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ABSTRACT

In this study, test-region global positioning systéGPS) control points exhibiting

known first-order orthometric heights were employedbtain the points of plane
coordinates and ellipsoidal heights by using thal-tieme GPS kinematic

measurement method. Plane-fitting, second-ordewveesurface fitting, back-

propagation (BP) neural networks, and least-squsupgport vector machine (LS-
SVM) calculation methods were employed. The stutyuides a discussion on data
integrity and localization, changing reference-pajoantities and distributions to
obtain an optimal solution. Furthermore, the LS-SWas combined with local

geoidal-undulation models that were establishedrdsearching and analyzing3
kernel functions. The results indicated that theerall precision of the local

geometric geoidal-undulation values calculated gisthe radial basis function

(RBF) and third-order polynomial kernel function svaptimal and the root mean
square error (RMSE) was approximately + 1.5 cm.s€hfendings demonstrated that
the LS-SVM provides a rapid and practical method determining orthometric

heights and should serve as a valuable academacersfe regarding local geoid
models.
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RESUMO
Este estudo empregou pontos de controle de GPS:gifies-teste com altitudes
ortométricas de primeira ordem previamente conlascidara a obtengdo de pontos
de coordenadas planas e altitudes elipsoidais, eorutilizagdo do método
cinematico em tempo real (RTK). Este estudo apliooajuste de superficie de
primeira ordem, ajuste de superficie de segundenardnétodo da retropropagacéo
para redes neurais e “support vector machine” goinmes quadrados (LS-SVM).
Integridade e localizagdo de dados foram examinadoa certa quantidade e
distribuicdo de pontos de referéncia modificadas jpdtencdo da solugéo ideal. O
estudo contou também com o LS-SVM e com o modelaltieide geoidal local
que foi estabelecido usando 3 funcdes de Kernel paalises e pesquisas. Os
resultados indicam que a preciséo total dos valosdsulados das ondulagfes
gedidais geométricas locais usando a rede netifatial e o polindmio de terceira-
ordem da funcdo de Kernel foram ideais com o vajoadratico médio de
aproximadamente + 1.5 cm. O resultado mostrou q®&Vbl oferece o método
rapido e pratico para obtencdo de altitudes ortocast e prové a pesquisa
académica de referéncia para modelos geoidaislocai
Palavras-chave:Maquina de Vetor Suporte para Minimos Quadrados¢&a de
Kernel; Modelo de Geodide Local.

1.INTRODUCTION

The gravimetric method is the technique most coniynosed to precisely
determine the local geoid. Recently, a gravimegieoid model covering Taiwan
was generated using gravity survey data, whichralaively difficult and time-
consuming to measure and often yield results tloahat fit well with the local
terrain. Gravimetric geoid results fit large rathlban small areas. Because of the
lack of gravity data in mountainous regions of Taiwthis study was conducted to
generate a regional geoid model that yields adecueturacy regarding GPS-based
leveling but does not require using a high-resotutgravimetric geoid model to
evaluate a small area. Local geoid determinationpdssible by using various
geometric methods, such as the LS-LSM method pusiyoproposed by the
authors. After calculating the local geometric gelogights at the points of interest,
combining the GPS-derived ellipsoid heights andaanurate model provides a
novel alternative method for determining orthoneetreight. Hence, a stand-alone
geometrically derived geoid model must be conssdidd transform the ellipsoid
height h from the GPS to the orthometric heigHt in research or real-time
situations.
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If engineers can leverage GPS survey techniquestablish a precise local
geometric-geoidal model and a system for convergéhigsoidal and orthometric
heights, the traditional leveling survey model che modified, improving
measurement operations. The current geoid estatsish methods comprise the
astrogeodetic and astrogravimetric leveling, gedighal field model, and
mathematical function-fitting methods (ABDALLA etl.2011; AKCIN and
CELIK, 2013; FEATHERSTONE et al.,2004; KAO and SHERD11;Kao et al.,
2010; KAO, 2006; KAO and BETHEL, 1992(a) 1992(bJNL2007; SHEN, 2011,
TRANE Setal., 2007; USTUN and DEMIREL, 2006; WANZ)O05; YOU, 2006;
YANG, 1999). If local geoid changes are smoothethiwia certain range, then
mathematical functions can be used to reflect gaia distribution conditions. In
the mathematical function-fitting method, GPS taibgy is employed to measure
sufficient control points ina survey area and thipsoidal heights are derived based
on local ellipsoids. The orthometric height is det@med using direct leveling
surveys. If the vertical deflection influence ismigarded, local geometric-geoidal
undulations can be derived by subtracting the onttoic height from the
ellipsoidal height of a location, enabling a pdrtsmulation of the geometric
geoidal undulations between the local geoid angseld by using a mathematical
function-fitting method. In this study, the GPS troh point of a test region
involving known first-order orthometric heights a@dPS real-time kinematic (GPS
RTK) measurement method were used to calculatgltéree coordinates (x, y) and
ellipsoidal height (h) of the survey point. Variofiging calculation methods and
fitting points were used to determine the optinesalutions of each fitting method.
Integrality and localization were discussed, andaacurate local geometric-geoid
model was used to achieve local geometric-geoidutations. The study was
executed in the Taichung Metropolitan area of Taiwa

The ellipsoid heights of the checks points wereveer from the RTK GPS
survey, and the orthometric heights of these clpmikts were observed using the
first-order geodetic leveling survey, which exhdit a forward and backward
section misclosure of3.0/K mm, where K is the distance of a leveling line in
kilometers. The root mean square errors (RMSE®&dign Table 2 reflect random
and systematic errors and data inconsistenciess, The determined surface models
absorb the systematic errors and spatial distartiodden in the known orthometric
and ellipsoid heights of the control points, prityabased on the ellipsoid heights
determined using the RTK GPS survey. The accurdcthe orthometric height
determined using the GPS RTK survey depends oadberacy of the ellipsoid and
geometric geoid heights. Increasing the observaléomgths of GPS RTK field
surveys can enhance the quality of the orthoméigights determined using GPS
leveling.
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The primary goal of this study was to combine thpid data-accessibility
feature of the GPS-RTK method with direct levelimgrvey results and the least
squares support vector machine (LS-SVM), consingcti local geoid model that
uses 3kernel functions to enhance precision anctipah value. This would reduce
the operating time required to conduct spiritlevglisurveys and improve the
efficiency of practical engineering applications.

2. THE LEAST SQUARES SUPPORT VECTOR MACHINE

Numerous researchers (ABDALLA et al., 2011, KACagt2011, LIN, 2007,
You, 2006 ) have investigated combined method$nfiproving local geoids, using
GPS and geodetic leveling data. These scholars fr@gented multiple useful tools
and interpolation methods. In this paper, the LIS applied to compute local
geometric geoids.

Vapnik (1995a,1995b) proposed the support vectachinge (SVM) machine
learning method based on the principle of struttuisk minimization (SRM).
According to the statistical learning theory (VARNI1995a, 1995b), if data are
subject to a certain (fixed but unknown) distrilbati the machine should follow the
SRM principle to minimize the deviation between #wtual and desired outputs.
This differs from the empirical risk minimizatiorripciple. In brief, the machine
must minimize the upper bound of the error proligbithus, the SVM is the
realization of this theory. The SVM is simpler caanpd with traditional artificial
neural networks (ANN; ACKIN and CELIK,2013; LIN, 0@); however, the
generalization abilities of numerous approachesleyimy the statistical decision
method exhibit difficulties deriving the desiredsuéis when using limited samples.
Thus, Vapnik(1995a,1995b) proposed the Vapnik-Qiemkis dimension (VC
dimension) as follows: a function separates N sempito 2" forms and the VC
dimension can divide the largest number of samfs A large VC dimension
indicates poor function generalization ability, amdmall VC dimension indicates
strong function generalization ability (VAPNIK, 188, 1995b). The SVM
constraint is an inequality that involves an ingres loss function; thus, SVM
calculation is complex. Therefore, Suykens and éavadle (1999) used the least-
squares quadratic loss function to replace thengiee loss function of the SVM,
changing he constraints into equations to constthet LS-SVM. This method
involves linear and nonlinear problems as follows.

2.1 Linear Problems

The objective function is determined as follows ¥HENS and
VANDEWALLE, 1999; SHEN, 2011):
Minimize,
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y: the rule parameter used to adjust the deviatietwéen the classification
boundary maximization and error minimization.
€, : the error variable used to measure error clasdiéin.

Lagrange multipliers are used to change funcliomto a quadratic equation:
1 n n
J=Clwif+ i el -Sa (yIi x+ e oD, @)

To determine the optimal solution for functiah, the partial differentials for
parameter{w, b, € ,q; ) are calculated as shown in the following matrix:

| 0 0 -yx |w]| |O
0 0 0 vy b 0
= @)
0 0 ¢ -1 |¢€ 0
yx y, | 0 |@a 1

The following is derived afteWV and €, are eliminated:

[ oL

X:[Xl’XZ'”Xn]T’ a:[al’a2”'an]-ri Yi :[yl’yz'”yn]-r’
e=[e,e, -],
1=[11---1]", and | is the unit matrix.

Variables b, are used to solve the equation, attaining thevatig linear
LS-SVM regression:

f(x)=i(ai %) x+b (5)

i=1

2.2 Nonlinear Problems
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Regarding nonlinear data, the data are convertd anfeature space or a
higher dimensional space by using a mapping functin and converted into a
linear problem to determine the solution(SUYKENSI arANDEWALLE, 1999;
SHEN, 2011).

Suppose the training sample &=(x, X--- X ); by using the mapping
function @, the sample is converted into the following:

AxX) = (@A%), @(%)-- & %)) (6)

According to the Mercer condition, the training gdenis expanded into the
following:

K(X %)= @3 LA %) ()

whereKis the kernel function.
After being replaced with a kernel function, thenlmear support vector
regression function is as follows:

f)=2ayK(xx)+h ®)

Currently, the most commonly used kernel functiame the linear kernel
function KX %x)=@(X)" () ; polynomial kernel function

K (X, %)= (xx +1)*, where d is the power of entry; and radial basis function

X_
(RBF) kernel function K(X,)g)=exp(—w}, where ¢ is the kernel
o
function bandwidth.

2.3 Parameter Selection
Researchers must determine model parameters duringel training;

however, no standard approach exists for selegt@mgmeters. In addition, because
the polynomial kernel function has a strong predécpower, a low order indicates
a correspondingly strong predictive ability. Expeents have shown that 1to7orders
is a suitable range, and the polynomial recognitiates for the third or fourth
orders are superior. If the results are similag,ltwer order is typically used. When
the order is excessively large, the kernel mattement value either approaches
infinity or is infinitesimal (ZHOU, 2009; FU, 2010)The RBF kernel function
employed in this study involved combining grid sfaand cross-validation (HSU
et al., 2003) to form an optimal parameter selectinethod; this function is
commonly applied and simple to implement. The grahrch method yields an
optimal parameter set, and cross-validation prevémé model from over fitting.
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Figure 1 shows a flow chart presenting the prinaspyects and functionality of the
LS-VCM used in this study.

Figure 1 - A flow chart presenting the primary agpend functionality of the LS-
VCM used in this study.
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3. RESEARCH METHODS AND PROCEDURES

3.1 Research Data and Collection

Figure 2 shows the study area and all known comoihts and orthometric
heights (H) selected in this study. The triangléntsorepresent the control points
where spirit leveling and GPS RTK data were captuiighis GPS-RTK was first
employed to measure the 78 plane coordinates @ng)ellipsoidal heights (h) that
met the precision requirements. The GPS-RTK obs$ervaata were received once
per second. The instrument began to receive daem \lie initial plane precision
was less thatl.5 cm and the height precision was less #Bd@hcm. The known
control-point orthometric height precision yielddust-order Class-2 leveling
survey results. The geometric geoid heights ofet¥scontrol stations (Fig. 2) vary
from West 19.2 m to East 20.7 m. Figures 2 ando8vstontour and 3D maps of the
constructed geometric undulations of the78 corsti@ions in the study area.
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Figure 2 - The 78 control stations distribution amigjinal geometric undulations
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3.2 Research Methods

The orthometric height (H) obtained from the spiiteling information was
subtracted from the ellipsoidal height (h) measwsitig the GPSRTK. The results
were used to derive various local geometric geaidulations K) to serve as the
known values. In this study, Matlab was used ak®«SVM calculation platform.
The plane coordinates of the poink$, ) were entered in Matlab to calculate the
geometric geoid undulation of the fitting regiomelresults were compared with the
known geoid undulation to derive residudls The precision of the local geoid
values calculated using various methods were cosdpaith that of the fitting
methods used in previous studies(WANG, 2005;CHUR@8; KAO and SHENG,
2011)that used the same experimental conditiortdiriiihe various LS-SVM model
kernel functions were used to establish the optiiittidg points of the study area.
The determined geometric geoid was verified by eatahg the orthometric heights
at selected benchmarks. The primary focus of thidyswas increasing the accuracy
of the local geometric geoid, ensuring a simple aampid transformation of the
ellipsoid height into the orthometric height in tiest area. Interpolation is a crucial
step when determining a local geometric geoid. Buitigl computation time may
be required if numerous terms of a function aredw®d a large data set is required
to form the model. Surveyors should use the mininagoupied number of GPS
and leveling data points to conserve working hoamsl the difficult terrain for spirit
leveling measurement (e.g., mountainous areas)easdre the level of accuracy
required during practical engineering surveys.

3.3 Research Procedures
The steps of this study are summarized as follows:

(1) Confirm input the plane coordinates of the poirts E) and output geoid
undulation (N).

(2) Select the model parameters and use the polyndmiakl function, using as
the third-order polynomial, and using the RBF kérfumction grid to select
optimal parameter§/,g°).In this studyy =5470.12Z ando® = 34.41 lwere
selected as the parameters.

(3) Perform model initialization and use the fit poifttsining samples) combined
with linear, polynomial, and RBF kernel functiors establish the LS-SVM
model.

(4) Input the check points (test samples) into then&@iLS-SVM model to yield
the local geometric geoid undulation forecasts.

4.STUDY RESULTS AND ANALYSIS

First, the obtained prediction outcomes were coegbavith those obtained of
previous studies that have used the quadratic cuffding, back-propagation (BP)
neural network (WANG, 2005), and multi-surface ftime (CHUNG, 2008)

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 802, p.427-443, abr-jun, 2014.



436 Using a least squeres support vector machine inast a...

methods in the same test area. This comparison ceaducted to explore the
applicability of the LS-SVM. The same fitting pantvere tested to compare the
accuracy of derived geometric geoid with the resolt Wang (2005) and Chung
(2008). Therefore 35 of the 78 GPS stations usetVByNG (2005) were selected
as checkpoints and the remaining 43 stations wsed to construct the geometric
geoid. The differences between the predicted anowknvalues were used to
measure the accuracy of the local geometric géadording to the results o Wang
(2005), the RMSEs could attain + 2.00 cm and + 8%y adopting curve surface
fitting and BP ANNSs, respectively, to build the geetric geoid model. According
to CHUNG (2008), the RMSEs could attaint 2.62 cn3.32 cm, and + 2.62 cm by
adopting the hyperbolic curve, 3power of distarare] squared distance methods,
respectively. Its precision was sufficient for us@ngineering surveys. Therefore in
this study, the RMSE was calculated for the sansé tegion and fitting point
conditions, using checkpoints that were not empdayemodel training. The results
were used to conduct a comparative analysis. ThefittiBg points and 35
checkpoints used in the BP neural network studyW&iNG(2005) and the 40 fitting
points and 38 check points used in the multi-s@féignction methods study
of(CHUNG,2008) were evaluated. The study area caegr78 points (fitting
points and checkpoints) and Tables 1 and 2 dighyelevant results.

Table 1 - Statistics results for35 checkpoint-regabid undulation differences
predicted by three methods for study area.

Second-Order BP Neural LS-SVM Methodcm)
Curve Surface Network
Method Method/cm) Method'cm)
(WANG,2005) (WANG,2005) RBF Polynomial | Linear
AN Max. value | 3.88 -3.60 -3.69 4.62 10.50
AN Min. value | -0.12 -0.00 -0.10 | 0.05 -0.66
AN average 1.66 157 1.49 155 4.99
Value
AN RMSE +2.00 +1.89 +1.81 | =21.94 +5.56
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Table 2 - Statistics results for 38 checkpoint-tegeioid undulation differences
redicted by three methods for study area.

Multi-Surface Function Methd@m)
(CHUNG,2008) LS-SVM Methodcm)
Method o
Hyperbolic Squared . .
Curve Ppwer of Distance RBF Polynomial | Linear
Distance
AN Max. value | 4.66 -9.98 5.27 498 | -4.96 -16.47
AN Mini. value | 0.01 -0.32 0.31 -0.10( 0.020 -0.24
AN average 2.25 2.90 2.19 189 | 1.87 453
Value
RMSE +2.62 +3.53 +2.62 234 +2.34 +5.79

Because the real geoid surface was modeled as Briodhe test area, any
interpolation methods produce similar results (€abl and 2). Thus, the various
methods used to derive local geoid model are &thisie and similar. In this study, a
method was presented using LS-SVM to approximagerégional geoid surface.
Although the fitting performance levels of the wars models yield small RMSE
differences of a few millimeters, the proposed NBvBmethod yielded the smallest
RMSE, indicating that it can refine the approximgéemid surface in the test area.
The test results indicated that the accuracy ofetstanated geometric undulation
interpolation that used the LS-SVM was in the ordérl.5 cm. Based on these
results, the estimated undulation accuracy attairsiy the LS-SVM was superior
to that attained using the curve fitting and BPARthods (LIN, 2007) by an order
of 2—4 cm in the same test area.

The results shown in Tables 1 and 2 indicate thihbagh the linear kernel-
function calculation results of the geometric gearttlulations derived using the
LS-SVM were less precise than were those calculaséng the second-order curve
surface, BP neural network, and multi-surface fiomctmethods, the precision
derived using the RBF and polynomial kernel functiesults was superior to that
derived using other methods. Therefore, the LS-SwWaé used to calculate local
geometric geoid undulations.

4.1 Optimization Tests

The 2-point increment method was adopted withinstiuely area to calculate
the RMSE values of the 3kernel functions at varipomts. Although the points
increased, the selected points were distributedutiitout the study area as
uniformly as possible and the minimum RMSE was usedhe basis to determine
the optimal number of fitting points. Table 3 shothe analysis results. In this
section, the optimal local geometric geoid modelétermined for the study area.
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Table 3 - TheAN RMSE results (cm) fitted using various numbers $fSVM

fitting points.

Fitting RBF Polynomial Linear Fitiing RBF Polynomial Linear
Points AN rmsEcm) Points AN RrMsEcm)

6 #5561 | #1431 £8.97 | 24 £2.38 | x2.34 +6.22
8 +3.37 | #6.04 +7.28 | 26 £2.17 | x2.12 +6.22
10 +3.23 | #5.09 +6.36 | 28 £2.09 | +2.05 +6.16
12 +2.75 | +3.65 6.72 39 203 | 201 +6.11

14 £2.60 | £3.06 +6.67 | 32 £2.04 | +2.03 +6.05
16 £2.75 | £3.06 +6.44 | 34 £2.05 | +2.05 +6.03
18 +2.84 +3.03 +6.24 | 36 +2.04 +2.03 +6.03
20 252 | +£2.48 +6.34 | 38 £2.04 | +2.05 +6.01
22 233 | £2.26 +6.29 | 40 £2.05 | +2.06 +6.01

The results in Table 3 indicate that when theniigitpoint was at 30, theN
RMSE values derived using the RBF and polynomiathoes were minimal and
complied with the sample size, which was greatemti30. Errors should be
assumed to be normally distributed; therefore, 8ihts were used to perform
model training and the remaining48 points were uasdcheckpoints. Figure 4
shows the distributed points.

The graphed results presented in Figures 5 anddigaie that the large
residual values of the linear kernel function priityaoccurred at the outer corners
of the test region; the points at the eastern aestavn portions of the test region
and parts of the southern region present fittedesthat are smaller compared with
the known values. This phenomenon might be causedniderestimated fitting
results because certain areas lack surroundinigdfifpoints. The points in the
central and northern regions demonstrate higheafites compared with the known
values, indicating over prediction in these regiohise residuals of the RBF and
polynomial kernel function showed no significardrtd changes.
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Figure 4 - Study area fitting-point and checkpdiistribution chart.
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Figure 6 - Differences of local geoid undulatiort8tglobal positioning satellite-
leveling control points for three kernel functiohL&-SVM.
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Table 4 - The:N statistic results for the 48-point checkpoint figgiof the study

area.
Checkpoint
. N ) N - N
2gtir%msrt]ltjilyfg:e;he N Maximum N Minimum | 2NAverage | , NRMSE(cm
Valug(cm) Valug(cm) Valug(Cm) )
RBF 3.30 -0.02 1.22 +1.45
Polynomial 3.25 0.04 1.24 +1.47
Linear -12.35 0.28 4.83 +5.71

The results shown in Table 4 indicate that the llogaometric geoid
undulation fitted using the RBF and polynomial ladrfunctions yielded an overall
precision of approximately +1.47cm compared withttbf the known geometric
geoid undulation. The results obtained using thedi kernel function exceeded the
limitations of indirect elevation observations aimyerse elevation calculations,
which should be less than 5 cm.
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Table 5 - Precision comparison of the local geoimggoid undulation for the test
area derived using different fitting methods.

AN AN
. . Fitting . . Checkpoint
Method Points Kernel Function| ) Maximum Minimum
Points ANRMSE(Cm)

Valug(cm) | Valug{cm)

Second-Order Curvg
Surface N/A 43 3.88 0.12 +2.00
(WANG,2005)

BP Neural Networks

N/A 43 3.60 0.00 +1.89
(WANG,2005)
Hyperbolic
4.50 -0.16 +2.41
) Curve
Multi-Surface -
) Third-Powered
Function Method ) 40 6.11 -0.04 +2.56
Distance
(CHUNG,2008)
Squared
. 493 0.001 +2.439
Distance
RBF 3.30 -0.02 +1.45
LS-SVM Polynomial 30 3.25 0.04 +1.47
Linear -12.35 0.28 +5.71

The results presented in Table 5 indicate that ewetp with the local
geometric geoid undulation model of the test areastucted using the second-
order curve surface, the BP neural network (WAN®QS), and multi-surface
function methods (CHUNG, 2008), the proposed LS-Swikthod requires only 30
fitted points. This is 10 or more points fewer cargd with the number required for
using the second-order curve surface, BP neuralankf or multi-surface function
methods; however, the proposed method yields a amabfe level of precision.

5.CONCLUSION

In this study, the LS-SVM was applied to constradbcal geoid undulation
model. Experimental testing indicated that the pemg method effectively
predicted geometric geoid undulation and met pi@tigequirements. Various
kernel functions can be used to construct distltf8tSVM models. The results
indicated that using RBF and polynomial kernel fionts to evaluate the study area
produced a superior fitting precision of approxietatt 1.5 cm. The fitting of the
linear kernel function was less desirable compavighl these methods.

No optimal solution exists for selecting LS-SVM aareters. The current
experiment demonstrated that the grid search mathodeasibly be used to select
specific and complete data search parameters. ditiad to model parameter
selection, the fitting results of the proposed D\AVSincluded the density and
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distribution of the known points. In this studyteafchanging the number of points
and point distributions, the 3kernel functions g¢ed differing fitting results,
reducing the number of fitting points by 10 or mof&e checkpoint errors of the
RBF and polynomial kernel functions were controligithin + 5 cm, meeting the
elevation precision requirements of engineeringvesys. This level of precision
cannot be achieved using the linear kernel function
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