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ABSTRACT  
In this study, test-region global positioning system (GPS) control points exhibiting 
known first-order orthometric heights were employed to obtain the points of plane 
coordinates and ellipsoidal heights by using the real-time GPS kinematic 
measurement method. Plane-fitting, second-order curve-surface fitting, back-
propagation (BP) neural networks, and least-squares support vector machine (LS-
SVM) calculation methods were employed. The study includes a discussion on data 
integrity and localization, changing reference-point quantities and distributions to 
obtain an optimal solution. Furthermore, the LS-SVM was combined with local 
geoidal-undulation models that were established by researching and analyzing3 
kernel functions. The results indicated that the overall precision of the local 
geometric geoidal-undulation values calculated using the radial basis function 
(RBF) and third-order polynomial kernel function was optimal and the root mean 
square error (RMSE) was approximately ± 1.5 cm. These findings demonstrated that 
the LS-SVM provides a rapid and practical method for determining orthometric 
heights and should serve as a valuable academic reference regarding local geoid 
models.  
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RESUMO 
Este estudo empregou pontos de controle de GPS em regiões-teste com altitudes 
ortométricas de primeira ordem previamente conhecidas, para a obtenção de pontos 
de coordenadas planas e altitudes elipsoidais, com a utilização do método 
cinemático em tempo real (RTK). Este estudo aplicou o ajuste de superfície de 
primeira ordem, ajuste de superfície de segunda ordem, método da retropropagação 
para redes neurais e “support vector machine” por mínimos quadrados (LS–SVM). 
Integridade e localização de dados foram examinados, e a certa quantidade e 
distribuição de pontos de referência modificados para obtenção da solução ideal. O 
estudo contou também com o LS-SVM e com o modelo de altitude geoidal local 
que foi estabelecido usando 3 funções de Kernel para análises e pesquisas. Os 
resultados indicam que a precisão total dos valores calculados das ondulações 
geóidais geométricas locais usando a rede neural artificial e o polinômio de terceira-
ordem da função de Kernel foram ideais com o valor quadrático médio de 
aproximadamente ± 1.5 cm. O resultado mostrou que o SVM oferece o método 
rápido e prático para obtenção de altitudes ortométricas e provê a pesquisa 
acadêmica de referência para modelos geoidais locais. 
Palavras-chave: Máquina de Vetor Suporte para Mínimos Quadrados; Função de  
Kernel; Modelo de Geóide Local. 
 
 
1. INTRODUCTION 

The gravimetric method is the technique most commonly used to precisely 
determine the local geoid. Recently, a gravimetric geoid model covering Taiwan 
was generated using gravity survey data, which are relatively difficult and time-
consuming to measure and often yield results that do not fit well with the local 
terrain. Gravimetric geoid results fit large rather than small areas. Because of the 
lack of gravity data in mountainous regions of Taiwan, this study was conducted to 
generate a regional geoid model that yields adequate accuracy regarding GPS-based 
leveling but does not require using a high-resolution gravimetric geoid model to 
evaluate a small area. Local geoid determination is possible by using various 
geometric methods, such as the LS-LSM method previously proposed by the 
authors. After calculating the local geometric geoid heights at the points of interest, 
combining the GPS-derived ellipsoid heights and an accurate model provides a 
novel alternative method for determining orthometric height. Hence, a stand-alone 
geometrically derived geoid model must be constructed to transform the ellipsoid 
height h from the GPS to the orthometric height H in research or real-time 
situations. 
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If engineers can leverage GPS survey techniques to establish a precise local 
geometric-geoidal model and a system for converting ellipsoidal and orthometric 
heights, the traditional leveling survey model can be modified, improving 
measurement operations. The current geoid establishment methods comprise the 
astrogeodetic and astrogravimetric leveling, gravitational field model, and 
mathematical function-fitting methods (ABDALLA et al.,2011; AKCIN and 
CELIK, 2013; FEATHERSTONE et al.,2004; KAO and SHEN, 2011;Kao et al., 
2010; KAO, 2006; KAO and BETHEL, 1992(a) 1992(b); LIN,2007; SHEN, 2011; 
TRANE Setal., 2007; USTUN and DEMIREL, 2006; WANG, 2005; YOU, 2006; 
YANG, 1999). If local geoid changes are smoothed within a certain range, then 
mathematical functions can be used to reflect the spatial distribution conditions. In 
the mathematical function-fitting method, GPS technology is employed to measure 
sufficient control points ina survey area and the ellipsoidal heights are derived based 
on local ellipsoids. The orthometric height is determined using direct leveling 
surveys. If the vertical deflection influence is disregarded, local geometric-geoidal 
undulations can be derived by subtracting the orthometric height from the 
ellipsoidal height of a location, enabling a partial simulation of the geometric 
geoidal undulations between the local geoid and ellipsoid by using a mathematical 
function-fitting method. In this study, the GPS control point of a test region 
involving known first-order orthometric heights and GPS real-time kinematic (GPS 
RTK) measurement method were used to calculate the plane coordinates (x, y) and 
ellipsoidal height (h) of the survey point. Various fitting calculation methods and 
fitting points were used to determine the optimal resolutions of each fitting method. 
Integrality and localization were discussed, and an accurate local geometric-geoid 
model was used to achieve local geometric-geoid calculations. The study was 
executed in the Taichung Metropolitan area of Taiwan. 

The ellipsoid heights of the checks points were derived from the RTK GPS 

survey, and the orthometric heights of these check points were observed using the 

first-order geodetic leveling survey, which exhibited a forward and backward 

section misclosure of ±3.0√K mm, where K is the distance of a leveling line in 

kilometers. The root mean square errors (RMSEs) listed in Table 2 reflect random 

and systematic errors and data inconsistencies. Thus, the determined surface models 

absorb the systematic errors and spatial distortions hidden in the known orthometric 

and ellipsoid heights of the control points, primarily based on the ellipsoid heights 

determined using the RTK GPS survey. The accuracy of the orthometric height 

determined using the GPS RTK survey depends on the accuracy of the ellipsoid and 

geometric geoid heights. Increasing the observation lengths of GPS RTK field 

surveys can enhance the quality of the orthometric heights determined using GPS 

leveling. 
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The primary goal of this study was to combine the rapid data-accessibility 
feature of the GPS-RTK method with direct leveling survey results and the least 
squares support vector machine (LS-SVM), constructing a local geoid model that 
uses 3kernel functions to enhance precision and practical value. This would reduce 
the operating time required to conduct spiritleveling surveys and improve the 
efficiency of practical engineering applications. 
 
2. THE LEAST SQUARES SUPPORT VECTOR MACHINE 

Numerous researchers (ABDALLA et al., 2011, KAO et al, 2011, LIN, 2007, 
You, 2006 ) have investigated combined methods for improving local geoids, using 
GPS and geodetic leveling data. These scholars have presented multiple useful tools 
and interpolation methods. In this paper, the LS-SVM is applied to compute local 
geometric geoids. 

Vapnik (1995a,1995b) proposed the support vector machine (SVM) machine 
learning method based on the principle of structural risk minimization (SRM). 
According to the statistical learning theory (VAPNIK, 1995a, 1995b), if data are 
subject to a certain (fixed but unknown) distribution, the machine should follow the 
SRM principle to minimize the deviation between the actual and desired outputs. 
This differs from the empirical risk minimization principle. In brief, the machine 
must minimize the upper bound of the error probability; thus, the SVM is the 
realization of this theory. The SVM is simpler compared with traditional artificial 
neural networks (ANN; ACKIN and CELIK,2013; LIN, 2007); however, the 
generalization abilities of numerous approaches employing the statistical decision 
method exhibit difficulties deriving the desired results when using limited samples. 
Thus, Vapnik(1995a,1995b) proposed the Vapnik-Chervnenkis dimension (VC 
dimension) as follows: a function separates N samples into 

n2  forms and the VC 
dimension can divide the largest number of samples (N). A large VC dimension 
indicates poor function generalization ability, and a small VC dimension indicates 
strong function generalization ability (VAPNIK, 1995a, 1995b). The SVM 
constraint is an inequality that involves an insensitive loss function; thus, SVM 
calculation is complex. Therefore, Suykens and Vandewalle (1999) used the least-
squares quadratic loss function to replace the insensitive loss function of the SVM, 
changing he constraints into equations to construct the LS-SVM. This method 
involves linear and nonlinear problems as follows. 

 

2.1 Linear Problems  
The objective function is determined as follows (SUYKENS and 

VANDEWALLE, 1999; SHEN, 2011): 
Minimize, 
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γ : the rule parameter used to adjust the deviation between the classification 
boundary maximization and error minimization. 
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To determine the optimal solution for function J , the partial differentials for  
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The following is derived after w and ie  are eliminated:  
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Variables α,b  are used to solve the equation, attaining the following linear 
LS-SVM regression:  
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2.2 Nonlinear Problems  
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Regarding nonlinear data, the data are converted into a feature space or a 
higher dimensional space by using a mapping function φ , and converted into a 
linear problem to determine the solution(SUYKENS and VANDEWALLE, 1999; 
SHEN, 2011). 
 Suppose the training sample is 1 2( , )nx x x x= ⋯ ; by using the mapping 
function φ , the sample is converted into the following: 
 

1 2( ) ( ( ), ( ) ( ))nx x x xφ φ φ φ= ⋯                                 .(6) 

 
According to the Mercer condition, the training sample is expanded into the 

following: 
( , ) ( ) ( )i iK x x x xφ φ= ⋅                                    (7) 

 
where Kis the kernel function. 

After being replaced with a kernel function, the nonlinear support vector 
regression function is as follows: 
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Currently, the most commonly used kernel functions are the linear kernel 

function ( , ) ( ) ( )T
i iK x x x xφ φ= ⋅ ; polynomial kernel function 

( , ) ( 1)d
i iK x x x x= ⋅ + , where d  is the power of entry; and radial basis function 

(RBF) kernel function 
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, where σ is the kernel 

function bandwidth. 
 

2.3 Parameter Selection 
 Researchers must determine model parameters during model training; 
however, no standard approach exists for selecting parameters. In addition, because 
the polynomial kernel function has a strong predictive power, a low order indicates 
a correspondingly strong predictive ability. Experiments have shown that 1to7orders 
is a suitable range, and the polynomial recognition rates for the third or fourth 
orders are superior. If the results are similar, the lower order is typically used. When 
the order is excessively large, the kernel matrix element value either approaches 
infinity or is infinitesimal (ZHOU, 2009; FU, 2010). The RBF kernel function 
employed in this study involved combining grid search and cross-validation (HSU 
et al., 2003) to form an optimal parameter selection method; this function is 
commonly applied and simple to implement. The grid search method yields an 
optimal parameter set, and cross-validation prevents the model from over fitting. 
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Figure 1 shows a flow chart presenting the primary aspects and functionality of the 
LS-VCM used in this study. 
 
Figure 1 - A flow chart presenting the primary aspects and functionality of the LS-

VCM used in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. RESEARCH METHODS AND PROCEDURES  
 
3.1 Research Data and Collection  

Figure 2 shows the study area and all known control points and orthometric 
heights (H) selected in this study. The triangle points represent the control points 
where spirit leveling and GPS RTK data were captured. This GPS-RTK was first 
employed to measure the 78 plane coordinates (x, y) and ellipsoidal heights (h) that 
met the precision requirements. The GPS-RTK observation data were received once 
per second. The instrument began to receive data when the initial plane precision 
was less than±1.5 cm and the height precision was less than±2.0 cm. The known 
control-point orthometric height precision yielded first-order Class-2 leveling 
survey results. The geometric geoid heights of these 78 control stations (Fig. 2) vary 
from West 19.2 m to East 20.7 m. Figures 2 and 3 show contour and 3D maps of the 
constructed geometric undulations of the78 control stations in the study area. 
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Figure 2 - The 78 control stations distribution and original geometric undulations 
contour map of the study area. 

 
 

Figure 3 - 3D Contour map of the original geometric undulations of 78 control 
points of the study area (unit: m, undulation isexaggerated in up direction). 
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3.2 Research Methods 
The orthometric height (H) obtained from the spirit leveling information was 

subtracted from the ellipsoidal height (h) measured using the GPSRTK. The results 
were used to derive various local geometric geoid undulations (N) to serve as the 
known values. In this study, Matlab was used asthe LS-SVM calculation platform. 
The plane coordinates of the points (N, E) were entered in Matlab to calculate the 
geometric geoid undulation of the fitting region. The results were compared with the 
known geoid undulation to derive residuals△N. The precision of the local geoid 
values calculated using various methods were compared with that of the fitting 
methods used in previous studies(WANG, 2005;CHUNG, 2008; KAO and SHENG, 
2011)that used the same experimental condition limits. The various LS-SVM model 
kernel functions were used to establish the optimal fitting points of the study area. 
The determined geometric geoid was verified by evaluating the orthometric heights 
at selected benchmarks. The primary focus of this study was increasing the accuracy 
of the local geometric geoid, ensuring a simple and rapid transformation of the 
ellipsoid height into the orthometric height in the test area. Interpolation is a crucial 
step when determining a local geometric geoid. Substantial computation time may 
be required if numerous terms of a function are used and a large data set is required 
to form the model. Surveyors should use the minimum occupied number of GPS 
and leveling data points to conserve working hours, and the difficult terrain for spirit 
leveling measurement (e.g., mountainous areas) and ensure the level of accuracy 
required during practical engineering surveys. 

 

3.3 Research Procedures 
The steps of this study are summarized as follows: 

(1) Confirm input the plane coordinates of the points (N, E) and output geoid 
undulation (N). 

(2) Select the model parameters and use the polynomial kernel function, using as 
the third-order polynomial, and using the RBF kernel function grid to select 
optimal parameters 2( , )γ σ .In this study, 5470.122γ =  and 2 34.411σ = were 
selected as the parameters. 

(3) Perform model initialization and use the fit points (training samples) combined 
with linear, polynomial, and RBF kernel functions to establish the LS-SVM 
model. 

(4) Input the check points (test samples) into the trained LS-SVM model to yield 
the local geometric geoid undulation forecasts. 
 

4. STUDY RESULTS AND ANALYSIS 
First, the obtained prediction outcomes were compared with those obtained of 

previous studies that have used the quadratic surface fitting, back-propagation (BP) 
neural network (WANG, 2005), and multi-surface function (CHUNG, 2008) 
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methods in the same test area. This comparison was conducted to explore the 
applicability of the LS-SVM. The same fitting points were tested to compare the 
accuracy of derived geometric geoid with the results of Wang (2005) and Chung 
(2008). Therefore 35 of the 78 GPS stations used by WANG (2005) were selected 
as checkpoints and the remaining 43 stations were used to construct the geometric 
geoid. The differences between the predicted and known values were used to 
measure the accuracy of the local geometric geoid. According to the results o Wang 
(2005), the RMSEs could attain ± 2.00 cm and ± 1.89 cm by adopting curve surface 
fitting and BP ANNs, respectively, to build the geometric geoid model. According 
to CHUNG (2008), the RMSEs could attain± 2.62 cm, ± 3.52 cm, and ± 2.62 cm by 
adopting the hyperbolic curve, 3power of distance, and squared distance methods, 
respectively. Its precision was sufficient for use in engineering surveys. Therefore in 
this study, the RMSE was calculated for the same test region and fitting point 
conditions, using checkpoints that were not employed in model training. The results 
were used to conduct a comparative analysis. The 43 fitting points and 35 
checkpoints used in the BP neural network study of WANG(2005) and the 40 fitting 
points and 38 check points used in the multi-surface function methods study 
of(CHUNG,2008) were evaluated. The study area comprised 78 points (fitting 
points and checkpoints) and Tables 1 and 2 display the relevant results.  
 

Table 1 - Statistics results for35 checkpoint-result geoid undulation differences 
predicted by three methods for study area. 

Method 

Second-Order 
Curve Surface 
Method(cm) 

(WANG,2005) 
 

BP Neural 
Network 

Method(cm) 
(WANG,2005) 

 

LS-SVM Method(cm) 

RBF Polynomial Linear 

N∆  Max. Value 3.88 -3.60 -3.69 4.62 10.50 

N∆  Min. Value -0.12 -0.00 -0.10 0.05 -0.66 

N∆ Average 

Value 
1.66 1.57 1.49 1.55 4.99 

N∆ RMSE ±2.00 ±1.89 ±1.81 ±1.94 ±5.56 
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Table 2 - Statistics results for 38 checkpoint-result geoid undulation differences 
predicted by three methods for study area. 

Method  

Multi-Surface Function Method(cm) 
(CHUNG,2008) 

LS-SVM Method(cm) 

Hyperbolic 
Curve 

Three 
Power of 
Distance 

Squared 
Distance 

RBF Polynomial Linear 

N∆ Max. Value 4.66 -9.98 5.27 4.98 -4.96 -16.47 

N∆  Mini. Value 0.01 -0.32 0.31 -0.10 0.020 -0.24 

N∆ Average 
Value 

2.25 2.90 2.19 1.89 1.87 4.53 

RMSE ±2.62 ±3.53 ±2.62 ±2.34 ±2.34 ±5.79 

 
Because the real geoid surface was modeled as smooth in the test area, any 

interpolation methods produce similar results (Tables 1 and 2). Thus, the various 
methods used to derive local geoid model are all suitable and similar. In this study, a 
method was presented using LS-SVM to approximate the regional geoid surface. 
Although the fitting performance levels of the various models yield small RMSE 
differences of a few millimeters, the proposed LS-SVM method yielded the smallest 
RMSE, indicating that it can refine the approximate geoid surface in the test area. 
The test results indicated that the accuracy of the estimated geometric undulation 
interpolation that used the LS-SVM was in the order of 1.5 cm. Based on these 
results, the estimated undulation accuracy attained using the LS-SVM was superior 
to that attained using the curve fitting and BPANN methods (LIN, 2007) by an order 
of 2–4 cm in the same test area. 

The results shown in Tables 1 and 2 indicate that although the linear kernel-
function calculation results of the geometric geoid undulations derived using the 
LS-SVM were less precise than were those calculated using the second-order curve 
surface, BP neural network, and multi-surface function methods, the precision 
derived using the RBF and polynomial kernel function results was superior to that 
derived using other methods. Therefore, the LS-SVM was used to calculate local 
geometric geoid undulations. 

 
4.1 Optimization Tests  

The 2-point increment method was adopted within the study area to calculate 
the RMSE values of the 3kernel functions at various points. Although the points 
increased, the selected points were distributed throughout the study area as 
uniformly as possible and the minimum RMSE was used as the basis to determine 
the optimal number of fitting points. Table 3 shows the analysis results. In this 
section, the optimal local geometric geoid model is determined for the study area.  
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Table 3 - The N∆  RMSE results (cm) fitted using various numbers of LS-SVM 
fitting points. 

Fitting 
Points 

RBF Polynomial Linear 
Fitting 
Points 

RBF Polynomial Linear 

N∆  RMSE(cm) N∆  RMSE(cm) 

6 ±5.61 ±14.31 ±8.97 24 ±2.38 ±2.34 ±6.22 

8 ±3.37 ±6.04 ±7.28 26 ±2.17 ±2.12 ±6.22 

10 ±3.23 ±5.09 ±6.36 28 ±2.09 ±2.05 ±6.16 

12 ±2.75 ±3.65 ±6.72 30 ±2.03 ±2.01 ±6.11 

14 ±2.60 ±3.06 ±6.67 32 ±2.04 ±2.03 ±6.05 

16 ±2.75 ±3.06 ±6.44 34 ±2.05 ±2.05 ±6.03 

18 ±2.84 ±3.03 ±6.24 36 ±2.04 ±2.03 ±6.03 

20 ±2.52 ±2.48 ±6.34 38 ±2.04 ±2.05 ±6.01 

22 ±2.33 ±2.26 ±6.29 40 ±2.05 ±2.06 ±6.01 
 
 

The results in Table 3 indicate that when the fitting point was at 30, the △N 
RMSE values derived using the RBF and polynomial methods were minimal and 
complied with the sample size, which was greater than 30. Errors should be 
assumed to be normally distributed; therefore, 30 points were used to perform 
model training and the remaining48 points were used as checkpoints. Figure 4 
shows the distributed points.  

The graphed results presented in Figures 5 and 6 indicate that the large 
residual values of the linear kernel function primarily occurred at the outer corners 
of the test region; the points at the eastern and western portions of the test region 
and parts of the southern region present fitted values that are smaller compared with 
the known values. This phenomenon might be caused by underestimated fitting 
results because certain areas lack surrounding fitting points. The points in the 
central and northern regions demonstrate higher fit values compared with the known 
values, indicating over prediction in these regions. The residuals of the RBF and 
polynomial kernel function showed no significant trend changes.  
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Figure 4 - Study area fitting-point and checkpoint distribution chart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 5 - The residual chart of the three kernel functions for the region and the 
known geometric geoid undulation. 
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Figure 6 - Differences of local geoid undulation at 48 global positioning satellite-
leveling control points for three kernel function of LS-SVM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 - The △N statistic results for the 48-point checkpoint fitting of the study 
area. 

30 points for the 
entire study area 

△N Maximum  

Value(cm) 
△N Minimum 

Value(cm) 
△NAverage 

 Value(cm) 

Checkpoint 

△NRMSE(cm
) 

RBF 3.30 -0.02 1.22 ±1.45 

Polynomial 3.25 0.04 1.24 ±1.47 

Linear -12.35 0.28 4.83 ±5.71 

 
 
The results shown in Table 4 indicate that the local geometric geoid 

undulation fitted using the RBF and polynomial kernel functions yielded an overall 
precision of approximately ±1.47cm compared with that of the known geometric 
geoid undulation. The results obtained using the linear kernel function exceeded the 
limitations of indirect elevation observations and inverse elevation calculations, 
which should be less than 5 cm.  
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Table 5 - Precision comparison of the local geometric geoid undulation for the test 
area derived using different fitting methods. 

Method Points Kernel Function  
Fitting 

Points 

△N 

Maximum 

Value(cm) 

△N 

Minimum 

Value(cm) 

Checkpoint  

△NRMSE(cm) 

Second-Order Curve 

Surface 

(WANG,2005) 

N/A 43 3.88 0.12 ±2.00 

BP Neural Networks 

(WANG,2005) 
N/A 43 3.60 0.00 ±1.89 

Multi-Surface 

Function Method 

(CHUNG,2008) 

Hyperbolic 

Curve 

40 

4.50 -0.16 ±2.41 

Third-Powered 

Distance 
6.11 -0.04 ±2.56 

Squared 

Distance 
4.93 0.001 ±2.439 

LS-SVM 

RBF 

30 

3.30 -0.02 ±1.45 

Polynomial 3.25 0.04 ±1.47 

Linear -12.35 0.28 ±5.71 

 
The results presented in Table 5 indicate that compared with the local 

geometric geoid undulation model of the test area constructed using the second-
order curve surface, the BP neural network (WANG, 2005), and multi-surface 
function methods (CHUNG, 2008), the proposed LS-SVM method requires only 30 
fitted points. This is 10 or more points fewer compared with the number required for 
using the second-order curve surface, BP neural network, or multi-surface function 
methods; however, the proposed method yields a comparable level of precision.  

 
5.CONCLUSION 

In this study, the LS-SVM was applied to construct a local geoid undulation 
model. Experimental testing indicated that the proposed method effectively 
predicted geometric geoid undulation and met precision requirements. Various 
kernel functions can be used to construct distinct LS-SVM models. The results 
indicated that using RBF and polynomial kernel functions to evaluate the study area 
produced a superior fitting precision of approximately ± 1.5 cm. The fitting of the 
linear kernel function was less desirable compared with these methods.  

No optimal solution exists for selecting LS-SVM parameters. The current 
experiment demonstrated that the grid search method can feasibly be used to select 
specific and complete data search parameters. In addition to model parameter 
selection, the fitting results of the proposed LS-SVM included the density and 
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distribution of the known points. In this study, after changing the number of points 
and point distributions, the 3kernel functions yielded differing fitting results, 
reducing the number of fitting points by 10 or more. The checkpoint errors of the 
RBF and polynomial kernel functions were controlled within ± 5 cm, meeting the 
elevation precision requirements of engineering surveys. This level of precision 
cannot be achieved using the linear kernel function.  
 
ACKNOWLEDGMENTS 

This research was sponsored in part by the National Science Council of 
Taiwan (Project No. NSC 100-2622-E-005-015-cc3) 
 
REFERENCES 
ABDALLA A. et al. The Evaluation of The New Zealand’s Geoid Model Using the 

KTH Method. Geodesy and Cartography, Vol.37, No.1, p.5-14, 2011. 
AKCIN, HAKAN; CELIK, CAHIT TAGI. Performance of Artificial Neural 

Networks on Kriging Method in Modeling Local Geoid. Boletim de Ciências 
Geodésicas, Vol.19, No.1, p.84-97,2013. 

CHUNG, CHIH-WEI. A Study of Different Multi-surface Functions to Improve the 
Determined Local Geoid Model-A Case Study of Taichung City. Master thesis. 
Department of Civil Engineering, National Chung-Hsing University, 2008( in 
Chinese). 

FEATHERSTONE, W. E. et al. Comparison of Remove-Compute-Restore and 
University of New Brunswick Techniques to Geoid Determination over 
Australia, and Inclusion of Wiener-Type Filters in Reference Field 
Contribution. Journal of Surveying Engineering, Vol.130, No.1, ASCE, p.40-
47, 2004. 

FU,YUAN-YUAN; DONG REN. A Study of Support Vector Machine (SVM) 
Kemel Function and Parameter Selection, Technology Innovation 
Herald,Vol.9, p.6-7, 2010 (in Chinese). 

HSU, C.W. et al. A Practical Guide to Support Vector Classification. Technical 
Report, Department of Computer Science and Information Engineering, 
National Taiwan University, 2003( in Chinese). 

KAO, SZU-PYNG; SHEN,YU-TING. A Study of Fitting Local Geoid Model by 
Least Squares Support Vector Machine─A Case Study of Taichung Area. Joint 
30nd Surveying and Geomatics Conference, p.137, 2011( in Chinese). 

KAO, SZU-PYNG et al. A study of Using Support Vector Machine (SVM) Method 
to Determine Local Geoid Model-A Case Study of Taichung Area, Joint 29nd 
Surveying and Geomatics Conference.p.123, 2010(in Chinese). 

KAO, SZU-PYNG. A Study of Using Different Methods to Determine Local Geoid 
Model─A Case Study of Taichung City, Journal of the Chinese Institute of 
Engineers, Vol.23, No.2, p223-228,2006. 



Szu-Pyng, K. et al. 

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.427-443, abr-jun, 2014. 

4 4 3

KAO, SZU-PYNG;BETHEL, J.S. Geoid from Geopotential Model in the Taiwan 
Area, Marine Geodesy, Vol.15, No.4, pp.245-252,1992(a). 

KAO, SZU-PYNG;BETHEL, J.S. A Study of the Gravimetric Geoid in the Taiwan 
Area, Presented in the ASPRS-ACSM. Annual Convention, Albuquerque, 
1992(b). 

LIN,LAO-SHENG. Application of Back-Propagation Artificial Neural Network to 
Regional Grid-Based Geoid Model Generation Using GPS and Leveling Data. 
Journal of Surveying Engineering, Vol.133, No.2, ASCE, p.81-89, 2007.   

SHEN, YU-TING. A Study of Fitting Local Geoid Model by Least Squares Support 
Vector Machine-A Case Study of Taichung Area. Master thesis, Department of 
Civil Engineering, National Chung Hsing University, 2011(in Chinese). 

SUYKENS,J.A.K.; VANDEWALLE, J. Least Squares Support Vector Machine 
classifiers , Neural Processing Letters, Vol.9, No.3, p.293-300,1999. 

TRANES, M. D. et al. Comparisons of GPS-Derived Orthometric Heights Using 
Local Geometric Geoid Models, Journal of Surveying Engineering, Vol.133, 
No.1, ASCE, p.6-13, 2007.   

USTUN, AYDIN, DEMIRE, HUSEYIN. Long-Range Geoid Testing by GPS-
Leveling Data in Turkey, Journal of Surveying Engineering, Vol.132, No.1, 
ASCE, p.15-23, 2006. 

VAPNIK,V. N. The Nature of Statistical Learning Theory, New York: Springer-
Verlag,1995a. 

VAPNIK, V. N. Statistical Learning Theory, New York: John Wiely & Sons, Inc., 
1995b. 

WANG WEN-AN. A Study of determining regional geoid using different methods 
─A Case Study of Taichung City, Thesis , Department of Civil Engineering, 
National Chung Hsing University, 2005( in Chinese). 

YOU, REY-JER. Local Geoid Improvement Using GPS and Leveling Data: Case 
Study, Journal of Surveying Engineering, Vol.132, No.3, ASCE, p.101-107, 
2006. 

YANG, ZHAN-JI et al. Determination of Local Geoid with Geometric Method: 
Case Study, Journal of Surveying Engineering, Vol.125, No.3,ASCE, p.136-
146, 1999. 

ZHOU QIA. Comparative Study of Support Vector Machine for Several Common 
Kernel Function and Parameter Selection, Fujian computer,Vol.6, p.42-43, 
2009 (in Chinese). 

(Recebido em agosto de 2013. Aceito em fevereiro de 2014). 
 


