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ABSTRACT. There is no consensus in the literature regarding how many subsamples are needed to 
perform accurate on-farm soil penetration resistance (SPR) mapping. Therefore, the objective of this study 
was to define the number of subsamples per sampling point needed to quantify the SPR. The experiment 
was performed in a 4.7 ha area and employed a 50 × 50 m grid system (18 sampling points). The SPR was 
evaluated using a digital penetrometer in two different years with 1, 2, 3, 4, 5, 6, 9, 12, and 15 subsamples 
per sampling point. The SPR maps produced with increasing numbers of subsamples were compared to 
the reference maps (15 subsamples) using the relative deviation coefficient and Pearson´s linear 
correlation. A reduction in the number of subsamples promoted an increase in the variability of the SPR 
data. Generally, the results from this study suggest the use of at least four subsamples per sampling point to 
achieve SPR maps with a coefficient of relative deviation less than 10% (30% maximum error per point 
around the mean) and significant correlation with the reference maps (15 subsamples).  
Keywords: soil compaction, sampling protocol, precision agriculture, microvariability. 

Qualidade do mapeamento da resistência do solo à penetração: efeito do número de 
subamostras  

RESUMO. Não existe consenso na literatura sob qual é o número de subamostras necessário para realizar 
o mapeamento da resistência do solo à penetração (RSP) de modo acurado. Dessa forma, o objetivo deste 
estudo foi definir o número de subamostras por ponto amostral para quantificar a RSP. O experimento foi 
realizado em uma área de 4,7 ha seguindo uma malha amostral de 50 × 50 m (18 pontos amostrais). A RSP 
foi avaliada com auxílio de um penetrômetro digital em dois anos seguidos utilizando-se 1, 2, 3, 4, 5, 6, 9, 
12 e 15 subamostras por ponto amostral. Os mapas de RSP gerados com diferente número de subamostras 
foram comparados com o mapa referência (15 subamostras) utilizando o coeficiente de desvio relativo e de 
correlação linear de Pearson. A redução do número de subamostras por ponto amostral promove aumento 
da variabilidade da RSP. De maneira geral, esse estudo sugere o uso de pelo menos quatro subamostras por 
ponto amostral para atingir mapas de RSP com coeficiente de desvio relativo inferior a 10% (erro máximo 
de 30% em torno da média por ponto amostral) e correlação significativa com os mapas referência (15 
subamostras). 
Palavras-chave: compactação do solo, protocolo amostral, agricultura de precisão, microvariabilidade. 

Introduction 

Soil penetration resistance (SPR) is a 
measurement utilized to quantify the mechanical 
impedance of the soil for plant root growth 
(Bengough, Mckenzie, Hallet, & Valentine, 2011). 
Therefore, SPR is considered one of the main 
parameters for the diagnosis of the levels of soil 
compaction and determination of the most 
restrictive soil layers for root growth (Girardello et 
al., 2014). This tool has been widely used by 
researchers and service providers because it is rapid 
and easily used in the field compared to other more 

conventional methods, such as soil bulk density 
(Molin, Dias, & Carbonera, 2012).  

The SPR is usually quantified using traditional 
sampling methods, which include the collection of 
various subsamples (e.g., 12-15) in a random manner 
along the field and are considered independent 
samples (Tavares-Filho & Ribon, 2008; Storck et al., 
2016). As a result, a mean SPR value is obtained for 
and applied to the total sampled area. Since the 
introduction of precision agriculture in Brazil in the 
early 2000s, systematic sampling protocols to assess 
the SPR have been widely applied in commercial 
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fields. This method considers the spatial dependence 
among the sampling points and consequently the 
spatial variability of the SPR within the area (Molin 
et al., 2012). The objective of this methodological 
change is to identify the spatial variability 
(horizontal and vertical) of the SPR in the sampled 
area, which enables the creation of thematic maps to 
guide site-specific management of compacted 
subareas and soil layers in the field (Girardello et al., 
2014). 

Measurements of SPR values are highly 
influenced by diverse intrinsic (e.g., soil moisture, 
texture and structure) and extrinsic (e.g., 
management system) soil factors. As consequence, 
high coefficients of variation are usually observed 
(Beutler et al., 2007; Storck et al., 2016). Therefore, 
to correctly determine the spatial variability of the 
SPR, it is crucial to establish an adequate density 
of sampling points per area and select the number 
of subsamples that best represents each sampling 
point. Regarding the sampling density, studies 
have demonstrated that ideal sampling grids are 
approximately 50 × 50 m (i.e., four samples per 
ha) (Cherubin, Santi, Basso, Eitelwein, & Vian, 
2011) or 30 × 30 m (i.e., more than 10 samples 
per ha) (Debiasi, Franchini, Oliveira, & Machado 
2012). However, no study has defined the 
sampling point and its possible influence on the 
mapping of this variable. 

In traditional sampling methodology, between 
12 and 15 subsamples must be collected to 
compose a mean SPR value with maximum errors 
varying between 5 and 15% (Tavares Filho & 
Ribon, 2008; Molin et al., 2012). Georeferenced 
sampling normally uses many sampling points; 
therefore, a larger number of subsamples per 
sampling point increases the sampling cost and 
makes this method less attractive to farmers 
(Molin et al., 2012). There is no consensus in the 
literature concerning the number of subsamples 
used to collect the SPR data. Instead, reports vary 
with the use of one (Souza et al., 2006; Marasca et 
al., 2011), two (Debiasi et al., 2012), three 
(Tormena, Barbosa, Costa, & Gonçalves, 2002; 
Cherubin et al., 2011), five (Silva, Passos, & 
Beltrão, 2009) and ten subsamples (Secco, 
Reinert, Reichert, & Silva, 2009; Girardello et al., 
2014) per sampling point. The use of an 
insufficient number of subsamples may result in 
inaccurate data collection, which generates 
recommendations for unnecessary interventions. 

In this study, we tested the hypothesis that an 
insufficient number of subsamples per sampling 
point affected the representative of the assessment 

and the accuracy of the generated SPR thematic 
maps. The aim of this study was to evaluate the 
impact of the number of subsamples per sampling 
point on the quality of the SPR mapping and to 
determine the number of subsamples necessary to 
generate thematic maps with adequate accuracy for 
on-farm precision agriculture in crop production 
systems based on no-till farming. 

Material and methods 

Description of the study area 

This on-farm study was conducted in an 
agricultural area near Palmeira das Missões city in 
southern Brazil (latitude 28°72′62″ S and longitude 
69°14′34″ W), with a mean altitude of 600 m. The 
relief of the area is smoothly undulating, and the soil 
presents a clay texture (636 g kg-1 of clay, 316 g kg-1 

of silt and 48 g kg-1 of sand content) and is classified 
as Rhodic Acrudox according to Soil Taxonomy 
(Soil Survey Staff, 2014) and “Latossolo Vermelho 
distrófico” according to the Brazilian System of Soil 
Classification (Santos et al., 2013). The area has 
been cultivated under a no-tillage cropping system 
without machinery traffic control since 1997 (i.e., 15 
years when the study was performed), including 
crop succession with wheat in the winter season and 
soybean or eventually corn in the summer season.  

Determination of the soil penetration resistance 

The study was performed in 2012 (year I) and 
reproduced in 2013 (year II). In both years, the data 
were collected in May after the soybean harvest. The 
4.7 ha agricultural area was georeferenced and 
divided into a regular quadrangular sampling grid of 
50 × 50 m to yield 18 sampling points (Figure 1). 
The SPR was determined down to a 0.30 m depth 
using a portable digital penetrometer (PenetroLOG® 

model PLG 1020, Falker Automação, Porto Alegre, 
Rio Grande do Sul State, Brazil) with a cone 
diameter of 12.83 mm. The rod was inserted into 
the soil at a constant speed close to 20 mm s-1. 
When the insertion speed surpassed 30 mm s-1, 
the equipment registered an error and the 
measurement was remade. Fifteen subsamples 
were collected from each sampling point 
following the inter-row position of the previous 
crop within a radius of 3 m around the 
georeferenced point. The SPR evaluations were 
performed two days after a heavy rain. The whole 
procedure took only one working day in both 
years.  

The water content of the soil at the moment of 
SPR evaluation was determined using the gravimetric 
method (Embrapa, 1997) with disturbed soil samples 
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collected from the 0.00-0.15 m layer at three points 
(points 2, 9 and 16) (Figure 1). The average soil 
moisture was 310 and 330 g kg-1 for years I and II, 
respectively.  

 

 

Figure 1. Schematic representation of the sampling grid (50 x 50 
m) used in this study area highlighting the distribution of the 15 
subsamples of soil penetration resistance in each sampling point 
in Palmeira das Missões (RS), southern Brazil. 

Mathematical and statistical analyses 

The datasets from each sampling point (18 points) 
and soil layer (i.e., 0.00-0.05, 0.05-0.10, 0.10-0.15, 0.15-
0.20, 0.20-0.25 and 0.25-0.30 m) composed of 15 
subsamples were organized into a spreadsheet and 
subjected to outlier analysis. Any values that fell outside 
of the range of two standard deviations from the mean 
were considered outliers. Subsequently, the 
determination of the optimum number of subsamples 
was performed based on Equation 1 as proposed by 
Petersen and Calvin (1965):  

 

n = tα
   2x S2

D2                                                                                        (1) 

 
where n is the number of subsamples, t is the value 
from the distribution table for the function of the 
level of significance (α) and the degrees of freedom 
used to estimate the sample variance, S is the sample 
standard deviation of the mean (15 subsamples per 
sampling point) and D is the result of the SPR mean 
at each sampling point divided by the percentage 
variation enabled around the mean. The level of 
significance used was 0.05%, and the optimum 
number of subsamples for each sampling point was 
determined considering maximum errors of 10, 20 
and 30% around the mean. 

Soil penetration resistance mapping 

The SPR maps were produced using the CR-
Campeiro 7 software (Department of Geomatics, 
Federal University of Santa Maria, Rio Grande do 
Sul State, Brazil) by considering different numbers 

of subsamples (i.e., 1, 2, 3, 4, 5, 6, 9, 12, and 15) per 
sampling point. A specific map was produced for 
each soil layer studied down to 0.30 m (i.e., 0.00-
0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20, 0.20-0.25, and 
0.25-0.30 m). The reduced number of points (n < 
50 points) limited the use of the geostatistical 
approach to verify the existence of spatial 
dependence among the samples (Webster & Oliver, 
2007). Therefore, the maps were produced using the 
interpolator inverse square distance as broadly 
recommended in the literature (e.g., Coelho, Souza, 
Uribe-Opazo, & Pinheiro Neto, 2009; Wu, Hung, & 
Patton, 2013).   

The SPR data from each soil layer considering 
the different numbers of subsamples were subjected 
to a descriptive statistical analysis to obtain the 
positional means (minimum, mean and maximum) 
and dispersion (coefficients of variation–CV, %). 
The CV values were used to classify the variability of 
the data into low (CV < 12%), medium (CV= 12 to 
62%) and high (CV > 62%) as proposed by Warrick 
and Nielsen (1980). The normality hypothesis was 
tested and confirmed using the W test (p ≥ 0.05) 
(Shapiro & Wilk, 1965), and thus no data 
transformation was necessary. The data analysis was 
completed using the statistical package SAS (SAS, 
2010).  

Analysis of the soil penetration resistance mapping 
quality 

Two parameters were used to evaluate the effect 
of the number of subsamples on the accuracy of the 
thematic maps: Pearson’s linear correlation 
coefficient (p ≤ 0.05) and the relative deviation 
coefficient (RDC, %) (Coelho et al., 2009). The 
mean SPR values from 15 subsamples per sampling 
point were considered as a reference (standard) for 
comparison with the other maps produced using 
different numbers of subsamples (i.e., 1, 2, 3, 4, 5, 6, 
9, and 12).  

The RDC, which is expressed as an absolute 
value, shows the dissimilarity between the two maps 
as demonstrated by the differences between the 
interpolated points of each map. The RDC was 
determined using Equation 2, which was adapted 
from the equations applied by Coelho et al. (2009) 
and Cherubin et al. (2015). 

 
RDC =  ∑ SPRj - SPRref  / SPRref  x 100 / n             (2)  
 
where n is the number of sampling points (18), 
SPRref is the soil penetration resistance value at 
point i (reference value obtained using 15 
subsamples per sampling point), and SPRj is the soil 
penetration resistance value at point i determined 
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using different numbers of subsamples (i.e., 1, 2, 3, 
4, 5, 6, 9, and 12). 

Results and discussion 

Number of subsamples per sampling point 

After the preliminary analysis to detect outliers, 
2.7% of the raw data was removed. This procedure 
is fundamental when the SPR is measured using 
portable penetrometers with manual operation 
because the roughness of the soil surface (Catania et 
al., 2013) and the variation in the speed of the rod 
going into the soil profile can influence the results 
(Valadão Jr, Biachini, Valadão, & Rosa, 2014). 

The optimum number of subsamples per 
sampling point was similar in both years studied, 
indicating good consistency of the results (Figure2). 
The surface layer (0.00-0.05 m) required a larger 
number of subsamples to adequately represent the 
SPR of the sampling point. Therefore, 30 and 35 

subsamples were required from each sampling in 
years I and II, respectively, to maintain 75% of the 
sampling points with a maximum error of 10%. If all 
of the sampling points (18) achieve this accuracy 
(i.e., a maximum error of 10%), 44 subsamples need 
to be collected. The higher microvariability 
observed in the surface soil layer (radius 3 m) is due 
to various factors, including the soil and crop 
management practices, effects of plant roots, wet-
dry cycles, and the potential surface sealing that is 
commonly observed in no-tillage systems, especially 
when little straw is present (Cherubin et al., 2011; 
Silva, Bianchi & Cunha, 2016). High variation of 
microvariability of the SPR data was observed 
between sampling points (Figure 2). Thus, for some 
points in the surface layer, less than 10 subsamples 
were sufficient to obtain values with a maximum 
deviation of less than 10%. 

 

 

Figure 2. Number of subsamples per sampling point required to obtain soil penetration resistance (SPR) values with maximum errors of 
10, 20 and 30% around the mean, for different soil layers in two years in Palmeira das Missões (RS), southern Brazil.  
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For the surface soil layer in both years, 11 and 5 
subsamples per sampling point were sufficient to 
obtain SPR values with maximum errors of 20 and 
30% around the mean, respectively. However, the 
surface layer of the soil under a no-tillage system is 
periodically disturbed during the opening of the 
sowing row, thereby minimizing possible physical 
restrictions (i.e., high SPR values) for plant root growth 
(Moreira et al., 2016). Thus, when the SPR is 
determined, the major interest of the technician is an 
evaluation of the compaction state of the subsuperficial 
layers of the soil (below 0.05 m), where the higher SPR 
levels restrict the growth of roots at depth and may 
limit crop development, mainly due to water stress 
(Tormena et al., 2002; Cardoso et al., 2006). In a study 
of the effect of high SPR values on soybeans, Cardoso 
et al. (2006) observed that impediments to root growth 
in the subsurface caused the root system to concentrate 
in the soil surface layer (0.00-0.05 m), which was the 
zone that retained the lowest water content, thereby 
negatively influencing nutrient absorption. 

For the deeper soil layers (0.05-0.30 m), the 
optimum numbers of subsamples per sampling point 
were similar. At these depths, the collection of 15 and 
18 subsamples was necessary to obtain a maximum 
error of 10% around the mean for 75% of the sampling 
points for years I and II, respectively. However, 35 
samples needed to be collected for all sampling points 
to attain this accuracy level, demonstrating that the 
high SPR microvariability among sampling point sob 
served in the surface soil layer persisted in the deeper 
soil layers. Only 8 and 4 samples would be required if 
we allowed maximum variations of 20 and 30% around 
the mean for the layers between 0.05 and 0.30 m in all 
sampling points, respectively. However, for 75% of the 
sampling points, only 5 (20% error) and 2 (30% error) 
subsamples were sufficient. 

The use of reduced numbers of subsamples 
decreases the operational cost of field SPR sampling 
(less time-consuming). However, the low accuracy of 
the measurement (i.e., a higher level of error) can make 
the results less reliable and even technically unviable 
depending on the goal of the assessment (Tavares-
Filho & Ribon, 2008). For example, suppose that the 
SPR in a soil layer at one specific point is 3.5 MPa and 
a 30% maximum error is allowed; in this scenario, the 
result of the evaluation could be between 2.5 and 4.55 
MPa. These values encompass SPR values that are 
considered adequate for root growth or are highly 
restrictive. Allowing a 20% maximum error results in 
values that vary from 2.8 to 4.2, and allowing a 
maximum error of 10% results in a range of 3.15 to 3.8, 
which does not generate large differences in terms of 
soil management decisions. Thus, an increase in the 
robustness of sampling will increase the accuracy of the 

information and in turn support management 
decisions that prevent unnecessary soil disturbances to 
alleviate compaction and its deleterious effects on soil 
ecosystem services. Nevertheless, the increased 
operational costs involved in more intensive soil 
sampling should always be considered to ensure that 
the evaluation is financially feasible for the farmer. 
Based on these factors, the decision concerning the 
number of subsamples that should be taken in an SPR 
evaluation depends on the accuracy required by the 
farmer/consultant (goals of the assessment) and the 
capacity for investments.  

Descriptive statistics of the SPR sampling point data set 

The highest mean SPR values (close to 3 MPa) 
were obtained from the soil layers below 0.15 m in 
depth in year I (Table 1) and the 0.10-0.15 and 0.15-20 
m layers in year II (Table 2). Soil compaction in layers 
below the action zone of seeder disks and shank 
openers has been frequently detected in soils under the 
no-tillage system (Cardoso et al., 2006; Debiasi, Levien, 
Trein, Conte, & Kamimura, 2010; Cherubin et al., 
2011; Moreira et al., 2016). The absence of soil 
disturbance, the low diversified cropping system and 
especially the systematic traffic of heavy machinery 
under soil moisture conditions favorable for 
compaction have been proposed as the main causes 
associated with soil compaction in no-tillage areas 
(Tormena et al., 2002; Debiasi et al., 2010). 

The analyses of the mean SPRs from the whole 
area (18 sampling points), from the different soil 
layers and over the two year period showed that the 
number of subsamples did not largely influence the 
results. Therefore, if the objective of the SPR 
evaluation was to obtain a general diagnosis of the 
area (traditional sampling), the number of 
subsamples would not influence the results. This 
finding corroborates the results obtained by Tavares 
Filho and Ribon (2008) and Molin et al. (2012), which 
indicate that 12-15 subsamples are sufficient to obtain 
satisfactory results using conventional sampling.  

However, the number of subsamples had an 
elevated influence on the amplitude of the SPR 
values (i.e., the range between the minimum and 
maximum values), resulting in a reduction of the 
amplitude of the data with an increase in the 
number of subsamples.  

A lower amplitude of the SPR values between 
the sampling points indicates that the value obtained 
for each sampling point when a higher number of 
subsamples is used more accurately represents the 
SPR mean since the microvariability of the area is 
better considered. 
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Table 1. Descriptive statistics of soil penetration resistance (SPR, MPa) in the soil profiles obtained with different numbers of 
subsamples (1-15) per sampling point in year I in Palmeira das Missões (RS), southern Brazil. 

Statistical Number of subsamples 
parameters 1 2 3 4 5 6 9 12 15 

 0.00–0.05 (m) (year I) 
Minimum 1.19 1.27 1.57 1.58 1.62 1.55 1.74 1.78 1.81 
Mean 2.05 2.09 2.14 2.11 2.08 2.10 2.18 2.20 2.21 
Maximum 3.36 3.06 2.83 2.76 2.69 2.79 2.87 2.84 2.78 
CV (%)§ 28.66 23.19 15.05 14.18 14.70 15.08 13.43 13.07 13.60 

0.05–0.10 (m) (year I) 
Minimum 1.62 1.68 1.85 1.83 2.02 2.17 2.11 2.22 2.28 
Mean 2.66 2.55 2.56 2.47 2.52 2.58 2.58 2.62 2.64 
Maximum 3.58 3.55 3.22 3.04 2.95 2.92 2.98 3.06 3.05 
CV (%) 21.56 19.42 14.25 13.96 12.08 9.91 10.15 9.64 8.69 

0.10–0.15 (m) (year I) 
Minimum 2.03 2.05 2.24 2.18 2.25 2.09 2.29 2.41 2.44 
Mean 2.79 2.79 2.78 2.74 2.76 2.77 2.77 2.81 2.83 
Maximum 4.19 3.96 3.79 3.52 3.36 3.32 3.12 3.10 3.27 
CV (%) 22.06 16.31 14.78 12.85 11.12 10.93 8.12 7.23 7.07 

0.15–0.20 (m) (year I) 
Minimum 1.70 2.05 2.22 2.27 2.28 2.31 2.43 2.63 2.65 
Mean 2.93 2.87 2.92 2.93 2.94 2.93 2.97 3.02 3.04 
Maximum 4.76 3.84 3.68 3.77 3.55 3.53 3.30 3.38 3.40 
CV (%) 27.86 17.44 14.95 13.51 12.67 12.05 9.25 7.85 7.48 

0.20–0.25 (m) (year I) 
Minimum 1.57 1.59 1.86 2.35 2.43 2.52 2.65 2.65 2.66 
Mean 3.02 3.09 3.09 3.09 3.09 3.10 3.14 3.15 3.17 
Maximum 4.37 4.30 3.80 3.74 3.71 3.71 3.82 3.61 3.64 
CV (%) 25.36 20.38 16.19 13.05 12.14 10.9 9.23 8.29 8.47 

0.25–0.30 (m) (year I) 
Minimum 1.40 1.94 2.14 2.31 2.34 2.43 2.61 2.58 2.60 
Mean 3.12 3.10 3.05 3.12 3.13 3.13 3.17 3.18 3.17 
Maximum 4.86 4.61 3.92 4.09 3.89 3.77 3.77 3.81 3.78 
CV (%) 29.04 21.77 17.34 16.2 16.04 14.27 11.38 10.01 9.96 
§CV = coefficient of variation. 

Table 2. Descriptive statistics of soil penetration resistance (SPR, MPa) in the soil profiles obtained with different numbers of 
subsamples (1-15) per sampling point in year II in Palmeira das Missões (RS), southern Brazil. 

Statistical Number of subsamples 
parameters 1 2 3 4 5 6 9 12 15 

 0.00–0.05 (m) (year II) 
Minimum 1.25 1.25 1.41 1.35 1.46 1.42 1.42 1.61 1.67 
Mean 2.02 2.04 1.99 1.97 2.00 2.07 2.12 2.11 2.12 
Maximum 3.08 3.88 2.47 2.46 2.55 2.55 2.48 2.53 2.53 
CV (%)§ 22.48 22.66 16.68 15.72 15.74 15.81 14.27 13.66 12.09 

0.05–0.10 (m) (year II) 
Minimum 1.51 1.76 1.93 2.21 2.10 2.27 2.38 2.38 2.46 
Mean 2.60 2.63 2.70 2.69 2.71 2.75 2.75 2.72 2.74 
Maximum 3.65 3.46 3.29 3.15 3.29 3.25 3.13 3.05 3.03 
CV (%) 24.13 20.91 15.30 11.90 12.39 10.97 7.74 7.31 5.79 

0.10–0.15 (m) (year II) 
Minimum 1.77 2.14 2.38 2.40 2.42 2.38 2.49 2.43 2.48 
Mean 2.82 2.88 2.91 2.90 2.91 2.92 2.92 2.92 2.92 
Maximum 3.93 4.20 3.49 3.47 3.53 3.46 3.30 3.22 3.17 
CV (%) 22.73 18.47 11.47 11.79 10.96 9.82 8.08 7.75 6.60 

0.15–0.20 (m) (year II) 
Minimum 1.77 2.14 2.38 2.40 2.42 2.38 2.49 2.43 2.48 
Mean 2.82 2.88 2.91 2.90 2.91 2.92 2.92 2.92 2.92 
Maximum 3.93 4.20 3.49 3.47 3.53 3.46 3.30 3.22 3.17 
CV (%) 16.52 11.73 8.55 7.95 8.75 8.18 8.40 7.59 7.16 

 0.20–0.25 (m) (year II) 
Minimum 1.83 2.09 2.20 2.17 2.18 2.25 2.25 2.24 2.26 
Mean 2.83 2.75 2.63 2.63 2.63 2.65 2.65 2.65 2.68 
Maximum 3.80 3.38 3.07 3.06 3.11 3.08 3.05 3.11 3.18 
CV (%) 16.9 12.63 11.14 10.45 11.24 10.69 9.48 9.31 8.65 

0.25–0.30 (m) (year II) 
Minimum 1.53 1.99 1.98 2.02 2.03 2.16 2.21 2.16 2.21 
Mean 2.69 2.69 2.64 2.64 2.64 2.69 2.68 2.67 2.68 
Maximum 3.68 3.53 3.39 3.42 3.67 3.53 3.29 3.28 3.19 
CV (%) 21.96 17.87 16.74 15.51 15.73 13.80 10.23 10.76 9.76 
§CV = coefficient of variation. 
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Moreover, the errors resulting from possible 
sampling faults are diluted (Molin et al., 2012). For 
example, the maximum SPR value observed in year I 
using 15 subsamples was 3.27 MPa (0.10-0.15 m layer), 
whereas when using only one subsample the 
maximum at this location was 4.19 MPa. This evidence 
is important and emphasizes the need to correctly 
choose the number of subsamples when localized 
intervention in the field is guided by the spatial 
variability in the SPR as proposed by Girardello et al. 
(2014). The utilization of an insufficient number of 
subsamples can incorrectly indicate a need to conduct 
interventions in areas, which makes this type of 
management technically and economically inefficient 
(Tavares Filho & Ribon, 2008; Molin et al., 2012) 

Generally, the data show CV values classified as low 
or medium. The coefficient of variation values were 
classified with low variation (< 12%) when more than 
six subsamples were used (Warrick & Nielsen, 1980). 
The exception was the samples collected from the 
0.00-0.05 m soil layer, which were classified as 
medium (12 < CV < 62%), where only one 
subsample from years I and II reached values of 29 and 
23%, respectively. Independent of the year of the study, 
a reduction in the number of subsamples resulted in an 
increase in the CV values (Tables 1 and 2). The 
observation of higher CV values is an indication of the 
existence of higher spatial variability of the attribute in 
that area (Oliveira et al., 2015), which requires the 
utilization of sampling plans that use a larger number 
of samples to faithfully reproduce the spatial variability 
at that location (Siqueira et al., 2014). Although we did 
not investigate different sampling grid sizes in this 
study, the results obtained indicate that using a higher 
number of subsamples per sampling point is an SPR 
mapping strategy to uses less dense sampling grids. 
This finding need to be confirmed in future studies.  

Quality of the thematic SPR maps in the function of the 
number of subsamples 

In the surface layer of the soil (0.00-0.05 m), we 
found a significant correlation with the reference 
maps (15 subsamples) when at least six and four 
subsamples were used in years I and II, respectively 
(Table 3).For the other soil layers, three (year I) and 
four (year II) subsamples were sufficient to obtain a 
significant correlation with the reference maps. For 
all of the layers measured, a reduction in the 
correlation coefficient was observed with a 
reduction in the number of subsamples collected. 
These results indicated that the maps obtained using 
lower numbers of subsamples per sampling point 
presented higher deviations in their estimates, 
thereby reducing the reliability of the information 
(Cherubin et al., 2015). 

In both years, the SPR maps for the surface soil layer 
presented the lowest correlations with the reference 
maps (15 subsamples). This result is due to higher 
variation in the SPR values in this soil layer, as was 
previously discussed for the item numbers of 
subsamples per sampling point. Tavares Filho and 
Ribon (2008) compared no-tillage and conventional 
tillage systems, and Storck et al. (2016) studied an 
integrated crop-livestock system; both studies also found 
that the 0.00-0.10 m layer presented the highest 
variations and consequently needed a larger number of 
subsamples than any other soil layer to achieve a good 
level of reliability. However, considering that the surface 
layer of the soil under a no-tillage system is periodically 
disturbed during crop sowing, which minimizes 
possible physical restrictions to plant root growth, the 
decision of the subsample numbers per sampling point 
to provide penetration resistance measurements should 
be based on the microvariability of this parameter in the 
deeper soils layers (Moreira et al., 2016). 

The RDC results (Figure3) were similar to the 
results obtained for the correlation analysis for the two 
study years and all of the soil layers measured, with a 
correlation of -0.88 between the RDC and Pearson´s 
correlation. A high correlation (r = 0.96) between the 
RDC and the Kappa index, which is another procedure 
used to evaluate the similarity between thematic maps, 
has been shown in the literature (Bazzi, Souza, Uribe 
Opazo, Nóbrega, & Neto, 2008). Independent of the 
soil layer measured, there was an increase in the 
deviation (sampling errors) in the maps with a reduction 
in the number of subsamples. The highest RDC values 
were found in the 0.00-0.05 m layer in year I, with a 
deviation of 21%, and in the 0.00-0.05 and 0.05-0.10 m 
layers in year II, with a deviation of 19%. The use of 
RDC analysis to compare SPR maps has not been 
documented in the literature, which characterizes this 
study as pioneering in this area. However, this 
coefficient has been used with success for other 
variables, such as grain yield (Bazzi et al., 2008; Coelho 
et al., 2009) and soil chemical attributes (Cherubin et al., 
2015). 

To obtain RDC values less than 10% in the surface 
soil layer (0.00-0.05 m), 9 and 6 subsamples were 
necessary for years I and II, respectively. This number 
decreased to 4 subsamples for the deeper soil layers in 
both years. Because the RDC is calculated from the 
mean difference in the modulus of the interpolated 
values in relation to the reference map (Coelho et al., 
2009), no RDC value is considered optimum, and the 
choice of the acceptable deviation coefficient depends on 
the degree of reliability desired by the researcher. In this 
study, an RDC of 10% was considered a suitable value 
that could guide the interpretation of the results, as 
suggested by Bazzi et al. (2008).  



Page 8 of 11 Pias et al. 

Acta Scientiarum. Agronomy, v. 40, e34989, 2018 

 

Table 3. Correlation between the soil penetration resistance (SPR) maps obtained with different numbers of subsamples (1-12) per 
sampling point and the reference maps obtained with 15 subsamples in two years in Palmeira das Missões (RS), southern Brazil. 

Number of 
subsamples 

Soil layer (m) 
Mean 

0.00-0.05 0.05-0.10 0.10-0.15 0.15-0.20 0.20-0.25 0.25-0.30 
  -------------------------------------Year I -------------------------------   
1   0.42ns 0.63*   0.42 ns 0.62*   0.30 ns   0.43 ns 0.47 
2   0.44 ns 0.49* 0.49* 0.59*   0.41 ns   0.43 ns 0.49 
3   0.46 ns 0.58* 0.58* 0.65* 0.54* 0.68* 0.58 
4   0.46 ns 0.70* 0.64* 0.68* 0.67* 0.72* 0.65 
5   0.44 ns 0.74* 0.77* 0.79* 0.78* 0.81* 0.72 
6 0.61* 0.80*  0.75* 0.85* 0.86* 0.89* 0.79 
9 0.87* 0.95* 0.86* 0.94* 0.92* 0.96* 0.92 
12 0.95* 0.95* 0.93* 0.96* 0.97* 0.98* 0.96 

------------------------------------Year II ------------------------------- 
1   0.16 ns   0.16 ns   0.26 ns   0.46 ns   0.16 ns   0.46 ns 0.29 
2   0.28 ns   0.17 ns   0.30 ns   0.42 ns   0.43 ns   0.37 ns 0.33 
3   0.45 ns   0.39 ns   0.45 ns 0.50* 0.51* 0.54* 0.47 
4 0.64* 0.51* 0.52* 0.65* 0.63* 0.63* 0.60 
5 0.69* 0.56* 0.57* 0.83* 0.74* 0.76* 0.69 
6 0.77* 0.64* 0.69* 0.86* 0.86* 0.83* 0.78 
9 0.85* 0.89* 0.80* 0.85* 0.94* 0.90* 0.87 
12 0.97* 0.95* 0.91* 0.92* 0.97* 0.97* 0.95 
*and ns= significant and non-significant Pearson’s correlation coefficients (p < 0.05), respectively; n= 18 points.  

The SPR maps produced considering the 
different numbers of subsamples in years I and II are 
shown in Figure 4. Generally, we observed an 
increase in the dissimilarity in relation to the 
reference map (15 subsamples) with a reduction in 
the number of subsamples, resulting in a loss of 
accuracy in the maps that consequently could lead to 
erroneous interpretations concerning the real 
physical conditions of the soil. This loss of accuracy 
can be visualized by the increase in amplitude of the 
observed SPR values, with the maps produced with a 
smaller number of subsamples using more SPR 
classes (viz., colors). Therefore, the utilization of an 
insufficient number of subsamples overestimates the 
variability of the data and can indicate a necessity for 
denser sampling grids (viz., more sampling points), 
which increases the sampling cost. 

In the literature, divergent opinions exist 
regarding the SPR value that should be considered 
the critical limit for plant root growth. These values 

vary according to the characteristics of the soil, 
management practices and crops. Traditionally, SPR 
values between 2.0 and 2.5 MPa (Taylor, 
Robertson & Parker, 1966) are considered the 
critical limits for root growth. However, various 
studies have shown that plants tolerate higher SPR 
values (up to 3 MPa) in areas with no-tillage 
systems (Secco et al., 2009; Girardello et al., 2014; 
Moraes, Debiasi, Carlesso, Franchini, & Silva, 
2014), probably due to the better soil structure and 
the greater presence of continuous biopores (Moraes 
et al., 2014). Independent of the critical limit 
considered, subareas with SPR values considered 
restrictive for root growth were detected using the 
mapping strategy. In this sense, this study could help 
farmers, consultants and researchers with decision-
making regarding the sampling procedure that 
should be used for SPR evaluations in agricultural 
soils. 

 

Figure 3. Relative deviation coefficient (RDC%) between soil penetration resistance maps (SPR, MPa) obtained with different numbers 
of subsamples (1-12) per sampling point and the reference maps (15 subsamples) for different soil layers in years I (a) and II (b) in 
Palmeira das Missões (RS), southern Brazil. 
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Figure 4. Thematic maps of soil penetration resistance (SPR) obtained by considering different numbers of subsamples (1-12) per 
sampling point and the reference maps (15 subsamples) for the different soil layers in two years in Palmeira das Missões (RS), southern 
Brazil.  

Conclusion 

The number of subsamples used to obtain the soil 
penetration resistance that properly represents a 
sampling point depends on the level of error tolerated 
in the mapping, with a higher number of subsamples 
resulting in more accurate maps.  

A reduction in the number of subsamples 
promotes an increase in the variability of soil 
penetration resistance data. Generally, this study 
suggests that at least four subsamples per

sampling point achieves soil penetration resistance 
maps with a coefficient of relative deviation less 
than 10% (30% maximum error per point around 
the mean) and significant correlation with the 
reference maps (15 subsamples). 
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