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ABSTRACT. The palm tree juçara (Euterpe edulis Mart) is considered one of the most important and 

threatened native species in the Atlantic Forest. The search for juçara seeds (Euterpe edulis Martius) has 

increased, generating a need for technologies favorable to their production, quality and conservation. The 

aim of this study was to describe the seed germination patterns of 45 juçara accessions by using a 

nonlinear model to examine the behavior of these patterns and select superior genotypes. After clustering 

45 juçara accessions into four groups, four nonlinear models, namely, the logistic, Gompertz, von 

Bertalanffy and Weibull models, were tested based on their fit for each group of accessions. The Gompertz 

model presented the best fit to describe the germination growth curve of E. edulis seeds. Groups 3 and 4 

presented the highest daily germination rates and were considered the most vigorous. Analysis of 

deviance was performed, revealing genetic variability among the genotypes in terms of seed germination 

and vigor. It was possible to find a nonlinear model that best explained our data, and this model may also 

be a promising model for other palm tree species. It is possible to select genotypes based on the 

characters we analyzed, due to the elevated genetic variability.  
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Introduction 

Continuous forest fragmentation, which has contributed to the current high extinction rates in some 

species, has been especially reported in tropical regions (Pimm et al., 2014). The palm tree juçara (Euterpe 

edulis Mart) belongs to the Arecaceae family and is considered one of the most important and threatened 

native species found in the Atlantic Forest (Inácio, Lima, Lopes, Pessoa, & Teixeira, 2013). Juçara is 

distributed along the Brazilian coast from Rio Grande do Norte to Rio Grande do Sul (Henderson, 2000). 

Euterpe edulis is considered one of the most important palm trees in Brazil and the one producing the 

best-flavored edible fruits (Cavalcante, Pivetta, Iha, & Takane, 2012). However, the intense exploitation of 

heart of palm, which is associated with deforestation, and the fact that E. edulis does not produce tillers 

have reduced its populations, endangering this species (Ganem, 2011).  

The search for E. edulis seeds for commercial purposes, as an ornamental plant and for the forest 

regeneration has increased, which generates a need for technologies that are favorable to the production, 

quality and conservation of these seeds (Martins, Bovi, Nakagawa, & Machado, 2009) since palm tree 

propagation mainly happens through seeds (Cavalcante et al., 2012). Nevertheless, E. edulis seed 

germination has a low percentage and is considered slow and ununiform (Tavares, Ramos, Aguiar, & 

Kanashiro, 2008; Cavalcante et al., 2012).  

Genetic factors affect seed germination by influencing seed physiological quality. However, other factors, 

such as seed size, maturation, dormancy, viability, age, and climate, may also influence seed germination 

(Casas et al., 2017; El-Keblawy, Shabana, Navarro, & Soliman, 2017; Penfield & MacGregor, 2017). 

Therefore, studies that aim to understand seed developmental patterns are important for breeding and 

conservation programs. This knowledge may be useful for supply sources that maintain genetic variation, to 

assist in the decision of whether seeds that are more vigorous should be used in breeding programs and to 

store seeds that may eventually be used in reforestation programs.  
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Statistical models may facilitate the understanding of some seed parameters; nonlinear models are some 

of the most widely used methods for continuous data. These models usually provide a good fit to the data 

and use fewer parameters than linear models. The germination growth curves determined by nonlinear 

regression will assist in the interpretation of parameters or functions and may facilitate studies on 

germination percentage, germination speed and germination average time (Paine et al., 2012).  

This knowledge may also assist in the process of genotype selection, which, as in any phase of a breeding 

program, must be based on genetic averages, not phenotypic ones, because phenotypic characteristics vary 

according to the environment (Frank, Pluess, Howe, Sperisen, & Heiri, 2017). Therefore, we emphasize the 

need for an instrument that is efficient for genotype selection, such as the REML (Restricted Raximum 

Likelihood)/BLUP (best Linear Unbiased Prediction) method.  

BLUP is a standard method for estimating random effects in a mixed model that was originally developed 

for the estimation of animal breeding values and is currently widely used in many areas of research (Piepho, 

Möhring, Melchinger, & Büchse, 2008). The REML method has been used as a computationally attractive 

choice for large data sets and complex linear mixed effects models. In other words, the REML/BLUP method 

allows one to divide the phenotypic variation into genetic, environmental and “genotype x environment” 

components (Resende, 2007). 

The aim of this study was to use a nonlinear model identity test to compare seed germination patterns of 

45 juçara accessions and select superior genotypes based on these characters. 

Material and methods 

Experimental characterization 

We analyzed characteristics related to the seed vigor of 45 accessions of E. edulis from forest fragments 

located in the southern (Mimoso municipality) and Caparaó regions (Alegre 1 and 3, Guaçuí and Ibitirama 

municipalities) of the state of Espírito Santo. Since fruits of juçara were our object of study, instead of the 

heart of palm (the extraction of which is the most important reason why this plant is endangered), no 

licenses were needed for the collection of the plant material. 

One hundred fruits were collected from each genotype, and their pulp was extracted. To determine the 

seeds’ recalcitrance, the accessions (before germination) were disinfected with 0.5 % sodium hypochlorite 

for 15 minutes, and scarification was rapidly conducted (Teixeira, Vieira, Partelli, & Silva, 2011). 

Afterwards, the seeds were sowed on sterilized sand in polystyrene trays and were maintained in a BOD 

(Biochemical Oxygen Demand) incubator for 60 days at 25°C (Brasil, 2009) with a photoperiod of 8 to 16 

hours. Counts were made daily after the first plantlet emerged.  

The analyzed characteristics were daily percentage of germination during an observation period of 60 

days (G); germination speed (GSI); germination average time (GAT); first germination count (FGC) 20 days 

after planting; and germination percentage (GP) 60 days after planting (Brasil, 2009). The experiment was 

carried out following a completely randomized design with 45 accessions, four repetitions and parcels 

composed of 25 seeds. 

Repeatability analysis 

The Tocher optimization method [1] was used to group the most homogeneous accessions together as a 

way to indicate germination potential. This method is based on the Mahalanobis distance matrix (D2) [2] 

(Cruz, Regazzi, & Carneiro, 2012) and was constructed based on the variables GSI, GAT, FGC, and GP:  
d(i )    di    d  
d(group) 

 
    

    

  
ii    d ii  

  dii  to i   i      

   

 
 
 
 
 
 
 e  
 

 e  
 e  
 
 ep 

 e  

 e  
 

 e  
 
 ep 

 e  
 e  

 e  
 

 
 ep 

 
 
 
 
 

 e p
 e p
 e p
 
 epp
 

 
 
 
 
 
 

 



Euterpe edulis seed germination Page 3 of 11 

Acta Scientiarum. Agronomy, v. 42, e42461, 2020 

where: d(ij)k is the distance from individual k and the group formed by individuals ij; n is the number of individuals 

in the group;   is the minimum distance of the possible groups (i.e., the entry criterion for a new accession to the 

group); D2
ii is the Mahalanobis generalized distance among the genotypes i and i’; dii’ is the distance among the 

genotypes i and i’ (xij-xi’ ); S-1 is the inverse of the variance and covariance residual matrix; 2
e is the residual 

variance of the variable p; and e is the covariance among the variables pi and pj to i  j. 

Four nonlinear models were used to model the germination process (G) of the accession groups as a function 

of time. The regression coefficient 1

 
was an asymptotic approximation of the maximum germination in all the 

models, and 3 was interpreted as the mean germination rate in the logistic, Gompertz and von Bertalanffy 

models (Online Resource 1). 

The Gauss-Newton algorithm [3] was used to obtain the parameter estimates because of the 

interdependence of parameters in nonlinear models. This algorithm minimizes the sum of the squared 

errors (Björck, 1996). The initial estimates of the parameter vector were obtained by the logarithmic 

linearization of the models from Online Resource 1. 
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where: i+1 is the actualized parameter vector; i is the parameter vector of the ith interaction; J is the 

Jacobian gradient; r(i) is the error vector; y is the observed germination percentage; and t is the level vector 

for the time factor. 

Five indicators were used to evaluate the model fit: the determination coefficient (R2) [4] (Kennedy, 

2008), the mean squared error (MSE) [5] (Mello, Magalhaes, Breda, & Regazzi, 2008), the mean absolute 

deviation (MAD) [6] (Sarmento et al., 2006), the Akaike information criterion (AIC) [7] (Akaike, 1974) and 

the Bayesian information criterion (BIC) [8] (Schwarz, 1978). 
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where: SSE is the sum of the squared errors; TSS is the total sum of squares; RDF is the residual degrees of 

freedom; r(n) is the error vector of the last interaction; n is the number of observations; k is the number of 

model parameters; and ln(  ) is the Napierian logarithm of the maximum likelihood function.  

After determining the ideal model for describing the groups of families discriminated by the Tocher 

criterion, the germination tax (GT) function [9] was determined using the first derivative of the chosen 

model as a function of time. The Newton-Raphson algorithm (Björck, 1996) [10] was used with the GT 

function to determine the point of maximum germination tax. The initial value was determined through the 

functional analysis of the germination tax. 



Page 4 of 11 Soler-Guilhen et al. 

Acta Scientiarum. Agronomy, v. 42, e42461, 2020 

     
 f(  ,      , t)

 t
     

ti     ti   
   

    
   0  

      
   

  
 

       
 
 
  

 t
 

 

where: ti+1 is the actualized approximation of the maximum point of the germination tax function; t i is the 

approximation of the maximum point of the germination tax function in the ith interaction;   ’ is the first 

derivative of the germination tax function; and   ” is the second derivative of the germination tax function. 

The nonlinear model that best represented the family groups was submitted to a model identity analysis. 

This method was used to verify the equality of the biological parameters with the F statistic. 

    
                       

                    ( )
                  ,        

where: SSE()is the sum of the squared errors from the reduced model; SSE()is the sum of the squared 

errors from the complete model; RDF() is the residual degrees of freedom from the complete model; and 

RDF() is the residual degrees of freedom from the reduced model. 

The GENES program was used to estimate the Mahalanobis distance matrix and the cluster produced by 

the Tocher optimization method (Cruz, 2013). 

Estimation of the genetic parameters 

For the genetic parameters, estimations of deviance and variance components were carried out by the 

REML method, prediction of the genotypic values through the best linear unbiased prediction (BLUP) 

procedure and the calculation of average rank. All the analyses were carried out in R software (Team R, 

2017). 

A completely randomized design was used for the analysis of deviance (D), which may be written in the 

matrix form through equation [11]: 

y    u    g           

where: y is the vector of data observed for the variable to be analyzed; u is the estimate of the overall 

average through the best linear unbiased estimator (BLUE) method, assumed to be fixed; g is the vector of 

predicted genotypic effects, assumed to be random;   is the vector of random errors; and X and Z are the 

incidence matrixes for the fixed and random effects, respectively. 

Based on model [11], the deviance (D) was calculated by equation [12] after the maximization of the 

restricted likelihood function [13] in an iterative process, with the Dempster, Laird, and Rubin (1977) EM 

algorithm, which used the difference between the broad-sense heritability estimates (1 x 10-5) as a stopping 

criterion throughout the iterative steps (Resende, 2007): 
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where: ln(L) is the maximum point of the logarithmic function of maximum restricted likelihood; y is the 

vector of data observed from the variable to be analyzed; u is the estimate of the overall average through the 

best linear unbiased estimator (BLUE) method; X is the incidence matrix for the fixed effects; and V is the 

matrix of y variance and covariance. 

For the estimation of likelihood ratio test (LRT) statistics, the following estimator [14] was used 

(Resende, 2007):  

         ln        ln             

where: ln      is the estimation algorithm for the maximum point of the restricted likelihood function for 

the reduced model (without the genotypic effects); and ln       is the estimation algorithm for the 

maximum point of the restricted likelihood equation for the complete model (with the genotypic effects).  
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The error (  e
 ) and genotypic (  g

 ) variance components were predicted based on model [11]. The error (  e
 ) 

and genotypic (  g
 ) variances were obtained by the REML method, which corrects for the bias generated by 

the loss of degrees of freedom and always produces positive estimates for the variance components 

(Resende, 2007) and the estimates of other genetic parameters from the completely randomized model 

(Online Resource 2).  

Selection of the best genotypes 

The average rank, adapted from Mulamba and Mock (1978), was determined with the BLUP values of the 

genetic parameters. The average rank is a selection index based on the average of the individual ranks 

obtained by BLUP. Through this tool, it was possible to select genotypes based on multiple characters 

simultaneously. 

Results and discussion 

Due to the complexity of plant growth, several parameters must be considered to infer plant behavior, 

and growth analysis is one of the most accessible and precise tools for obtaining this knowledge. Therefore, 

understanding biological processes, such as growth, is essential for developing management plans that are 

suitable for each species. In this study, four nonlinear models were used with the aim of identifying which 

one had the best fit for describing the germination growth curves of 45 E. edulis accessions.  

The accessions were clustered (considering the variables GSI, GAT, FGC, and GP) into four different 

groups based on the Tocher optimization criterion obtained from the Mahalanobis distance matrix (Online 

Resource 3). Tocher optimization is a simple clustering method that separates genotypes into groups such 

that the average distances within the groups are always lower than the average distances between the 

groups (Cruz et al., 2012). This method has been widely and successfully used in genetic divergence studies 

among accessions (Cantelli et al., 2016; Costa et al., 2016; Manuel et al., 2016; Hoogerheide et al., 2017). 

We evaluated the quality of the four nonlinear models’ ad ustments with each of the four groups of 

accessions to select the model that provided the best fit for our type of data (Online Resource 4). The four 

nonlinear models were chosen because they are widely used to explain continuous data (Chatterjee, 

Chatterjee, Majumdar, & Chakrabarti, 2015; Tjørve & Tjørve, 2017), such as the ones provided by the seed 

germination growth curves studied here.  

Regarding the parameters R2, MSE, MAD, AIC, and BIC, which were used to describe the quality of the 

models, values of R2 close to 1 and the lowest values of MSE, MAD, AIC and BIC are required for a model to 

be considered the best. Due to the differences observed in all the studied models, the evaluation of 

nonlinear model fit based only on R2 values may not be the best option because R2 values were not able to 

discriminate these differences. 

The Gompertz model is considered to have the best fit to our data because it presented the lowest 

evaluator values, which indicate the best model fit. Therefore, this was the model chosen to describe the 

germination pattern of E. edulis seeds. This model and its modifications have been applied to several types 

of studies such as those on bacterial growth curves (Chatterjee et al., 2015), the kinetics of biogas 

production (Yono, Syaichurrozi, & Sumardiono, 2014), pest management models (Tian, Zhang, & Sun, 

2016), and tumor growth (Bolton, Alain, Cloot, & Schalk, 2015), and according to our results, we 

recommend that it be used in the study of seed germination patterns of other palm trees. 

The von Bertalanffy model presented the highest values of β1 for all the groups. However, the confidence 

intervals of the von Bertalanffy model for β1 are the most elevated. In addition, the von Bertalanffy model 

presented the lowest R2 value and the highest MSE, MAD, AIC, and BIC values, what indicates that this is the 

least appropriate model for describing the groups we examined (Online Resource 5). 

Parameter 3, which represents the average germination tax in the logistic, Gompertz and von 

Bertalanffy models, was most accurately estimated by the logistic model.  

Germination growth curves were fit for the four E. edulis accession groups based on the chosen model 

(Gompertz). These curves showed the germination percentage (G) and germination tax (GT) as a function of 

time. Regarding the germination percentage, in general, accessions in Group 2 presented the lowest 

percentages (approximately 30%), and the accessions in Group 4 presented the highest percentages 
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(approximately 90%). The germination taxes from Groups 1 and 2 were similar and constant through time. 

Group 3 presented an increase in the germination tax around the 20th day, then a decrease, and the tax 

remained constant thereafter. Group 4 also presented an increase in the germination tax, which occurred on 

the 30th day, before decreasing and remaining constant thereafter (Figure 1).  

 

Figure 1. Germination percentage (G) and germination tax (GT) as a function of time for the four E. edulis accession groups. 

Parameters were obtained by the Gompertz growth model and its first derivative, respectively. 

The vigor of seeds was estimated according to their maximum germination tax. Groups 1, 2, 3, and 4 

presented their maximum germination points (MP) at 29.64, 29.86, 21.18, and 28.47 days, respectively. 

Their maximum germination rates (MGRs) per day were 3.58, 1.66, 5.00, and 8.50, respectively (Table 1).  

Table 1. Estimates of the maximum germination point (MP), maximum germination rate (MGR) and inflection point (IP) of the 

germination percentage curves as a function of time for the four E. edulis accession groups. 

Groups MP (days) MGR (G day-1) IP (G) 

1 29.64 3.58 22.83 

2 29.86 1.66 9.58 

3 21.18 5.00 27.72 

4 28.47 8.50 34.37 

 

Seeds from groups 3 and 4 may be considered the most vigorous because they had the highest daily 

germination rates. According to this information, it is possible to perform a projection at the arboretum 

level, at which the critical seed production period can be estimated, for example. This would allow a 

schedule to be produced that would help determine the time when the arboretum needs to be organized.  

Variability in seed germination among accession groups was observed, and similar results (i.e., variation 

among individuals) were found for other palm trees (Berton, Filho, Siqueira, & Colombo, 2013; Silva-

Cardoso & Souza, 2017).  

The analysis of deviance revealed significant differences among genotypes for all the variables evaluated 

by a χ2 test at a 1 % level of probability (Table 2). The genetic variance of E. edulis seeds was elevated for all 

the analyzed characteristics and higher than the environmental variance (Table 3). The existence of genetic 

variability in germination and vigor among the genotypes indicates the possibility for selection for these 

characters.  

Selection is only possible and justifiable when there is a significant difference among genotypes. The 

higher the variability, the higher the probability of finding genotypes with favorable characteristics or that 

reunite these characteristics. Thus, the elevated genetic variability found in E. edulis for the measured 

germination parameters offers good opportunities to identify superior genotypes in terms of these 

characteristics.  
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Table 2. Analysis of deviance (ANADEV) for the germination speed index (GSI), first germination count (FGC), germination percentage 

(GP) and germination average time (GAT) performed with restricted maximum likelihood (REML) for the 45 E. edulis accessions. 

Variation sources GSI FGC (%) GP (%) GAT 

Genotypes -23.995+ 1325.404+ 1348.940+ 874.882+ 

Complete model -192.945++ 1071.309++ 1126.075++ 618.855++ 

LRT (χ2) 168.950** 254.095** 222.866** 256.027** 

LRT – likelihood ratio test, +Deviance of the model adjusted without the referenced effect, ++Deviance of the adjusted complete model, ** Significant based 

on a χ2 test with 1 degree of freedom at a 1% level of probability. 

Table 3. Estimates of genetic parameters for the germination speed index (GSI), first germination count (FGC), germination percentage 

(GP) and germination average time (GAT) obtained with restricted maximum likelihood (REML) for the 45 E. edulis accessions. 

Parameters GSI FGC (%) GP (%) GAT 

  g
  0.257 538.243 595.745 43.512 

  e
  0.060 58.045 84.031 4.617 

  f
  0.317 596.288 679.776 48.128 

h g

 
 0.812 0.903 0.876 0.904 

*CVg (%) 63.640 97.845 38.431 26.370 

*CVe (%) 30.610 32.132 14.433 8.589 

*CVg/CVe 2.079 3.045 2.663 3.070 

Overall average 0.797 23.711 63.511 25.015 

Accuracy 0.961 0.976 0.972 0.976 

CVg = coefficient of variation expressed by genotype; CVg = coefficient of variation expressed by environment. 

This fact can be confirmed by the heritability, which presented a high magnitude for all the evaluated 

indexes, indicating good genetic control of the expression of the seed characteristics, i.e., the higher the 

genetic variation relative to the environmental variation, the higher the heritability. Therefore, the elevated 

heritability values described for the characters may be related to the high genetic variability in the studied 

population.  

The genetic variation coefficient, which expresses the genetic fraction of the variance measured in the 

experiment as a percentage (Vasconcelos, Reis, Sediyama, & Cruz, 2012), was 63.640, 97.845, 38.431, and 

26.370% for the variables GSI, FGC, GP, and GAT, respectively, which shows the high genetic variability of 

these characteristics in the population, especially for GSI and FGC (Table 3). Thus, there are good 

opportunities for genetic advancement via genotype selection for higher germination percentages with 

faster and more uniform germination. 

The high heritability of the evaluated indexes may also be related to the fact that maternal genetic 

effects determine several seed characteristics, which are important determinants of germination and 

dormancy. In angiosperms, these effects may arise from the maternal inheritance of plastids; from the 

additional maternal genetic contribution to the endosperm; from the seed coat and other maternal tissues 

that envelop the embryo; and from hormones, proteins, transcripts and nutrients passed from the mother 

plant to the seeds during their development (Laossi, Noguera, & Barot, 2010; Rix et al., 2012). 

Therefore, even for allogamous species, seeds from the same plant present similar germination 
characteristics inherited from the mother plant that are different from those presented by seeds from other 
plants (Laurentin & Benítez, 2014). This increases genetic variation and decreases the environmental effect, 
generating elevated heritability values. High-magnitude heritability values were also observed in Acrocomia 
aculeata (Berton et al., 2013), Lupinus angustifolius (Beyer et al., 2015) and soybean germinative characters 
(Vasconcelos et al., 2012).  

The CVg/CVe ratio was 2.079, 3.045, 2.663, and 3.070 for the parameters GSI, FGC, GP, and GAT, 

respectively. If the ratio is greater than or equal to 1, as it was for the four evaluated characteristics, then 

the genetic variation represents the higher part of the CV of the estimated values, making the selection 

process easy (Yokomizo & Farias Neto, 2003). In other words, the CVg/CVe ratio demonstrates how much of 

the overall variance is caused by the genotype (Vasconcelos et al., 2012) and is an indication of the easiness 

of genotype selection for the desired characteristic (Yokomizo & Farias Neto, 2003). The CVg/CVe values in 

this study indicate that there is sufficient genetic variation to facilitate the selection of superior plants 

based on the measured characteristics. 

The measure of accuracy that reports the correlation between the true genotypic value and either the 

estimated genotypic value or the one predicted through experiments was very high for all the characteristics 



Page 8 of 11 Soler-Guilhen et al. 

Acta Scientiarum. Agronomy, v. 42, e42461, 2020 

(between 0.961 and 0.976), which indicates the high quality of the experiment and guarantees precise 

selection of the evaluated and selected genotypes in the studied population. 

According to the predicted genotypic values of the variables GSI, FGC, GP, and GAT of E. edulis 

accessions obtained through the BLUP method, the GP values varied from 10.85 to 94.89% (Online Resource 

6). Genotype AL1P09, which presented the highest GP, presented low performance in terms of the other 

evaluated characteristics. In AL3P03, 93.92% of seeds germinated, and this genotype had average 

performance in terms of the other characteristics. Genotype GU1P06 had a GP of 90.06% and presented good 

performance in terms of the other characteristics. 

Genotype AL1P02 presented the best values for GSI and GAT, followed by MI1P01 and GU1P06. 

Genotypes present similar results for these characteristics because, generally, the higher the germination 

speed, the lower the germination time. 

Genotypes MI1P01 and GU1P06 also presented elevated germination percentages in the first count 

(FGC), with values of 82.417 and 70.732%, respectively, and AL3P01 reached a value of 73.653%. 

Fragments AL1, AL3, GU1, and MI1 contained genotypes with the best and worst performances, with 

similar averages, whereas GU1 presented the best averages of all the characteristics. Genotypes from 

fragment IB1 were positioned, for the most part, between the ones with the worst performance, and the 

fragment had the worst averages of the characteristics.  

The elevated population variability indicates that the genotypes exhibited high, average and low 

performance for the evaluated characteristics, and the ones with the best performance are targets for 

selection. The genotypes with high performance in terms of GP presented very high values, considering the 

higher values reported in the literature are approximately 70 and 80% (Tavares et al., 2008; Cavalcante et 

al., 2012). 

The average rank index (Mulamba & Mock, 1978) was used to select genotypes based on all the evaluated 

characteristics, aiming to obtain simultaneous gains, which allows the most equilibrated genotypes to be 

selected. Genotype GU1P06 presented the best performance, with a genetic gain of 557.14%. Genotypes 

MI1P01, GU1P04, and GU1P03 also presented high performance, with genetic gains of over 400%.  

A total of 27 genotypes presented selection gains of over 50%, and among the ten best genotypes, five 

belong to fragment GU1, indicating the presence of favorable alleles in this population involved in the 

genetic control of the studied variables (Online Resource 7). 

In addition to its low percentage, E. edulis seed germination is considered slow and ununiform. Tavares 

et al. (2008) reported a very low GSI value (0.15), which may be related to the genotype used. Cavalcante et 

al. (2012) observed a GSI of 1.6, which is lower than the values identified for genotypes AL1P02 and MI1P01 

and close to the value for genotype GU1P06, which exhibited good performance in terms of all the 

characteristics. 

However, the selection of genotypes based on all the evaluated characteristics is fundamental for species 

breeding involving germination. Selection based on one unique characteristic, in spite of leading to a 

superior final product measured based only on this characteristic, may lead to low performance in terms of 

the others (Cruz et al., 2012). Thus, the average rank index promoted genotype selection based on good 

germination percentage and faster and more uniform germination, which are the most-reported problems 

for juçara seeds. 

Conclusion 

The methodology proposed in the present work may be considered appropriate for classifying nonlinear 

models with the best fit. The Gompertz model most accurately described the germination curve of E. edulis 

seeds. 

In general, the groups presented variable germination rates. Group 4, however, had the highest 

germination rate and was considered to be the most promising and vigorous group. 

High genetic variability and high heritability were found for E. edulis accessions, which makes the 

selection of genotypes possible. However, the selection of genotypes must be based on as many characters 

as possible, which is fundamental for species breeding involving germination. 
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