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ABSTRACT

In this work a MIMO non-linear predictive controller was developed for an extractive alcoholic fermentation
process. The internal model of the controller was represented by two MISO Functional Link Networks (FLNs),
identified using simulated data generated from a deterministic mathematical model whose kinetic parameters were
determined experimentally. The FLN structure presents as advantages fast training and guaranteed convergence,
since the estimation of the weights is a linear optimization problem. Besides, the elimination of non-significant
weights generates parsimonious models, which allows for fast execution in an MPC-based algorithm. The proposed
algorithm showed good potential in identification and control of non-linear processes.
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INTRODUCTION

Despite many advantages of using ethanol as fuel,
it can substitute petroleum fuels only if its
production is economically attractive. Thus, there
is a great interest in the optimization of all the
steps of the ethanol production process. One of the
options to improve the productivity of ethanol
production is the continuous extraction of ethanol.
Several schemes combining fermentation with a
separation process have been developed (Costa
et al., 2001). Silva et al. (1999) have shown that a
scheme combining a fermentor with a vacuum
flash vessel presents several positive features and
better performance than an industrial conventional
process (Andrietta and Maugeri, 1994).
Another important aspect to be considered in the
optimization of the alcoholic fermentation process
is the development of an efficient control strategy,

since it can minimize costs and environmental
impact by maintaining the process under optimum
conditions. However, biotechnological processes
are characterized by their complex dynamics and
modeling and control of those systems presents
problems that have not yet been totally solved
(Meleiro et al., 2001).
Model Predictive Control (MPC) algorithms have
been widely used in industrial processes in recent
years. These algorithms are well suited for high
performance control of constrained multivariable
processes because explicit pairing of input and
output variables is not required and constraints can
be incorporated directly into the controller design
(Henson, 1998). On the other hand, most of the
industrial applications use linear dynamic models,
which may not be appropriate for highly non-
linear systems.
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Although the use of non-linear models may
improve the control algorithm performance, the
development of such models is not always an easy
task. In recent years, there has been a strong
interest in the use of neural networks to describe
chemical processes, due to their abili ty to
approximate highly non-linear systems. There are
several neural network structures cited in the
li terature, but there are no methods proposed to
define the best structure to be used for a given
case. In the majority of the applications the
feedforward neural network (FNN) is used. A
structure that has not been much explored is the
functional link network (FLN). This network has
been shown to have a good non-linear
approximation capability, although the estimation
of its weights is linear. Due to the linear
estimation, its training is rapid, requires low
computational effort and the convergence is
guaranteed (Costa et al., 1999).
The objective of this work was to develop a non-
linear Multiple Input Multiple Output (MIMO)
predictive control algorithm to control the process
mentioned above, considering constraints on
manipulated and controlled variables. Two

Multiple Input Single Output (MISO) Functional
Link Networks (FLN) were used to identify the
dynamics of the controlled variables and then used
as internal models of the controller. The proposed
control algorithm used the Successive Quadratic
Programming method (SQP) to solve the
optimization problem at each sample interval.

MATERIALS AND METHODS

Extractive Alcoholic Fermentation Process
A general scheme of the extractive alcoholic
fermentation proposed by Silva et al. (1999) is
shown in Fig. 1. The process consists of four
interlinked units: fermentor (ethanol production
unit), centrifuge (cell separation unit), cell
treatment unit and vacuum flash vessel (ethanol-
water separation unit). This scheme simulated
industrial conditions (Andrietta and Maugeri,
1994), with the difference that only one fermentor
was used instead of a cascade system, besides the
flash was used to extract part of the ethanol. The
substrate used was sugar-cane molasses.

Figure 1 - Extractive Alcoholic Fermentation.
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The mathematical model used to simulate the
process was experimentally validated (Costa et al.,
2001).
The objective of this work was to control ethanol
(P) and substrate (S) concentrations in the
fermentor. Based on the dynamic behavior study
performed by Costa et al. (2001), the manipulated
variables must be the inlet flow rate (F0) and flash
recycle rate (r).

Process Identification Using Functional L ink
Networks
In this work, functional link neural networks were
used as internal models of the predictive
controller. In these networks, a non-linear
functional expansion of the network inputs was
initiall y performed and the resulting terms were
combined linearly. The structure obtained had a
good non-linear approximation capability, and the
estimation of network weights was a linear
optimization problem.

Figure 2 - General structure of a functional link network.

The general structure of an FLN is shown in Fig.
2, where xe is the input vector and yi(xe) is an
output. The hidden layer performs a functional
expansion on the input data, which maps the input
space of dimension n1 onto a new space of
increased dimension, M (M > n1). The output layer
consists of m nodes, each one, in fact, a linear
combiner. The input-output relationship of the
FLN is:

∑
=

=
M

j
jiji hwy

1

)()( ee xx ,     1 ≤ i ≤ m (1)

The most used functional expansion is the
polynomial expansion. In this case, the expansion
results, hj(xe), are a series of monomials of xe.
Henrique (1999) proposed a modification on the
structure of the FLNs, where the output given by
equation 1 was transformed by an invertible non-
linear activation function. The new output is
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where f i is an invertible non-linear function such
as, for example, the sigmoidal function. This
modification was made to increase the non-linear
approximation ability of the FLNs. The training of
the network was performed using a transformed
output: the original output transformed by the
inverse of the activation function f.
Another modification was made in the FLNs to
increase their non-linear approximation capability.
Before the functional expansion is performed, the
network inputs, xe, are transformed into a greater
number, nz, of auxiliary inputs, z. These auxiliary
inputs are non-linear expressions of the real inputs
(Costa et al., 1999). A polynomial expansion was
then performed on the new inputs. The generated
monomials can be found in Costa et al. (1999).
Once the monomials are generated, the network
weights, wij, are estimated using an orthogonal
least-squares estimator (Billi ngs et al., 1989).
Henrique (1999) also proposed that the monomials
that are not significant in explaining the output
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variance can be eliminated using a method
proposed by Bil lings et al. (1989). This procedure
reduces the size and complexity of the neural
network and avoids overfitting of the training data.
The performance of the FLN was measured by
(Mil ton e Arnold, 1990):
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ye(k) is the experimental output, y(k) is the

network output, ey  is the mean value of the

experimental outputs and N is the number of
training data.

Non-Linear M imo Predictive Control
The objective of the controller is to select a set of
future control actions in order to minimize the
following objective function:
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where cy
�

 are the controlled variables predicted by
the neural networks, corrected according to
equation 10; ysp are the set-point values; λ are the
weighting factors (tuning parameters that penalize
the control actions); ∆u are the increments on the
manipulated variables; NO is the number of
controlled variables; NI is the number of
manipulated variables; NP is the prediction
horizon and NC is the control horizon.
The objective function is subject to the following
constraints:

( ),NP,i   ik
��

1maxmin =≤≤ + yyy (5)

( ),NC,i   ik
�1max1min =≤≤ −+ uuu (6)
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�
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where ymin and ymax; umin and umax; ∆umin and ∆umax

are lower and upper bounds for the vectors y, u
and ∆u, respectively.
The optimization algorithm calculates the values
of ∆u to minimize the objective function (equation
4). The future control actions are calculated over a
control horizon NC and are kept constant for NC≤
i ≤ NP (NC ≤ NP):

uk+i = uk+i-1 + ∆uk+i , (i = 1,…,NC) (8)

uk+i = u(k+NC) , (i = NC+1,…,NP) (9)

The predictions of the neural networks are
corrected by a process/model error:
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where yk is the vector of measured outputs at the
present sampling time, ky

�
is the vector of the

networks predictions (calculated at the previous

sampling time) and c
ik+y

�
is the vector of the

corrected networks predictions.
As the neural networks are trained to predict the
controlled variables only one step ahead, in the
control algorithm the networks are iterated to
obtain a total of NP future predictions by using the
outputs of the neural networks as their own inputs
in the next iteration.
Although the optimization is based on a control
horizon, only the first control action (for each
manipulated variable) is implemented in the
process and the optimization problem is solved
again at the next sampling time. Successive
Quadratic Programming (SQP), using the routine
DNCONF of the IMSL math library of
FORTRAN, was used to solve the optimization
problem.

RESULT S AND DISCUSSION

Two MISO FLNs were used as internal models for
the control algorithm. The first FLN was used to
predict substrate concentration in the fermentor
one step ahead with the following structure (Zhan
and Ishida, 1997; Santos et al., 2000):
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• Inputs: Sk, F0k and rk

• Output:Sk+1

The second FLN was used to predict ethanol
concentration in the fermentor one step ahead with
the following structure:

• Inputs: Pk, F0k and rk

• Output:Pk+1

where k is the present sampling time.

The training data were obtained by performing
random step changes in the manipulated variables:
inlet flow rate, F0, and flash recycle rate, r. The
inputs were transformed into auxiliary inputs for
both FLNs. After some tests the auxiliary input
vectors that led to the best results were chosen:
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Tests were made to determine the functional
expansion degree and activation function that led
to the best training performance of the networks
(Costa et al., 1999). For both FLNs the functional
expansion degree chosen was 6 and the activation
function was:
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Many authors suggested that the neural networks
used as internal models of MPC schemes should
be validated by testing their capacity to predict
steady states of the process (Zhan and Ishida,
1997; Santos et al., 2000). Figs.  3-6 show the
results when the trained FLNs were used to predict
the steady states of the extractive alcoholic
fermentation process for different values of the
manipulated variables (F0 and r). The trained
networks showed good performance.
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Figure 3 - Performance of the FLN to predict substrate concentration steady states for
different values of the inlet flow rate.
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Figure 4 - Performance of the FLN to predict substrate concentration steady states for
different values of the flash recycle rate.
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Figure 5 - Performance of the FLN to predict product concentration steady states for
different values of the inlet flow rate.
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Figure 6 - Performance of the FLN to predict product concentration steady states for
different values of the flash recycle rate.
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Figure 7 - Disturbances imposed on S0 and T0.
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Figure 8 - Servo and regulatory control for substrate concentration.

The FLNs described above were used as internal
models of the predictive controller. The sampling
time was chosen as 12 minutes, considering that an
HPLC (High Performance Liquid Chromatograph)
was used to measure substrate and ethanol
concentrations on-line (Andrietta, 1994). The
controlled and manipulated variables constraints
were as follows:

( ),NP,i    S ik
�10 =≥+

( ),NC,i   F ik
�115060 10 =≤≤ −+

( ),NC,i   r ik
�17.02.0 1 =≤≤ −+

( ),NC,i    FF ikik
�150100 =≤− −++

( ),NC,i   rr ikik
�11.01 =≤− −++

and the controller parameters were chosen after
many tests: NP=8, NC=3 and λλλλT=[0.01 70]. The
performance of the controller was tested by
changing simultaneously the set-points and
disturbance variables that influence the controlled
variables. The main disturbance variables in this

process are the inlet substrate concentration, S0,
and the inlet temperature, T0. The disturbances
made in S0 and T0 are shown in Fig. 7. The set-
point values for these variables were 180 kg/m3
and 303 K, respectively.
Fig. 8 shows the performance of the controller
when set-point changes in substrate concentration
were performed simultaneously with the
disturbances shown in Fig. 7. Note that the
controller maintained the output concentration at
the desired value.
Fig. 9 illustrates the corresponding behavior of
product concentration. It can be noticed that the
controller was able to reject the disturbances that
affected this variable. Fig. 10 depicts the control
actions. Fig. 11 shows the results when set-point
changes in product concentration were performed
simultaneously with the disturbances shown in
Fig. 7. Fig. 12 ill ustrates the behavior of substrate
concentration. It can be seen that the non-linear
controller presented good performance to lead the
system to new set-points and to reject
disturbances. Fig. 13 depicts the control actions.



Non-Linear Multivariable Predictive Control of an Alcoholic 15

0 50 100 150 200
40.0

40.5

41.0

41.5

42.0

42.5

 

 

E
th

an
ol

 C
o

nc
e

nt
ra

tio
n

 (
kg

/m
3 )

Time (h)

 Controlled Variable
 Set-Point

Figure 9 - Regulatory control for product concentration
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Figure 10 - Control actions related to Figures 8 and 9.
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Figure 11 - Servo and regulatory control for product concentration.
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Figure 12 - Regulatory control for substrate concentration.
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Figure 13 - Control actions related to Figs. 11 and 12.

CONCLUSIONS

In this work, two MISO Functional Link Networks
(FLNs) were applied to identify an extractive
alcoholic fermentation process using simulated
data generated by a deterministic model whose
parameters were obtained from the experiments.
The FLNs represented accurately the dynamic and
static behavior of the process and presented good
potential to be used as internal models of a control
algorithm. This structure presented the advantages
of fast training and guaranteed convergence, since
the estimation of the weights is a linear
optimization problem. Besides, the elimination of
non-significant weights generated parsimonious
models, which allowed for fast execution in an
MPC-based algorithm.
The non-linear MIMO predictive controller
developed in this work used FLNs as internal
models and was applied to control the extractive
alcoholic fermentation process. By solving a
constrained MIMO optimization problem over a
future time horizon, this highly non-linear system
could be successfully controlled. The performance
of the proposed controller was evaluated for servo

and regulatory problems, and in both cases it
showed satisfactory results.

RESUMO

Neste trabalho um controlador preditivo não linear
multivariável foi desenvolvido para um processo
de fermentação alcoólica extrativa. O modelo
interno do controlador foi representado por duas
redes do tipo Functional Link (FLN), identificadas
usando dados de simulação gerados a partir de um
modelo validado experimentalmente. A estrutura
FLN apresenta como vantagem o treinamento
rápido e convergência garantida, já que a
estimação dos seus pesos é um problema de
otimização linear. Além disso, a eliminação de
pesos não significativos gera modelos
parsimoniosos, o que permite a rápida execução
em algoritmos de controle preditivo baseado em
modelo. Os resultados mostram que o algoritmo
proposto tem grande potencial para identificação e
controle de processos não lineares.
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