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ABSTRACT 
 

The culture conditions viz. additional carbon and nitrogen content, inoculum size, age, temperature and pH of 
Lactobacillus acidophilus were optimized using response surface methodology (RSM) and artificial neural network 
(ANN). Kinetic growth models were fitted to cultivations from a Box-Behnken Design (BBD) design experiments for 
different variables. This concept of combining the optimization and modeling presented different optimal conditions 
for L. acidophilus growth from their original optimization study. Through these statistical tools, the product yield 
(cell mass) of L. acidophilus was increased. Regression coefficients (R2) of both the statistical tools predicted that 
ANN was better than RSM and the regression equation was solved with the help of genetic algorithms (GA). The 
normalized percentage mean squared error obtained from the ANN and RSM models were 0.06 and 0.2%, 
respectively. The results demonstrated a higher prediction accuracy of ANN compared to RSM.  
 
Key words: Response surface methodology (RSM), Artificial neural network (ANN), Genetic algorithms (GA), 
Box-behnken besign (BBD) 
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INTRODUCTION 
 
Lactobacillus is the most prominent members of 
plethora class of bacterial species with probiotic 
properties. The popularity of these group bacteria 
is based on the millennia of use in food and feed 
that are used in probiotic dairy drinks and yoghurts 
since hundred years (Sanders 1999). Most 
bacterial species of this class are formally 
classified as GRAS (generally recognized as safe) 
organisms. Currently, consumers are very much 
concerned about the nutritional and functional 
attributes of food worldwide. A number of health 
benefits such as anti-mutagenic effects, anti-
carcinogenic properties, improvement in lactose 
metabolism, reduction in serum cholesterol and 

immune system stimulation have been claimed for 
probiotic foods, which fall in the category of 
functional foods (Shah 2007). Consequently, the 
global functional food market is thriving with 
recent estimates indicating up to a $50 billion 
annual share. The world probiotic market is 
estimated at $15 billions, which included 10% of 
the lactic bacteria drink market. Today, this market 
is growing at a pace of 5 to 30% depending on the 
country and product type. Although the worldwide 
market for probiotics is growing rapidly, yet, in 
India, it has just started to gestate for making its 
first move with leading companies such as Amul, 
Nestle and Mother Dairy (Bhadoria and Mahapatra 
2011). Probiotics have a strong stimulatory effect 
for both the normal development of microbiota 
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and maturation of gut associated lymphoid tissue 
(Schezenmeir and De Vrese 2001). Probiotic 
bacteria such as Lactobacillus and Bifidobacterium 
sp can play an important role in promoting human 
health in the gastrointestinal tract (Mitsuoka 
1990). They actively contribute in the digestion, 
immune stimulation and inhibition of pathogens 
such as Bacteroides, Escherichia, Clostriduim and 
Proteus, which are potentially harmful bacteria 
found in the gastrointestinal tract (Ziemer and 
Gibson 1998). 
The primary mechanism for probiotic action is 
known as competitive colonization, or competitive 
suppression. It is best described as the 
proliferation of probiotic bacteria in the human 
intestine, leaving little space for the growth of any 
pathogens. Further, they secrete by-products such 
as lactic acid and acetic acid, which lower the pH, 
thereby creating a hostile environment for the 
growth of pathogenic microorganism. The secreted 
acids also increase the peristalsis, which also help 
to speed pathogens though the intestines 
(Ballongue 1992 and Biavati et al. 2000).  
To develop the growth model of probiotic bacteria 
through the traditional method, i.e., one variable 
at-a-time (OVAT) is time consuming and neglects 
interactions of different variables which can also 
affect the yield. Process optimization through 
statistical method is a technique in which changes 
or adjustments are made in a process to get better 
results (Myers and Montgomery 2002). There are 
several techniques for process optimization such 
as Response Surface Methodology (RSM), 
Artificial Neural Networks (ANN), Genetic 
Algorithms (GA), etc. In these engineering 
applications, a response of interest is usually 
influenced by several variables and the objective 
of the engineering applications is to find the 
variables that can optimize the response. RSM is a 
tool to study the optimal process parameters that 
produce a maximum, or minimum value of the 
response and represents the direct and interactive 
effects of the process parameters through two and 
three-dimensional plots (Gangadharan et al. 2008). 
ANN is computational models of nervous systems. 
Natural organisms, however, do not possess only 
nervous systems but also genetic information 
stored in the nucleus of their cells (genotype). The 
nervous system is part of the phenotype, which is 
derived from this genotype through a process, 
called development (Rajasekaran and 
Vijaylakshmi 2004). Using the method of neural  
 
 
 

networks (NN), the relationship between a set of 
independent variables X and the dependent 
variables Y can be obtained. From the given pairs 
of input X and output Y data, neural network 
directly learns and develops a relationship between 
them but does not yield any mathematical equation 
relating the variables. After the learning, this 
network is able to predict the correct output from 
an input data set that has not been previously used 
during the learning. GA is a tool by which the 
optimization problems can be accurately solved 
with in a limited use of computer time (Das 2005). 
Optimization of various bacterial strains in 
Erlenmeyer flasks using different optimization 
tools have been reported by several other authors 
(Nagarjun et al. 2005; Kumari et al. 2009; Negi 
and Banergee 2009; Lima et al. 2009; Usmiati and 
Marwati 2009; Coelho et al. 2011). 
This study developed the empirical model to 
increase the cell growth of L. acidophilus by 
optimizing growth parameters such as 
temperature, pH, inoculum volume, incubation 
period and additional effect of different carbon and 
nitrogen sources using the RSM, ANN and GA.  
 
 
MATERIAL AND METHODS 
 
Chemicals 
All the solvents and reagents used in the present 
study were procured from Merck, Germany. 
 
Organism and growth condition 
Pure culture of L. acidophilus NCDC 14 was 
obtained in freeze dried state from National 
Collection of Dairy Cultures (NCDC), National 
Dairy Research institute, Karnal, Haryana, India. 
The culture was maintained at 4°C and sub-
cultured on the slants of MRS (De Man Rogosa 

and Sharpe) growth medium two times in a 
month. The method used for the microbial culture 
activation and pellet extraction was same as 
reported by Sharma et al. (2013).The growth of L. 
acidophilus was carried out in 250 mL Erlenmeyer 
flasks each containing 50 mL MRS agar medium 
(pH 7.0) and maintained at 37°C. The cell biomass 
was determined by measuring the optical density 
(OD) of the medium at 600 nm. Before measuring 
the OD, the liquid containing cells were 
centrifuged and washed with sterile distilled water 
for two times to remove the adhering medium 
constituents.  
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Experimental Design  
Selection of initial parameters 
For the selection of initial parameters, ‘one 
variable at a time method’ was used. The different 
variables viz. temperature, pH, volume of 
inoculum, age of inoculum and additional carbon 
and nitrogen sources were selected for the growth 
of L. acidophilus.   
 
Empirical model development  
In order to find the effect of different growth 
parameters on the predicted value of bacterial 
growth Yp was obtained by conducting the 
experiments on different combination of 
independent variables (growth parameters), which 
was obtained from a standard experimental design. 
During the experiments, the response, or values of 
dependent variables obtained from each of the 
combinations of independent variables was 
measured. A mathematical relationship between 
the independent and dependent variables was 
developed. Using this model, the predicted value 
of response were find out within the domain of 
limiting values of independent variables. 
For the different growth parameters it was desired 
to develop a polynomial model between the 
Lactobacillus growth and growth parameters to 
develop the following relationship between the 
coded values x1, x2, x3, x4, x5 and x6 of independent 
variables and dependent variable Yp as shown 
below.  
Yp=bo+b1x1+b2x2+b3x3+b4x4+b5x5+b6x6+b7x1

2+b8

x2
2+b9x3

2+b10x4
2+b11x5

2+b12x6
2+b13x1x2+b14x1x3+b

15x1x4+b16x1x5+b17x1x6+b18x2x3+b19x2x4+b20x2x5+b2

1x2x6+b22x3x4+b23x3x5+b24x3x6+b25x4x5+b26x4x6+b27

x5x6     (Eq. 1)  
Where bo, b1, b2………etc. are the regression 
constants. 
 
Experimental Modeling 
Box-Behnken Design 
Optimization process involving OVAT method 
was only used for the selection of initial 
parameters while RSM was adopted to optimize 
the growth conditions for L. acidophilus by Box-
Behnken design. MINITAB (version 6.5) software 
was used for the experimental design. 
 
Optimization  
Artificial neural network modeling 
In this present investigation, a feed forward back 
propagation neural network was used to evaluate 
its capability in cell mass yield prediction of  
 
 

L. acidophilus. In this process, ANN computed the 
error between the desired (predicted) response and 
the actual (experimental) response. The number of 
neurons in input layer, hidden layer and output 
layer of this neural network were kept as 6, 11 and 
1, respectively (Fig. 1). This ANN was first trained 
with reported data of B. bifidum (Meena et al. 
2011).  After training, it was able to predict the 
cell mass yield of L. acidophilus accurately 
through error minimization that was compared 
with the predicted value of cell mass yield 
obtained from RSM. 
 

 
 
Figure 1 - Basic structure of a feed forward back 

propagation neural network (Meena et al. 
2011).  

 
 
Genetic Algorithms 
In order to maximize the cell mass yield of L. 
acidophilus, GA was applied to the developed 
ANN based model (Fig. 2) by monitoring above 
mentioned six growth parameters. It was posed as 
the minimization of problem associated with the 
optimization studies. Genetic optimization was 
continued till the maximum cell mass yield 
obtained. 
 
Software used 
For the proper execution of ANN and GA, 
MATLAB 7.0 and MINITAB 6.5 was used to 
develop the empirical model.   
 
 
RESULTS AND DISCUSSION  
 

Selection of initial parameters 
Different growth variables for L. acidophilus were 
selected by OVAT method and results showed in 
Figure 3 (A - F). All these parameters, their 
variation and optimum values are given in Table 1. 
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Figure 2 - Flow chart of simple genetic algorithms (Meena et al. 2011). 
 
 

  
 

 

 

 
 

 

 

 
 
 

Figure 3 - Selection of different parameters for Lactobacillus acidophilus growth (A. Selection of 
initial temperature for. L. acidophilus growth, B. Selection of initial pH for L. acidophilus 
growth, C. Selection of initial inoculun volume for L. acidophilus 255 growth, D. 
Selection of initial incubation period for L. acidophilus growth, E. Selection of suitable 
carbon source for L. acidophilus growth and F. Selection of suitable nitrogen source for 
growth).  
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Table 1 - Values of different parameters for single parameter optimization. 
Different growth parameters Variation of parameters Maximum growth on parameter 
Temperature, (°C) 30, 35, 37, 40, 45 35 
pH 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 6.0 
Inoculum Volume, (mL) 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 1.5 
Inoculum age, (h) 12, 18, 24, 30, 36 24 
Carbon sources, (% w/v) Glucose, Fructose, Sucrose Lactose, Xylose Fructose 
Nitrogen sources, (%w/v) Sodium nitrate, Urea, Leucine, Glycine, 

Potassium nitrate, Ammonium sulphate, 
Ammonium chloride, Ammonium nitrate 

Urea 

 
 

Empirical model development  
From the initial parameter selection, the maximum 
and minimum values of six independent 
parameters for L. acidophilus were fixed as shown 
in Table 2. It was one of the objectives to develop 
the model between coded values   x1, x2, x3, x4, x5 
and x6 of independent variables and dependent 
variable Yp. For this, experiments were conducted 
according to Box-Behnken design. All these 
combinations are given in Table 3 with their 
corresponding experimental value Ye for the 
growth of L. acidophilus. 

 
Table 2 - Limiting value of independent variables. 

Parameters Maximum 
value 

Minimum 
value 

Temperature, (0C) 45 30 
pH 8 1.0 
Inoculum volume, (ml) 3 0.5 
Inoculum age, (h) 36 12 
Carbon content, (%w/v) 42.06 30 
Nitrogen content, (% w/v) 46.67 14 

 

 

Table 3 - Experimental design for Lactobacillus acidophilus with experimental value Ye. 

Std. 
order 

Run 
order 

Pt 
type Block Temp. 

0C  (x1) 
pH 
(x2) 

Inoculum 
volume (ml) (x3) 

Inoculum 
age (h) (x4) 

Carbon 
content 

% w/v  (x5) 

Nitrogen 
content 

% w/v (x6) 
Experimental 

value (Ye) 
36 1 2 1 37.5 6 3 36 40.5 46 2.063 
5 2 2 1 37.5 4 3 24 39 30 0.166 
52 3 0 1 30 6 3 24 40.5 46 0.642 
39 4 2 1 37.5 6 1.75 24 40.5 30 0.348 
1 5 2 1 30 6 1.75 36 42 30 0.945 
31 6 2 1 30 6 0.5 24 40.5 14 0.44 
54 7 0 1 37.5 8 3 24 39 30 0.775 
8 8 2 1 30 4 1.75 36 40.5 30 0.589 
27 9 2 1 45 6 0.5 24 40.5 46 0.014 
13 10 2 1 37.5 8 1.75 24 39 46 0.901 
47 11 2 1 37.5 8 1.75 24 42 14 0.753 
41 12 2 1 37.5 8 1.75 24 39 14 0.712 
25 13 2 1 37.5 6 1.75 24 40.5 30 0.382 
35 14 2 1 37.5 6 3 36 40.5 14 1.115 
45 15 2 1 45 8 1.75 36 40.5 30 0.222 
30 16 2 1 30 8 1.75 12 40.5 30 1.337 
3 17 2 1 37.5 6 1.75 24 40.5 30 0.412 
48 18 2 1 30 6 3 24 40.5 14 0.543 
49 19 0 1 30 8 1.75 36 40.5 30 0.951 
9 20 2 1 37.5 6 1.75 24 40.5 30 0.337 
6 21 2 1 37.5 4 3 24 42 30 0.168 
46 22 2 1 37.5 8 0.5 24 42 30 0.827 
20 23 2 1 37.5 4 0.5 24 39 30 0.094 
15 24 2 1 37.5 6 0.5 12 40.5 46 2.301 
4 25 2 1 45 8 1.75 12 40.5 30 0.407 
16 26 2 1 37.5 4 1.75 24 39 14 0.18 
7 27 2 1 30 6 1.75 12 42 30 1.289 
22 28 2 1 30 6 0.5 24 40.5 46 0.733 
24 29 2 1 37.5 4 1.75 24 39 46 0.084 
50 30 0 1 45 6 1.75 12 42 30 0.171 
37 31 2 1 30 4 1.75 12 40.5 30 0.048 
43 32 2 1 37.5 8 3 24 42 30 0.285 
2 33 2 1 45 6 1.75 36 42 30 0.524 
34 34 2 1 37.5 4 1.75 24 42 14 0.064 
38 35 2 1 45 6 3 24 40.5 14 0.197 
                  (Cont. …) 
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(Cont. Table 3)       

Std. 
order 

Run 
order 

Pt 
type Block Temp. 

0C  (x1) 
pH 
(x2) 

Inoculum 
volume (ml) (x3) 

Inoculum 
age (h) (x4) 

Carbon 
content 

% w/v  (x5) 

Nitrogen 
content 

% w/v (x6) 
Experimental 

value (Ye) 
11 36 2 1 37.5 6 3 12 40.5 14 0.003 
42 37 2 1 30 6 1.75 12 39 30 0.328 
44 38 2 1 37.5 4 0.5 24 42 30 0.049 
26 39 2 1 45 4 1.75 36 40.5 30 0.245 
53 40 0 1 37.5 6 1.75 24 40.5 30 0.089 
12 41 2 1 37.5 6 0.5 36 40.5 46 0.212 
51 42 0 1 45 6 1.75 12 39 30 0.183 
28 43 2 1 37.5 6 3 12 40.5 46 0.314 
23 44 2 1 37.5 6 1.75 24 40.5 30 0.135 
19 45 2 1 37.5 8 0.5 24 39 30 0.165 
10 46 2 1 37.5 8 1.75 24 42 46 0.13 
21 47 2 1 30 6 1.75 36 39 30 0.667 
29 48 2 1 45 6 3 24 40.5 46 0.2 
17 49 2 1 37.5 6 0.5 36 40.5 14 0.231 
18 50 2 1 45 6 0.5 24 40.5 14 0.176 
14 51 2 1 37.5 6 0.5 12 40.5 14 0.105 
33 52 2 1 45 6 1.75 36 39 30 0.551 
40 53 2 1 45 4 1.75 12 40.5 30 0.057 
32 54 2 1 37.5 4 1.75 24 42 46 0.116 

 
 

RSM is mainly used for optimization of growth 
conditions, reaction parameter, or scaling up the L. 
acidophilus growth conditions (Sen and Babu 
2005). Experimental data were fitted to the full 
quadratic equation and the design matrix and the 
fitness of each term was analyzed by the means of 
ANOVA (Kumari et al. 2008). Figure 4 shows the 
corresponding model coefficients (R2 0.796) 
together with the regression coefficient of 
determination, which was a measure of how well 
the regression model could be made to fit the raw 
data. 
 

 

Figure 4 - Determination of regression equation 
coefficient R2 for Lactobacillus 
acidophilus EMD method. 

 
 
A self-organizing feature map network was used to 
predict the growth condition parameters. Different 
factors, viz. temperature, pH, inoculums volume, 
inoculums age and additional carbon and nitrogen 
sources were used as each unit of input layer. The 

output layer was composed of one response 
variable, the growth of L. acidophilus. A set of 
factors was used for training and fed into the 
computer. Several iterations were conducted with 
different numbers of neurons of hidden layer in 
order to determine the optimal ANN structure. The 
optimum number of neurons in the hidden layer 
was iteratively determined by changing the 
number of neurons. It started with two neurons and 
was increased up to six. The least MSE value and 
a good prediction of the outputs of both training 
and validation sets were obtained with four 
neurons in the hidden layer (Dutta et al. 2004). 
The R2 value between the actual and estimated 
responses was determined as 0.927 (Fig. 5). In 
ANN modeling, the replicates at center point did 
not improve the prediction capability of the 
network because of the similar inputs. 
 

 
Figure 5 - Determination of regression equation 

coefficient R2 for Lactobacillus 
acidophilus ANN method. 
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Using MATLAB 7.0, the constants of regression 
equation and predicted value of dependent variable 
(OD) were find out. The obtained model for L. 
acidophilus was as given below. 
Yp = 0.2838 - 0.2319 x1 + 0.2335 x2 + 0.0468x3 + 
0.738x4 + 0.0215x5 + 0.133x6 -   0.082x1

2 - 
0.0627x2

2
 + 0.0575x3

2
 +  0.3429x4

2
 + 0.0327x5

2+ 
0.0375x6

2
  - 0.1088x1x2

 - 0.1655x1x3 + 0.0244x1x4 + 
0.0359x1x5 - 0.1597x1x6 - 0.0689x2x3 

 - 0.0154x2x4 - 

0.1625 x2x5  - 0.0487 x2x6 + 0.603 x3x4
 - 0.1381 x3x5 

-0.0592x3x6 - 0.0873x4x5
  - 0.1972x4x6  - 0.083x5x6  

(Eq. 2)  
The predicted value of independent variable and 
corresponding experimental value for L. 
acidophilus is shown in the Table 4. Genetic 
algorithms were applied on the data obtained from 
neural network using MATLAB7.0. 

 
Table 4 - Experimental and predicted values for Lactobacillus  acidophilus using RSM and ANN. 

Experimental 
values Ye 

Predicted values 
Yp (RSM) 

Predicted values 
Yp (ANN) 

Experimental 
values Ye 

Predicted values 
Yp (RSM) 

Predicted 
values Yp (ANN) 

2.063 1.39 1.77 0.733 0.84 0.86 
0.166 0.23 0.157 0.084 0.35 0.03 
0.642 0.77 0.635 0.171 0.19 0.19 
0.348 0.28 0.35 0.048 0.11 0.05 
0.945 0.95 0.91 0.285 0.44 0.489 
0.44 0.32 0.46 0.524 0.23 0.46 
0.775 0.72 0.76 0.064 0.08 0.08 
0.589 0.52 0.56 0.197 0.2 0.185 
0.014 0.19 0.04 0.003 0.11 0.002 
0.901 0.77 0.89 0.328 0.51 0.41 
0.753 0.59 0.69 0.049 0.21 0.011 
0.712 0.44 0.67 0.245 0.45 0.25 
0.382 0.28 0.31 0.089 0.28 0.08 
1.115 1.2 1.234 0.212 0.21 0.31 
0.222 0.27 0.17 0.183 0.29 0.22 
1.337 1.24 1.38 0.314 0.43 0.5 
0.412 0.28 0.3 0.135 0.28 0.28 
0.543 0.48 0.49 0.165 0.39 0.19 
0.951 0.99 0.81 0.13 0.6 0.5 
0.337 0.28 0.34 0.667 0.76 0.649 
0.168 0.06 0.06 0.2 0.21 0.19 
0.827 0.65 0.62 0.231 0.22 0.32 
0.094 0.17 0.2 0.176 0.11 0.19 
2.301 1.66 1.76 0.105 0.094 0.094 
0.407 0.37 0.57 0.551 0.69 0.48 
0.18 0.18 0.16 0.057 0.06 0.04 
1.289 1.04 1.2 0.116 0.28 0.1 

 
 
Table 5 showed the optimum value, or 
combination of different process parameters on 
which the bacterial growth measured by optical 
density (OD) was maximum for L. acidophilus. 
 
Table 5 - Optimum value of process parameters for 
Lactobacillus acidophilus. 

 
 
 
 
 

CONCLUSION 
 
In the present study, RSM and ANN 
methodologies were used to predict the growth 
model for L. acidophilus and optimized the growth 
parameters. Both the models provided similar 
quality predictions for the above independent 
variables for the growth conditions of L. 
acidophilus with ANN showing more accuracy in 
estimation. Regression coefficient (R2) of ANN 
and RSM reflected that ANN was better than 
RSM. RSM was useful in getting insight 
information (e.g. interactions between different 
components) of the system directly, but ANN was 
also equally useful in the sensitivity analysis. 
 
 
 

Optimum values of process 
parameters L.acidophilus 

Temperature, (°C) 37.7 
pH 6.08 
Inoculums volume, (ml) 0.79 
Inoculums age, (h) 13.04 
Carbon content, (%) w/v 42.62 
Nitrogen content, (%) w/v 39.92 
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ANN showed better modeling technique for data 
set showing nonlinear relationship over RSM. 
Thus, ANN could be a very powerful and flexible 
tool well suited for the development of empirical 
growth model due to an implicit corrective action 
arising from the training methodology and the 
associated estimation procedure. Present results 
showed that the higher cell mass yield of L. 
acidophilus was observed at 37.7°C, pH 6.08, 
inoculum volume and age 0.79 ml and 13.04 h, 
respectively, carbon content 42.62% (w/v) and 
nitrogen content (39.92% (w/v). This combination 
of independent variables could be of good 
importance to starter culture producing industries 
in order to scale- up the production of L. 
acidophilus on commercial scale more 
economically due to high cell mass yield. 
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