropical Araceae and their putative significance. Plant Systematics and Evolution, 257, 147-157. DOI: 10.1007/s00606-005-0328-2
    » https://doi.org/10.1007/s00606-005-0328-2
  • Costa, S. R., Santos, C. A. F., & Castro, J. M. C. (2016). Inheritance of resistance to Meloidogyne enterolobii in Psidium guajava x P. guineense hybrid. European Journal of Plant Pathology, 146, 1-7. DOI: 10.1007/s10658-016-1098-0
    » https://doi.org/10.1007/s10658-016-1098-0
  • Cruden, R. W. (2000). Pollen grains: why so many?. Plant Systematics and Evolution, 222(1), 143-165. DOI: 10.1007/BF00984100
    » https://doi.org/10.1007/BF00984100
  • Cruden, R. W., & Miller-Ward, S. (1981). Pollen-ovule ration, pollen-size, and the ratio of stigmatic area to the pollen-bearing area of the pollinator: an hypothesis. Evolution, 35(5), 964-974. DOI: 10.2307/2407867.
    » https://doi.org/10.2307/2407867.
  • Cruden, R. W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 31(1), 32-46. DOI: 10.2307/2407542
    » https://doi.org/10.2307/2407542
  • da Silva, E. F., Araujo, R. L., Martins, C. S. R., Martins, L. S. S., & Veasey, E. A. (2016). Diversity and genetic structure of natural populations of Araçá (Psidium guineense Sw.). Revista Caatinga, 29(1), 37-44. DOI: 10.1590/1983-21252016v29n105rc
    » https://doi.org/10.1590/1983-21252016v29n105rc
  • Dafni, A. (1992). Pollination Ecology. The practical approach series Oxford, UK: Oxford University Press.
  • Damasceno Junior, P. C., Pereira, T. N. S., Pereira, M. G., da Silva, F. F., Souza, M. M., & Nicoli, R. G. (2009). Preferential reproduction mode of hermaphrodite papaya plant (Carica papaya L; Caricaceae). Revista Brasileira de Fruticultura, 31(1), 182-189. DOI: 10.1590/S0100-29452009000100025
    » https://doi.org/10.1590/S0100-29452009000100025
  • Dasarathy, T. B. (1951). The guava. Madras Agriculture Journal, 38, 521-527.
  • Franzon, R. C., Campos, L. Z. O., Proença, C. E. B., & Sousa-Silva, J. C. (2009). Araçás do gênero Psidium: principais espécies, ocorrência, descrição e usos. Planaltina, DF: Embrapa Cerrados.
  • Galloni, M., Podda, L., Vivarelli, D., & Cristofolini, G. (2007). Pollen representation, polle:ovule ratios, and other reproductive traits in Mediterranean Legumes (Fam. Fabaceae - Subfam. Faboideae). Plant Systematics and Evolution, 266, 147-164. DOI: 10.1007/s00606-007-0526-1
    » https://doi.org/10.1007/s00606-007-0526-1
  • Garcia, M. T. A., Miguez, M. B., & Gottsberguer, G. (2014). Pollen: ovule ratio and its relationship with other reproductive traits in some Passiflora species (Passifloraceae). Anales del Jardín Botánico de Madrid, 71(2), 1-8. DOI: 10.3989/ajbm.2360
    » https://doi.org/10.3989/ajbm.2360
  • Gomes, F. P. (1990). Estatística experimental Piracicaba, SP: USP.
  • Gomes, V. M., Souza, R. M., Mussi-Dias, V., Silveira, S. F., & Dolinski, C. (2011). Guava decline: a complex disease involving Meloidogyne enterolobii and Fusarium solani Journal of Phytopathology, 159(1), 45-50. DOI: 10.1111/j.1439-0434.2010.01711.x
    » https://doi.org/10.1111/j.1439-0434.2010.01711.x
  • Hokched, O., & Ramírez, N. (2008). Breeding systems in species of Melastomataceae in Gran Sabana (Bolivar State, Venezuela). Acta Botánica Venezuélica, 31(2), 387-408.
  • Instituto Brasileiro de Geografia e Estatística [IBGE]. (2016). Produção Agrícola Municipal 2016 Retrieved on Feb. 12, 2018 from 12, 2018 from https://www.ibge.gov.br/
    » https://www.ibge.gov.br/
  • Jurgens, A., Witt, T., & Gottsberger, G. (2002). Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination, life form, style number and sexual system. Sexual Plant Reproduction, 14, 279-289. DOI: 10.1007/s00497-001-0124-2
    » https://doi.org/10.1007/s00497-001-0124-2
  • Lehnebach, C., & Riveiros, M. (2003). Pollination biology of the Chilean endemic orchid Chloraea lamellata Biodiversity and Conservation, 12, 1741-1751. DOI: 10.1023/A:1023666800948
    » https://doi.org/10.1023/A:1023666800948
  • Lenzi, M., & Orth, A. I. (2004). Caracterização funcional do sistema reprodutivo da aroeira vermelha (Schinus terebinthifolius Raddi), em Florianópolis-SC, Brasil. Revista Brasileira de Fruticultura, 26(2), 198-201. DOI: 10.1590/S0100-29452004000200004
    » https://doi.org/10.1590/S0100-29452004000200004
  • López, J., Rodriguez-Riaño, T., Ortega-Olivencia, A., Devesa, J. A., & Ruiz, T. (1999). Pollination mechanisms and pollen-ovule ratios in some Genisteae (Fabaceae) from Southwestern Europe. Plant Systematics and Evolution, 216, 23-47. DOI: 10.1007/BF00985099
    » https://doi.org/10.1007/BF00985099
  • Maranhão, S. R. V. L., de Moura, R. M., & Pedrosa, E. M. R. (2001). Reação de indivíduos segregantes de goiabeira a Meloidogyne incognita raça 1 e M. mayaguensis Nematologia Brasileira, 25(1), 191-195.
  • Medan, D. (2003). Reproductive biology of the andean shrub Discaria nana (Rhamnaceae). Plant Biology, 5(1), 94-102. DOI: 10.1055/s-2003-37980
    » https://doi.org/10.1055/s-2003-37980
  • Michalski, S. G., & Durka, W. (2009). Pollination mode and life form strongly affect the relation between mating system and pollen to ovule ratios. New Phytologist, 183(2), 470-479. DOI: 10.1111/j.1469-8137.2009.02861.x
    » https://doi.org/10.1111/j.1469-8137.2009.02861.x
  • Miranda, G. B., de Souza, R. M., Gomes, V. M., Ferreira, T. F., & Almeida, A. M. (2012). Avaliação de acessos de Psidium spp. quanto à resistência a Meloidogyne enterolobii Bragantia, 71(1), 52-58. DOI: 10.1590/S0006-87052012005000001
    » https://doi.org/10.1590/S0006-87052012005000001
  • Miranda, G. B., Souza, R. M., & Viana, A. P. (2011). Assessment of methods and criteria for screening Psidium spp. for resistance Meloidogyne enterolobii. Nematologia Brasileira, 34(4), 211-219.
  • Pereira, F. M. (1995). Cultura da goiabeira Jaboticabal, SP: Funep.
  • Pereira, F. O. M., de Souza, R. M., Souza, P. M., Dolinski, C., & Santos, G. K. (2009). Estimativa do impacto econômico e social direto de Meloidogyne mayaguensis na cultura da goiaba no Brasil. Nematologia Brasileira, 33(2), 176-181.
  • Raseira, M. C. B., & Raseira, A. (1996). Contribuição ao estudo do araçazeiro, Psidium cattleyanum Pelotas, RS: Embrapa Clima Temperado.
  • Robaina, R. R., Campos, G. S., Marinho, C. S., Souza, R. M., & Bremenkanp, C. A. (2015). Grafting guava on cattley guava resistant to Meloidogyne enterolobii. Ciência Rural, 45(9), 1579-1584. DOI: 10.1590/0103-8478cr20131412
    » https://doi.org/10.1590/0103-8478cr20131412
  • São José, A. R., & Pereira, F. M. (1987). Estudo de diferentes processos para coleta de pólen e polinização da goiabeira (Psidium guajava L.). Científica, 15(1-2), 85-92.
  • Serviço Brasileiro de Apoio às Micro e Pequenas Empresas [SEBRAE]. (2015). Agronegócio fruticultura (Boletim de inteligência). Retrieved on Nov. 10, 2017 from 10, 2017 from http://www.sebrae.com.br/sites/PortalSebrae
    » http://www.sebrae.com.br/sites/PortalSebrae
  • Soubihe Sobrinho, J., & Gurgel, J. T. A. (1962). Taxa de panmixia na goiabeira (Psidium guajava L.). Bragantia, 21, 15-20. DOI: 10.1590/S0006-87051962000100002
    » https://doi.org/10.1590/S0006-87051962000100002
  • Souza, A. G., Resende, L. G., Lima, I. P., Santos, R. M., & Chalfun, N. N. J. (2014). Variabilidade genética de acessos de araçazeiro e goiabeira suscetíveis e resistentes a Meloidogyne enterolobii Ciência Rural, 44(5), 822-829. DOI: 10.1590/S0103-84782014000500010
    » https://doi.org/10.1590/S0103-84782014000500010
  • Souza, A. G., Resende, L. V., Lima, I. P., Martins, L. S. S., & Techio, V. H. (2015). Chromosome number and nuclear DNA amount in Psidium spp. resistant and susceptible to Meloidogyne enterolobii and its relation with compatibility between rootstocks and comercial varieties of guava tree. Plant Systematics and Evolution, 301, 231-237. DOI: 10.1007/s00606-014-1068-y
    » https://doi.org/10.1007/s00606-014-1068-y
  • Statistical Analysis System [SAS]. (1996). User’s guide Cary, NC: SAS Institute Inc.
  • Tuite, J. (1969). Establishment of disease. In J. Tuite (Ed.), Plant pathological methods fungi and bacteria (p. 176-192). Minneapolis, US: Burgess Publishing Company.
  • Wang, Y., Zhang, D., Renner, S. S., & Chen, Z. (2005). Self-pollination by sliding pollen in Caulokaempferia coenobialis (Zingiberaceae). International Journal of Plant Sciences, 166(5), 753-759. DOI: 10.1086/431803
    » https://doi.org/10.1086/431803

Data availability

Data citations

Instituto Brasileiro de Geografia e Estatística [IBGE]. (2016). Produção Agrícola Municipal 2016 Retrieved on Feb. 12, 2018 from 12, 2018 from https://www.ibge.gov.br/

Serviço Brasileiro de Apoio às Micro e Pequenas Empresas [SEBRAE]. (2015). Agronegócio fruticultura (Boletim de inteligência). Retrieved on Nov. 10, 2017 from 10, 2017 from http://www.sebrae.com.br/sites/PortalSebrae

Publication Dates

  • Publication in this collection
    11 Sept 2020
  • Date of issue
    2021

History

  • Received
    09 Aug 2018
  • Accepted
    24 Dec 2018
Editora da Universidade Estadual de Maringá - EDUEM Av. Colombo, 5790, bloco 40, 87020-900 - Maringá PR/ Brasil, Tel.: (55 44) 3011-4253, Fax: (55 44) 3011-1392 - Maringá - PR - Brazil
E-mail: actaagron@uem.br