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ABSTRACT. The aim of this study was to develop and test a method to determine and discriminate soil 
classes in the state of São Paulo, Brazil, based on spectral data obtained via Landsat satellite imagery. 
Satellite reflectance images were extracted from 185 spectral reading points, and discriminant equations 
were obtained to establish each soil class within the studied area. Sixteen soil classes were analyzed, and 
discriminant equations that comprised TM5/Landsat sensor bands 1, 2, 3, 4, 5, and 7 were established. The 
results showed that this methodology could effectively identify individual soil classes using discriminant 
analyses of the spectral data obtained from the surface. Success rates of > 40% were achieved for 14 of the 
16 evaluated soil classes when applying the satellite image data. When the 10 soil classes containing the 
largest number of minimum cartographic areas were used, the hit rate increased to > 50%, for seven soil 
classes with a global hit rate of 52%. When the soil classes were grouped based on their parent materials, the 
hit rate increased to 70%. Thus, we concluded that the spectral method for soil classification was efficient. 
Keywords: discriminant analysis, TM-Landsat, Brazilian soil classes, spectral response. 

Informações espectrais de imagens Landsat da superfície do solo como indicativo na 
discriminação de classes de solos 

RESUMO. O objetivo deste trabalho foi desenvolver e testar um método para a determinação da classe de 
solo e sua separabilidade na paisagem dos solos presentes em uma área de estudo localizada no estado de 
São Paulo. Um conjunto de equações discriminantes foi obtido utilizando-se o sistema SAS que permitiu 
estabelecer a classe de solo na área de estudo. Foram analisadas 16 classes de solos as quais foram 
estabelecidas equações discriminantes compostas pelas bandas 1, 2, 3, 4, 5, e 7 do sensor TM5/ Landsat. As 
leituras espectrais foram realizadas em 185 pontos da área de estudo, donde se extraiu a reflectância da 
imagem. Classes de solos podem ser individualizadas por meio de análise discriminante utilizando-se 
informações sobre seu comportamento espectral obtida pela metodologia apresentada. A análise 
discriminante apresentou índices de acerto acima de 40% dentro da classe de solo avaliada, para 14 das  
16 classes de solos. Utilizando-se as dez classes com maior número de áreas mínimas cartografadas o acerto, 
dentro a classe, foi maior que 50% para sete classes de solos, com acerto global estabelecido em 52%. 
Quando se agrupou as classes de solos em função do seu material de origem, o acerto passou para 70%. 
Palavras-chave: análise discriminante, TM-Landsat, solos do Brasil, resposta espectral. 

Introduction 

In recent decades, Brazil has become a 
prominent worldwide leader in agricultural exports 
due to the expansion into new agricultural frontiers, 
implementation of technological improvements, and 
exceptional efforts to address adversities among 
growers. To continue this growth, Brazil must adopt 
suitable practices for using and managing previously 
uncultivated land areas. 

Soil surveys that include appropriate and detailed 
cartographic representations allow us to obtain a wealth 
of information that, when properly managed,  can  ena- 

ble technicians and growers to employ methodologies 
and establish strategies that extend and even increase 
the productive capacity of their lands. However, there 
are an insufficient number of professionals available to 
map such a large country, and there are still millions of 
hectares of land left for the rational and sustainable 
production of food (DALMOLIN, 1999). 

Demattê (2001) stated that the study and 
implementation all available technologies regarding 
soil spectral analyses is of critical significance. 
Spectral behavior analyses of soils using remote 
sensors might provide answers to the problem of 
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class discrimination. Such studies are based on the 
fact that each soil presents a spectral signature 
according to the absorption of specific wavelengths 
across the entire electromagnetic spectrum (BEN-
DOR et al., 1999). 

The fundamental theory of soil spectral analyses 
indicates that soils can be characterized according to 
their B horizon. This horizon is not detected using 
satellite data unless erosion has occurred. Therefore, 
how could spectral responses help in discriminating 
soil units? To answer this question, we begin with 
the assumption that many soil classes exhibit surface 
characteristics that differ from other classes and 
therefore can be used as a taxonomic identifier. This 
assumption has been combined with the use of 
aerial photographs for soil discrimination. This 
method does not detect B horizon values; however, 
it does infer information regarding the ‘probable’ 
soil class. A small number of published studies of 
soils and tropical soils have suggested that the use of 
satellite images can assist in the discrimination of 
surface information. 

Because a spectral response is also an individual 
trait, the use of this technique allows for the 
separation of soil classes and may therefore aid in 
pedological surveys. Because soil properties are 
related to soil classes, and these soil properties are 
related to spectra, we can correlate spectra with soils 
to facilitate the detection of soil types. Therefore, 
the aim of this  study  was  to  develop  and  test  a 

method for determining and distinguishing different 
soil classes in the southwestern region of São Paulo 
State, Brazil, based on spectral data obtained from 
satellite images. 

Material and methods 

The studied area is located in the southwestern 
region of the state of São Paulo and is delimited by 
the geographical coordinates 23º0’31.37” - 
22º58’53.97” south latitude and 53º39’47.81” - 
53º37’25.65” west longitude in a region known as 
the Paleozoic depression (IPT, 1981). As part of the 
hydrographic basin of the Tietê River (OLIVEIRA 
et al., 1992), the area is bordered by the Capivari 
river and spans an area of approximately 198 ha with 
a perimeter of 11,045.80 m (Figure 1). 

Geologically, the studied area is situated in the 
Itararé Formation and is part of the Tubarão Group. 
These units were formed between the Upper 
Carboniferous Period and Middle Permian Epoch and 
occur in the state a complex association of several 
lithofacies, almost all of which are detritic that formed 
in rapid vertical and horizontal successions (IPT, 
1981). The predominant lithologies consist of 
mineralogically immature sandstones with 
heterogeneous granulation ranging from feldspathic 
sandstones to arkoses; these units range from thin 
layers to banks that are tens of meters thick (VIDAL-
TORRADO; LEPSCH, 1999). 

 

 

Figure 1. Study location and soil sampling grid representation (1 sample ha-1). 
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The geographic information system “Sistema de 
Processamento de Informações Georreferenciadas 
(SPRING)” (INPE, 1999) was used to implement 
the cartographic study. This system has multiple 
functions and algorithms for processing 
georeferenced databases. A database was established 
using this system to incorporate the geospatialized 
information that was obtained from planimetric and 
altimetric charts and data that was collected in the 
field using GPS receivers and orbital images. 

In the entire area, 185 augured points were 
selected (Figure 1). These points were marked in a 
grid fashion with one point per hectare 
(WOLKOWSKI; WOLLENHAUPT, 1994) 
following procedures used in soil surveys. 
Specifically, a synthetic approach was used 
(EMBRAPA, 1996) and the database was 
georeferenced with a differential global positioning 
system (DGPS) technique, which is a method used 
with GPS receivers to achieve higher precision with 
these data receptors in absolute positioning modes. 

The collected samples were first dried in a forced 
ventilation oven at a constant temperature of 50ºC 
for 48h and then sifted through a 2-mm sieve (air-
dried soil). The textural soil groupings were 
conducted according to Embrapa (1999). The 
densitometric method was used to determine the total 
sand, silt and clay contents (CAMARGO et al., 1986). 
Organic matter (OM), active and residual acidity, 
pH and cation exchange capacity (CEC) 
determinations were performed according to 
Embrapa (1997). The sum of the cations (i.e., 
calcium, magnesium and potassium) (SC), base 
saturation (V%= [SC/CEC]*100), and aluminum 
saturation (m%= [Al3+/SC+Al3+]*100) were 
determined according to Van Raij and Quaggio 
(1989). Total iron (Fe), silicon (Si), and titanium 
(Ti) contents were determined by sulfuric acid 
digestion according to a methodology recommended 
by Embrapa (1997). The soil color was identified 
using the Munsell color chart 
(GRETAGMACBETH, 2000). 

The physiographic unit boundaries were 
established after generating orbital image visual 
interpretations according to the recommendations of 
Donzeli et al. (1983) and Nanni and Rocha (1997). 
These boundaries were then used in the SPRING 
system after generating successive combinations of 
algorithms and filters to improve the visual quality as 
reported by Nanni and Rocha (1997). The soil classes 
were defined after analyzing the laboratory samples and 
open trenches at representative physiographic unit 
locations. The fieldwork procedures and the 
description and collection of the materials were 
performed according to the criteria established by 

Lemos and Santos (1996). The soil classes were 
defined according to the Brazilian classification system 
(EMBRAPA, 1999) and correlated to the soil 
taxonomy (COSTA; NANNI, 2004). 

Spectral data acquisition and processing  

The information extracted from the pixels was 
used to extract the gray value levels for each TM-
Landsat-5 image point that corresponded to a 
sampling location in the field. The gray value levels 
for each band were then converted into reflectance 
values according to the procedures established by 
Markham and Barker (1986) and Thome et al. 
(1997). For Rayleigh scattering and ozone 
absorption corrections, the 5S irradiative transfer 
code simulation (TANRÉ et al., 1992; VERMOTE 
et al., 1997) was used and properly corrected for 
atmospheric effects (KAHLE et al., 1980). After the 
conversion and correction procedures, the zero gray 
level images corresponded to 0% reflectance, 
whereas a gray level of 255 corresponded to 100% 
soil reflectance (DEMATTÊ; NANNI, 2003). 

To verify whether the points in the image that 
corresponded to the field-collected points 
characterized the exposed soils (i.e., without plant 
cover), the normalized difference vegetation index 
(NDVI) methodology was applied (DEMATTÊ  
et al., 2000; JACKSON, 1983; KAUTH; 
THOMAS, 1976). 

Statistical analyses 

The Statistical Analysis System (SAS, 1992) 
software package version 6 was used to manage the 
obtained data and perform the statistical analyses. To 
organize the database for statistical analyses and the 
evaluation of hypotheses, the reflectance values for 
each soil were fitted to a data matrix used for this 
analysis, which consisted of the six TM-Landsat-5 
bands for each sampled terrain. 

Completely randomized variance analyses were 
performed on this matrix, and the reflectance means 
of each soil per selected wavelength range were 
analyzed using the Tukey test at the p ≤ 0.01 and  
p ≤ 0.05 levels. The general linear models (GLM) 
method of the SAS program was used to test each 
selected wavelength range for the hypothesis where 
Ho: soil1=soil2=soil3=soil4=soil5. The rejection 
of this null hypothesis implies the acceptance of an 
alternative hypothesis where H1: at least two soils 
are statistically different. The purpose of this study 
was to determine which variables would have a 
higher or lower potential to yield models that best 
explain the problem. Therefore, the STEPDISC 
method (SAS, 1992) was initially employed to select 
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suitable bands. Discriminant analyses were then 
conducted to differentiate and characterize the soil 
with the goal of developing and testing the method 
for soil class determination based on either its 
spectral data or analytical characteristics. Thus, the 
DISCRIM method (SAS, 1992) was used. The 
parametric method was used to develop the 
discriminant linear functions. 

Results and discussion 

The area studied included a variety of parent 
materials consisting of reworked sandstone-
diabase, sandstone-shale, diabase-shale materials, 
and a combination of all three. As a result of these 
geological conditions, 18 soil classes were 
established (Table 1). 

The following soil subgroups and land areas 
dominated the study area: Paleudults and 
Paleudalfs, 58.12 ha (31.12%); Oxysols, 39.60 ha 
(21.21%); Dystrochrepts and Eutrochrepts,  
36.92 ha (19.76%); Rhodic Paleudalfs,  
19.08 ha (10.22%); Argiudolls, 12.76 ha (6.84%); 
Udorthent, 9.76 ha (10.22%); and Udifluvents, 
10.52 ha (5.63%). The declivity conditions pre-
established the possible presence of thin soils with 
depths ranging between 1.50 and 2.00 meters. 
Deeper soils were found in plains or gently rolling 
areas and reached up to tens of meters in depth. 
Because the cartographic land areas included in 
the strongly rolling and mountainous classes 
(with soils less than 0.80 cm in depth) were small, 
lower proportions of shallow soil classes were 

observed. Rocky outcrops were also included in 
the shallow soil class. 

As expected, the soil classes that contained a 
small number of samples showed smaller 
amplitudes or variability of the attributes allowed 
by the class. The B1, B2, B3, B4, B5, and B7 
values corresponded to the bands from the TM 
sensor (Table 1). This data bank was structured 
according to the following guidelines: (1) the soil 
spectral patterns from a given area are used to 
develop statistics and equations; (2) when a soil 
sample cannot be classified, its spectral 
information must be acquired; (3) the spectral 
information must be applied to all previous 
equations (Table 1); and (4) the highest obtained 
data on equations results will be the desired soil. 
However, such reasoning is valid only for the 
soils and conditions that were observed in this 
study. 

Furthermore, this reasoning created the 
potential to characterize different regions in the 
country, thus allowing for faster preliminary 
identifications, as stated by Coleman and 
Montgomery (1990), Demattê and Garcia (1999), 
and Nanni et al. (2004). 

According Gerbermann and Neher (1979), if a 
dataset is obtained via an automated technique, 
soil maps will be produced faster than with 
conventional methods. Table 2 summarizes the 
hit percentages for the classification of the soils 
that were examined using the discriminant 
equations compared to the conventional 
classification methodology. 

Table 1. Discriminant equations obtained using the TM-Landsat evaluation bands for all soil classes. 

Class n1 Discriminant equations2 

RUd3 7 -34.9927 - 3.4605*B1 - 0.14081*B2 + 0.89447*B3 + 2.48853*B4 + 0.73691*B5 - 0.43438*B7 
MTfr 14 -33.0937 - 6.4961*B1 + 0.76258*B2 + 0.67527*B3 + 2.74335*B4 + 1.43487*B5 - 1.8539*B7 
CE1 4 -39.2013 - 6.70611*B1 + 1.12848*B2 + 0.9865*B3 + 2.52815*B4 + 1.3809*B5 - 1.60193*B7 
CD1 6 -44.642 – 4.82595*B1 + 0.63345*B2 - 0.15483*B3 + 3.4661*B4 + 0.90695*B5 - 0.53662*B7 
CE3 3 -31.4928 - 5.79768*B1 + 0.2626*B2 + 1.16703*B3 + 2.52334*B4 + 1.11786*B5 - 1.36596*B7 
CE2 6 -31.2862 - 5.74454*B1 + 1.0568*B2 + 0.2449*B3 + 2.95226*B4 + 0.94872*B5 - 1.15765*B7 
CD2 12 -47.5261 - 4.8144*B1 + 0.61794*B2 + 0.63277*B3 + 2.83464*B4 + 1.26189*B5 - 1.06166*B7 
LVe 20 -30.4057 - 7.34009*B1 + 0.58157*B2 + 1.89452*B3 + 2.13164*B4 + 0.6073*B5 - 0.69839*B7 
LVAe 9 -30.6845 - 6.71217*B1 + 0.19287*B2 + 1.98053*B3 + 1.7553*B4 + 0.73748*B5 - 0.45603*B7 
LVAd 5 -38.5065 - 4.51743*B1 + 0.48783*B2 - 0.05451*B3 + 3.19036*B4 + 0.93884*B5 - 0.6548*B7 
PVAe1 27 -50.0303 - 4.77088*B1 + 0.45385*B2 + 0.90233*B3 + 2.78573*B4 + 0.72144*B5 - 0.08911*B7 
PVAd 2 -35.4309 - 6.44089*B1 + 1.06144*B2 + 0.76785*B3 + 2.79228*B4 + 0.83768*B5 - 0.87981*B7 
PVAe2 15 -38.6123 - 4.66779*B1 + 0.84416*B2 + 0.49152*B3 + 2.62668*B4 + 0.79755*B5 - 0.43845*B7 
PVAe3 4 -45.236 – 7.15908*B1 + 0.79169*B2 + 1.59665*B3 + 2.48002*B4 + 1.06265*B5 - 0.92726*B7 
Rle2 2 -55.1678 - 8.65796*B1 + 4.80298*B2 - 1.77679*B3 + 3.79686*B4 + 1.42308*B5 - 2.04336*B7 
Rle1 9 -30.0657 - 6.06055*B1 + 0.15969*B2 + 1.25555*B3 + 2.17189*B4 + 1.1738*B5 - 1.15031*B7 
NVef1 14 -28.3508 - 7.2187*B1 + 0.27142*B2 + 1.96497*B3 + 1.93981*B4 + 1.06931*B5 - 1.41957*B7 
NVef2 4 -22.2789 - 6.45176*B1 + 0.35227*B2 + 2.14137*B3 + 1.49931*B4 + 0.35021*B5 - 0.36348*B7 
1Number of individuals; 2Discriminant equations obtained using the TM-Landsat analyses with the following bands: B1 (450-520 nm); B2 (520-600 nm); B3 (630-690 nm); B4 (760-900 
nm); B5 (1550-1750 nm); and B7 (2080-2350 nm); Soil classes of studied area: Argissolo Vermelho-Amarelo distrófico, PVAd (Typic Paleudult); Argissolo Vermelho-Amarelo eutrófico 
textura arenosa/media, PVAe1 (Typic Paleudult); Argissolo Vermelho-Amarelo eutrófico abrúptico, PVAe3 (Arenic Abruptic Paleudalf); Argissolo Vermelho-Amarelo eutrófico textura 
média/argilosa, PVAe2 (Typic Paleudult); Cambissolos Háplicos Ta eutróficos lépticos substrato folhelhos da Formação Itararé, CE2 (Typic Eutrochrept); Cambissolos Háplicos Tb 
distróficos, CD2 (Typic Dystrochrept); Cambissolos Háplicos Tb distróficos e alumínicos substrato retrabalhamento de arenito e saprolito de folhelho da Formação Itararé, CD1 
(Typic Dystrochrept); Cambissolos Háplicos Tb eutróficos típicos substrato diabásio, CE3 (Typic Eutrochrept); Cambissolos Háplicos Tb eutróficos típicos substrato regolito do 
retrabalhamento de arenito e diabásio, CE1 (Typic Eutrochrept); Chernossolo Argilúvico férrico saprolítico, MTfr (Typic Argiudoll); Latossolo Vermelho eutrófico típico – LVe (Typic 
Haplorthox); Latossolo Vermelho-Amarelo epieutrófico típico, LVAd (Typic Haplorthox); Latossolo Vermelho-Amarelo eutrófico típico, LVAe (Typic Haplorthox); Neossolo Litólicos 
eutróficos, Rle1 (Typic Udorthent); Neossolo Litólicos eutróficos chernossólicos e típicos, Rle2 (Typic Udorthent); Neossolos Flúvicos Tb distróficos típicos, RUd (Typic 
Udifluvent); Nitossolo Vermelho eutroférrico, NVef1 (Rhodic Paleudalf); and Nitossolo Vermelho eutroférrico latossólico, NVef2 (Rhodic Paleudalf). 
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Table 2. Discriminant analyses, the number of samples, and the percent of soil classifications for all soil classes in the studied area. 

Class Total  Correct Incorrect 1  
 samples Samples % Samples % Misidentified Soil Classes 
RUd 7 4 57.14 3 42.86 CD1(2)2,LVAd(1) 
MTfr 14 9 64.29 5 35.71 CE2(2),LVe(2),PVAd(1) 
CE1 4 3 75.00 1 25.00 LVAe 
CE2 6 3 50.00 3 50.00 CD1(1),CE2(1),Rle1(1) 
CE3 3 1 33.33 2 66.66 LVe(1),Rle1(1) 
CD1 6 2 33.33 4 66.66 CD1(1),CD2(1),PVAe1(1),PVAe2(1) 

CD2 12 0 0.00 12 100.00 
CE1(2),CD1(2),CE2(1),LVAd(1), 

PVAe1(2),PVAe2(2),PVAe3(2) 
LVe 20 9 45.00 11 55.00 MTfr(1),LVAe(2),NVef1(5),NVef2(3) 
LVAe 9 4 44.44 5 55.56 PVAe3(1),NVef1(2),NVef2(2) 
LVAd 5 2 40.00 3 60.00 CD1(2),PVAd(1) 

PVAe1 27 16 59.26 11 40.74 
RUd(1),CD1(4),CD2(1),LVAe(2), 

PVAe2(2),RLe1(1) 

PVAe2 15 0 0.00 15 100.00 
RUd(2),CD1(1),CD2(3),CE2(1),CE3(1), 

LVAd(1),PVAe1(3),Rle1(2),Rle2(1) 
PVAe3 4 1 25.00 3 75.00 CE1(1),LVe(1),LVAe(1) 
PVAd 2 0 0.00 2 100.00 CD2(1),LVe(1) 
Rle1 9 2 22.22 7 77.78 MTfr(2),CE2(1),CE3(1),LVAe(3) 
Rle2 2 1 50.00 1 50.00 CE2(2) 
NVef1 14 10 71.43 4 28.57 CE3(2),LVe(1),LVAe(1) 
NVef2 4 3 75.00 1 25.00 NVef1(1) 
1Global error median=61.36%; 2Number of incorrect classifications. 

Of the 18 analyzed classes (Table 3), only five 
showed results hit values of > 60% within the class. 
Among these classes, the best results were achieved 
for CE1 and NVef2 with a 75% hit rate within each 
class. However, most of the classes showed 
inadequate results. Total failure was observed (i.e., 
no observations were auto classified using the 
established discriminant equations) for the soil 
classes CD2, PVAd and PVAe2 with six, two, and 
five individual sites, respectively. 

In contrast to the total failure observed, the 
following aspects should be considered: (1) a 
misidentification occurred for those classes with 
similar physical surface characteristics, such as 
organic matter content, iron, clay, sand, and color, 
which would be difficult to distinguish even in the 
field; (2) classes with higher iron contents due to 
their parent material (diabase) showed infrequent or 
no misidentifications for confusion with the classes 
derived from sandstone; (3) the Dystrochrepts soil, 
which is a transitional class, showed the highest 
number of classification errors; and (4) in some 
classes with low numbers of sites, an error in a 
single point could result in a high rate of error for 
the class, which would contribute to an increase in 
the global error rate. For example, the Rle2 class 
(i.e., litholic soil with a shale substrate) with only 
two sites was problematic. Because one of the sites 
was classified as a Eutrochrepts soil with a shale 
substrate (CE2), the error rate was 50%. 
Considering that these soils were similar at the 
surface and in satellite images, the reported error 
(50%) was high and affected the global error for the 
entire analysis. This class showed the highest global 

median error value among all analyses performed for 
this study (61.36%). 

In an attempt to eliminate this problem, only the 
10 soil classes with the highest number of sites were 
evaluated. The classes that showed more than seven 
individual sites were selected following the 
procedure reported by Oliveira et al. (1982). To 
ensure that the statistical analyses could not exhibit a 
marked influence on the standard error of the 
average, a minimum of 7 samples per soil class were 
used. 

Of the 18 identified classes in the study area, 
only 10 contained more than 7 observations, which 
were classified as the following: RUd, MTfr, CD1, 
CE2, CD2, LVe, LVAe, PVAe1, PVAe2, and NVef1. 
The obtained equations for the most abundant 
classes are shown in Table 3. 

Table 4 summarizes the percentages of hits for 
the classification of the soils that were examined 
using the discriminant equations. 

By limiting the number of soil classes, the global 
error was reduced to 48.25%. This reduction 
occurred for two primary reasons. The first reason 
was the elimination of classes with a small number 
of sites, which contributed to the increased 
classification error and the low hit percentages 
within each class. The second reason for the error 
reduction was the inclusion of those classes that 
were previously classified into one of the excluded 
classes. For example, the CD2 class had a hit rate 
within its own class of 0% based on an analysis that 
involved all classes. The hit rate increased to 33.33% 
when the analysis involved only the 10 classes with 
the highest number of sites. 
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Furthermore, the classes with similar surface 
characteristics caused misidentifications during the 
classification. Therefore, because the orbital data 
only referred to the surface soil layers, further 
discriminant analyses were conducted to group the 
soils according to their parent materials. The classes 
that were related to the parent material were 
designated as sand, shale, shale/diabase, and diabase. 

The following soil classes were combined to 
compose the sand group: RUd, CE1, CD1, CD2, 
LVAd, PVAe1, PVAd, PVAe2, and PVAe3. The CE2 
and Rle2 classes formed the shale group. The 

shale/diabase group contained the MTfr class, and 
the diabase group consisted of the CE3, LVe, LVAe, 
Rle1, NVef1, and NVef2 soil classes. The 
discriminant equations for these groupings are 
shown in Table 5. 

Among the six bands that were evaluated using 
STEPDISC from the SAS system (Table 5), only the 
TM_B2 band was not used to assemble the 
discriminant equations. All of the other bands showed 
statistical significance at p ≤ 0.01. After the 
discriminant equations were established, the 
classification data were generated as shown in Table 6. 

Table 3. Discriminant equations obtained using TM-Landsat-evaluated bands for the 10 soil classes with the highest number of 
observations in the studied area. 

Class n1 Discriminant equations2 

RUd 7 -34.2896 – 3.55919*B1 + 0.13371*B2 + 0.63909*B3 + 2.42146*B4 + 1.18612*B5 - 1.12938*B7 
MTfr 14 -34.6111- 6.78654*B1 + 1.50043*B2 + 0.12797*B3 + 2.84146*B4 + 1.9366*B5 - 2.66193*B7 
CD1 6 -44.6683 – 5.21448*B1 + 1.28492*B2 - 0.58129*B3 + 3.47132*B4 + 1.44051*B5 - 1.42153*B7 
CE2 6 -32.2268 – 6.15409*B1 + 1.8236*B2 - 0.28028*B3 + 3.01722*B4 + 1.42041*B5 - 1.92273*B7 
CD2 12 -47.9958 – 5.18662*B1 + 1.20571*B2 + 0.18731*B3 + 2.88435*B4 + 1.82645*B5 - 1.98184*B7 
LVe 20 -29.8542 – 7.38688*B1 + 1.14133*B2 + 1.43477*B3 + 2.09416*B4 + 0.97403*B5 - 1.24361*B7 
LVAe 9 -30.0024 – 6.66141*B1 + 0.59336*B2 + 1.62149*B3 + 1.70646*B4 + 1.09234*B5 - 1.00113*B7 
PVAe1 27 -48.885 – 5.04352*B1 + 0.92914*B2 + 0.54099*B3 + 2.74134*B4 + 1.22831*B5 - 0.90683*B7 
PVAe2 15 -38.464 – 5.05779*B1 + 1.43548*B2 + 0.07636*B3 + 2.6489*B4 + 1.27334*B5 - 1.22066*B7 
NVef1 14 -28.3791 – 7.18731*B1 + 0.77905*B2 + 1.51134*B3 + 1.94458*B4 + 1.45759*B5 - 1.99804*B7 
1Number of individuals; 2Discriminant equations obtained using TM-Landsat analyses with the following bands: B1 (450-520 nm); B2 (520-600 nm); B3 (630-690 nm); B4 (760-900 nm);  
B5 (1550-1750 nm); and B7 (2080-2350 nm). 

Table 4. Discriminant analyses, the number of samples, and soil classification percentages for the 10 soil classes with the highest number 
of observations. 

Class Total of Correct Error1 

 samples Samples % Samples % Misidentified Soil Classes 
RUd 7 6 85.71 1 14.29 CD1 
MTfr 14 10 71.43 4 28.57 CE2(2)2, LVe(2) 
CE2 6? 3 50.00 3 50.00 MTfr(1),CD1(1),LVe(1) 
CD1 6? 3 50.00 3 50.00 CD2(1),PVAe1(1),PVAe2(1) 
CD2 12 4 33.33 8 66.67 RUd(1),CD1(2),CE2(1),PVAe1(2),PVAe2(2) 
LVe 20 9 45.00 11 55.00 MTfr(1),LVAe(3),NVef1(7) 
LVAe 9 5 55.56 4 44.44 LVe(1),PVAe1(1),NVef1(2) 
PVAe1 27 15 55.56 12 44.44 RUd(2),CD1(4),CD2(2),LVAe(2),PVAe2(2) 
PVAe2 15 1 6.67 14 93.33 RUd(3),MTfr(1),CD1(1),CE2(2),CD2(3),LVAe(1),PVAe1(3) 
NVef1 14 9 64.29 5 35.71 RUd(1),MTfr(1),LVe(1),LVAe(2) 
1Global error median=48.25%; 2Number of error classifications. 

Table 5. Discriminant equations obtained using TM-Landsat-evaluated bands for the parental material groups in the studied area. 

Groups n1 Discriminant equations2 

Sandstones 78 -36.45681 - 4.61984*B1 + 1.00592*B3  + 2.55491*B4 + 0.65769*B5 – 0.50672*B7 
Shales 8 -28.66557 - 5.15408*B1 + 0.64817*B3 +  2.91957*B4 +  0.86388*B5 – 1.26487*B7 
Shales/Diabase 14  -28.74755 - 6.00838*B1 + 1.09110*B3 + 2.52247*B4  + 1.18156*B5 – 1.68701*B7 
Diabase 63 - 26.23708 + 1.87910*B1 + 1.92418*B3 + 0.71534*B5 – 0.93404*B7 
1Number of individuals; 2Discriminant equations obtained using TM-Landsat analyses with the following bands: B1 (450-520 nm); B2 (520-600 nm); B3 (630-690 nm); B4 (760-900 nm); 
B5 (1550-1750 nm); and B7 (2080-2350 nm). 

Table 6. The number of observations and percent of soils classified using TM-Landsat bands for the parent material groups. 

Groups1 Sandstone Shales/Diabase Shales Diabase Total 

Sandstone 60.002 4.00 10.00 4.00 78.00 
 76.92% 5.13 12.82 5.13 100.00 
Shales/Diabase 0.00 10.00 2.00 2.00 14.00 
 0.00 71.43% 14.29 14.29 100.00 
Shales 0.00 1.00 6.00 1.00 8.00 
 0.00 12.50 75.00% 12.50 100.00 
Diabase 1.00 10.00 5.00 47.00 63.00 
 1.59 15.87 7.94 74.60% 100.00 
Total 61.00 25.00 23.00 54.00 163.00 
Percent 37.42 15.34 14.11 33.13 100.00 
1Identification of the soil class groupings with equal parental material; 2Total frequencies for all classes. 
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A significant improvement was observed when 
the soil classes were grouped according to their 
parental material (Table 7). The global error for 
the Chi-square test was 25.51%, which was well 
below the 48.25% error for the classification using 
the 10 most populous classes and far better than 
the 61% error when all classes were used 
separately. Differences between the parent 
materials were found using the spectral data that 
were obtained by the TM Landsat sensor in the 
soil line analyses (HUETE, 1989) as described by 
Nanni and Demattê (2006). Nanni and Demattê 
(2006) found higher variations in soil lines for the 
soils classes that were developed in areas with 
sandstone and low iron levels relative to those that 
contained high amounts of clay and iron. 

This fact observed by Nanni and Demattê 
(2006) opens new perspectives and possibilities 
for geological surveys because this method can set 
realistic boundaries between the different parent 
materials. This method confirms that the different 
parent materials can be discriminated according to 
their reflectance due to physical interactions with 
electromagnetic energy. To reinforce the 
discriminant analyses, a simulation was performed 
in which 80% of the sampled sites were used to 
generate a discriminant model that could be tested 
using the remaining 20% of the data. The sampled 
sites were randomly selected; i.e., the SAS system 
randomly selected the components that would 
take part in the discriminant analyses (80%) and 
those that would be used to test the obtained 
models (20%). The procedure was tested using  

50 simulations with the system set to randomly 
choose 80% of the sampled sites, which generated 
the discrimination model that was used to test the 
remaining 20% of the sites. Only the 10 soil 
classes with the highest number of observations 
were used. Furthermore, classes with a reduced 
number of sites might not show the variability 
that exists within the class or might have 
characteristics that resemble another class. These 
issues could interfere with the safe and reliable 
analyses. In addition, as previously described, 
classes with a small number of sites greatly 
increased the global error. 

After the simulation, the system yielded results 
that showed the data classification percentage 
within the model (Table 7). 

The hit rate was low when 80% of the 
observations were applied to the model. Of the 
5825 matches that were generated by the  
50 simulations for the model-examined data, the 
model produced 3102 misclassifications with a 
global error of 53.3%, whereas the classifications 
matched in 2723 instances with an accuracy of 
46.7%. Furthermore, 11% of the total data was 
lost (632 times). Hence, a difference between the 
numbers presented in Table 7 (5193) and the total 
number (5825) was observed. Despite this 
difference, the presented model was highly 
significant according to the Chi-square test  
(p ≤ 0.01). The correlation between the classes 
that were observed and estimated by the model 
showed an r-square value of 83.8% as defined by 
the contingency coefficient. 

Table 7. The number of observations and soil percentages classified using the 10 soil classes with the highest number of observations in 
the studied area and 80 % of the observations to develop the model. 

Class1 RUd MTfr CD1 CE2 CD2 LVe LVAe PVAe1 PVAe2 NVef1 Total2 

RUd 213.003 0.00 39.00 3.00 11.00 0.00 0.00 2.00 7.00 0.00 275 
 77.454 0.00 14.18 1.09 4.00 0.00 0.00 0.73 2.55 0.00  
MTfr 0.00 376 0.00 88.00 0.00 76.00 1.00 0.00 1.00 12.00 554 
 0.00 67.87 0.00 15.88 0.00 13.72 0.18 0.00 0.18 2.17  
CD1 2.00 0.00 110.00 2.00 47.00 0.00 0.00 41.00 36.00 0.00 238 
 0.84 0.00 46.22 0.84 19.75 0.00 0.00 17.23 15.13 0.00  
CE2 0.00 49.00 26.00 123.00 0.00 25.00 7.00 0.00 0.00 1.00 231 
 0.00 21.21 11.26 53.25 0.00 10.82 3.03 0.00 0.00 0.43  
CD2 42.00 18.00 73.00 16.00 192.00 0.00 0.00 63.00 74.00 0.00 478 
 8.79 3.77 15.27 3.35 40.17 0.00 0.00 13.18 15.48 0.00  
LVe 0.00 57.00 0.00 4.00 0.00 396.00 124.00 0.00 0.00 229.00 810 
 0.00 7.04 0.00 0.49 0.00 48.89 15.31 0.00 0.00 28.27  
LVAe 1.00 0.00 6.00 0.00 0.00 32.00 193.00 32.00 3.00 82.00 349 
 0.29 0.00 1.72 0.00 0.00 9.17 55.3 9.17 0.86 23.5  
PVAe1 91.00 0.00 125.00 6.00 95.00 1.00 71.00 612.00 89.00 0.00 1090 
 8.35 0.00 11.47 0.55 8.72 0.09 6.51 56.15 8.17 0.00  
PVAe2 99.00 48.00 44.00 52.00 104.00 0.00 25.00 115.00 114.00 0.00 601 
 16.47 7.99 7.32 8.65 17.3 0.00 4.16 19.13 18.97 0.00  
NVef1 42.00 17.00 0.00 8.00 0.00 53.00 53.00 0.00 0.00 394.00 567 
 7.41 3.00 0.00 1.41 0.00 9.35 9.35 0.00 0.00 69.49  
          Total5 5193 

           100 
1Classes with the highest number of observations; 2Total frequencies in the model; 3Frequency in the class; 4% correct within the class; 5Total frequencies for all classes. 
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Most of the errors occurred between classes that 
had very similar parent materials or surface layer 
properties. The only non-justifiable error was observed 
with the PVAe2 class, which was corrected classified 
only once in 554 trials (0.02%) by the model. Because 
the characteristics of these soils are quite distinct, this 
result indicates that the model requires adjustment. 

Among all classes, RUd was the best classified with 
the smallest error and a 77.45% correct classifications 
The worst performance was observed for the PVAe2 
class, which produced a 18.97% frequency of correct 
identification. As previously discussed, this class 
originated from a sandstone deposit overlying shale or 
diabase. Therefore, the characteristics of PVAe2 soils 
result in an intermediate classification between several 
soil classes within the area. Even so, the highest rate of 
misidentification occurred among the classes with high 
sand fractions at the surface, such as RUd, CD1, CD2, 
PVAe1 and LVAe classes. Nevertheless, classification 
errors occurred with the MTfr (7.99%), CE2 (8.65%) 
and LVAe (4.16%) classes, indicating that the model 
was not reliable for these classes. 

Table 8 summarizes the match percentages for the 
classification of soils that were examined using the 
discriminant equations when only 20% of the 
observations were tested in the model generated using 
the remaining 80% of the data. 

When using 20% of the classes for the application 
of the model established by the remaining 80% of the 
data, the hit rate was low, producing a large number of 
misidentifications among the classes and a low 
frequency of observations within the classes. Based on 
50 simulations, the model produced 962 
misclassifications of 1475 points with a global error of 
65.2%, whereas the model correctly classified 34.8% of 

the data (513 points). Furthermore, 11% of the total 
data was lost (168 points). Hence, a difference between 
the frequencies shown in Table 8 (1307 test results) 
and the total frequency (1475 test results) was 
observed. In spite of this difference, the presented 
model was highly significant, as determined by the 
Chi-square test (p ≤ 0.01). The correlation among the 
true and model-estimated classes showed an r-square 
value of 78.7%, as defined by the contingency 
coefficient. 

However, even when testing 20% of the data, the 
classes that showed the highest rates of 
misidentification originated from similar parent 
materials. Thus, we were able to establish that the use 
of soil spectral curves for the discrimination of parent 
material classes showed satisfactory to good results 
when applying orbital-level data. For the 
discrimination of soil classes, the models that were 
generated with the obtained reflectance data at the 
orbital level showed satisfactory results for some classes 
and were inconsistent for others, indicating the need 
for further studies to improve the quality of the results. 

Misclassifications occurred between similar soil 
data. CE and CD are moderate shallow soils that occur 
in a rolling relief. These soils were misclassified with 
other soil types under the same conditions (Table 2). 
Other misclassifications can also be explored, such as 
NVe1 is being confounded with NVe2. The only 
difference between these soil classes is that NVe1 is a 
highly clayey soil and NVe2 is a clayey soil. PVA soils 
also occur in rolling relief and can be misclassified as 
CE or CD. Thus, there are many cases where 
misclassifications may occur due to overlapping soil 
characteristics. 

Table 8. Number of observations and soil percentages classified using the 10 soil classes with the highest number of observations in the 
studied area and 20% of the observations as developed by the model. 

Class1 RUd MTfr CD1 CE2 CD2 LVe LVAe PVAe1 PVAe2 NVef1 Total2 

RUd 26.003 0.00 22.00 1.00 4.00 0.00 5.00 4.00 13.00 0.00 75 
 34.674 0.00 29.33 1.33 5.33 0.00 6.67 5.33 17.33 0.00  
MTfr 0.00 98.00 0.00 22.00 0.00 19.00 0.00 0.00 0.00 7.00 146 
 0.00 67.12 0.00 15.07 0.00 13.01 0.00 0.00 0.00 4.79  
CD1 1.00 0.00 14.00 8.00 19.00 0.00 1.00 9.00 10.00 0.00 62 
 1.61 0.00 22.58 12.9 30.65 0.00 1.61 14.52 16.13 0.00  
CE2 0.00 27.00 12.00 13.00 0.00 8.00 3.00 0.00 5.00 1.00 69 
 0.00 39.13 17.39 18.84 0.00 11.59 4.35 0.00 7.25 1.45  
CD2 9.00 6.00 22.00 9.00 24.00 0.00 0.00 31.00 21.00 0.00 122 
 7.38 4.92 18.03 7.38 19.67 0.00 0.00 25.41 17.21 0.00  
LVe 0.00 11.00 0.00 1.00 0.00 84.00 42.00 0.00 1.00 51.00 190 
 0.00 5.79 0.00 0.53 0.00 44.21 22.11 0.00 0.53 26.84  
LVAe 1.00 0.00 1.00 0.00 0.00 17.00 39.00 5.00 1.00 37.00 101 
 0.99 0.00 0.99 0.00 0.00 16.83 38.61 4.95 0.99 36.63  
PVAe1 23.00 0.00 37.00 3.00 31.00 0.00 18.00 135.00 13.00 0.00 260 
 8.85 0.00 14.23 1.15 11.92 0.00 6.92 51.92 5.00 0.00  
PVAe2 30.00 11.00 16.00 24.00 23.00 1.00 12.00 28.00 4.00 0.00 149 
 20.13 7.38 10.74 16.11 15.44 0.67 8.05 18.79 2.68 0.00  
NVef1 7.00 19.00 0.00 0.00 0.00 10.00 21.00 0.00 0.00 76.00 133 
 5.26 14.29 0.00 0.00 0.00 7.52 15.79 0.00 0.00 57.14  
          Total5 1307 

           100 
1Classes with the highest number of observations; 2Total frequency in the model; 3Frequency in the class; 4% correct within the class; 5Total frequency for all classes. 



Spectral landsat information for soil classification 111 

Acta Scientiarum. Agronomy Maringá, v. 34, n. 1, p. 103-112, Jan.-Mar., 2012 

Most of the results indicated that as a first 
analysis, this classification system could be 
important for assisting in the next step of soil 
classification. Discrepancies between the 
classifications and field results were due to several 
parameters, such as the relief and soil surface 
property, which are not related to the undersurface. 
In fact, the subsurface is more significant when 
classifying soils. This horizon contains less organic 
matter and influences soil management. In addition, 
the mineralogy is generally more accurate in the 
subsurface due to less weathering. For many 
reasons, the surface information provides important 
indications to assist the convergence of evidence and 
ultimately aid in soil classification. In the field, the 
surface of each soil type usually exhibits different 
appearances due to the dynamics of water, organic 
matter, relief, and humidity. All of these factors 
interfere with the spectral information and are 
responsible for the observed differences. 

Therefore, we believe that the emergence of new 
sensors installed on orbital or sub-orbital platforms 
with a greater number of bands or spectral ranges 
will be very important for discriminating soils with a 
noticeable reduction of classification errors. 

Conclusion 

The surface information collected assisted in the 
discrimination of soils in the studied area using 
statistical analyses and the data obtained at the orbital 
level. Based on the discriminant analyses, the hit rate 
increased as the sample number decreased. The 
simulated statistical test was efficient for establishing 
errors and matches during the discriminant analyses. 

Satellite-derived surface data can provide valuable 
and relevant information for soil class discrimination 
and assist in soil surveys. In addition, soil classes that 
were grouped according to their parent material were 
identified via discriminant analyses. 
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