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Abstract: 

This study investigates the influence of geodetic network configuration, stochastic model, and the approach local or 
global on the determination of minimum detectable displacements (MDD) using sensitivity analyses and significance 
tests. The proposed approach integrates sensitivity characteristics to establish confidence regions based on MDD.  
In addition, we examine the equality between the critical value of a significance test and the non-centrality 
parameter derived from a chi-square distribution to compute concentric ellipsoids representing sensitivity and 
accuracy. The analyses were focused on evaluate how variations in network configuration, stochastic model, and 
the type of analysis (if global or local) affect the relationship between sensitivity and accuracy.  Our results showed 
the importance of considering these factors, providing valuable insights for robust network design and analysis in 
practical applications.
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1. Introduction

In the pre-analysis of the geodetic monitoring networks, the sensitivity analysis provides valuable insights 
related to the capacity of the geodetic network to detect deformations. The sensitivity analysis is applied for specific 
probability levels based on the minimum detectable displacement (MDD) of monitoring points (Even-Tzur, 2010). 
Here, some aspects such as the network configuration, stochastic model, and the sensitivity analyses type, namely, 
global (for the entire network), and local (for specific points) play a key role. Thus, if the computed MDD exceeds 
the desired threshold based on the specified probability levels and the number of points tested simultaneously, it 
indicates a need for design improvement. This can be achieved by adding new observations and points, reducing 
their standard deviation, changing the probability levels or the approach (global or local). The computation of MDD 
is essential in geodetic monitoring as it accounts for both Type I errors (false positive) and Type II errors (false 
negative). These error types define a false alarm, namely, a deformation incorrectly detected and an undetected 
deformation. The last one is a critical condition for geodetic monitoring (Carvajal et al., 2022).

In addition to the sensitivity analysis, the network accuracy is also analyzed in the pre-analysis or design stage. 
Here, the thresholds for confidence and significance tests are defined to provide the best network design according 
to requirements (Prószyński & Łapiński, 2021). As in the sensitivity analysis, in accuracy analysis, the configuration 
of the network, the stochastic model, and the probability levels are aspects that can influence the results. In this 
context according to Prószyński & Łapiński (2021), the analysis of accuracy and sensitivity are traditionally separately 
applied due to the lack of a theoretical basis to consider a unique analysis. Therefore, the same authors provide a 
theoretical basis to consider the confidence region and significance test in sensitivity analysis in a unified approach 
based on MDD determination.

The method called variance factor (I) supports the confidence region in a network sensitivity characteristic. 
For this, the method provides equality between the critical value of the significance test of displacements ,h αΦ  
(associated with confidence region) and the non-centrality parameter , ,h α βλ  based on 2χ -distribution for a specific 
value for the power of test 0γ  determined by a Type II error probability  ( )0 0 0 1β γ β= − , coordinated with the 
stipulated Type I error probability or level of significance α  and the  h -dimensional displacement vector such 
that 

0 0 0, , ,h hα α βλΦ = .  After the equality determination, the MDDs are computed and represented as concentric 
ellipsoids where the MDD corresponds to the semi-major axis (Aydin, 2014). Here the relation between accuracy and 
sensitivity depends only on probabilistic concepts and does not consider aspects such as the network configuration 
and the stochastic model.

In this study several experiments were carried out to analyze the relationship between accuracy and sensitivity. 
Thus, initially, the sensitivity analysis characteristics were included in the deformation detection analysis through 
the global congruence test. Furthermore, we presented aspects related to the network configuration, stochastic 
model, and simultaneous displacements (multivariate and univariate approaches). Here, our results showed 
that the configuration network, stochastic model, and the type of analysis, namely, global or local influence the 
deformation analysis (MDD value) for both approaches. Finally, we presented experiments to analyze the influence 
of the network configuration, and the stochastic model in the relation between sensitivity and significance analysis 
presented by Prószyński & Łapiński (2021).
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2. Theoretical basis

2.1 Deformation analysis: Global Congruence Test (GCT)

The theoretical approach initially considers the deformation test. Here a displacement vector is given by:

�̂�𝑑 = 𝑥𝑥2 − 𝑥𝑥1

𝐶𝐶𝑑𝑑 = 𝜎𝜎0
2𝑄𝑄𝑑𝑑

𝐻𝐻0 : 𝐸𝐸 (�̂�𝑑) = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0

𝛷𝛷 = �̂�𝑑𝑇𝑇𝐶𝐶𝑑𝑑
+�̂�𝑑

𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0 = 𝛥𝛥

𝑇𝑇 = 𝜆𝜆 = 𝛥𝛥𝑇𝑇𝐶𝐶𝑑𝑑
+𝛥𝛥

𝜆𝜆 ≥ 𝜆𝜆0

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                      (1)

Where x1 and x2 are the least squares solution for the monitoring network parameters (point coordinates) in 
the first and second epoch respectively. The covariance matrix is computed as:�̂�𝑑 = 𝑥𝑥2 − 𝑥𝑥1

𝐶𝐶𝑑𝑑 = 𝜎𝜎0
2𝑄𝑄𝑑𝑑

𝐻𝐻0 : 𝐸𝐸 (�̂�𝑑) = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0

𝛷𝛷 = �̂�𝑑𝑇𝑇𝐶𝐶𝑑𝑑
+�̂�𝑑

𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0 = 𝛥𝛥

𝑇𝑇 = 𝜆𝜆 = 𝛥𝛥𝑇𝑇𝐶𝐶𝑑𝑑
+𝛥𝛥

𝜆𝜆 ≥ 𝜆𝜆0

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                       (2)

Here Qd is the cofactor matrix of the displacement vector, and 2
0  is the a-priori variance factor. Based on 

hypothesis testing, two hypotheses are formulated:
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                                                                  (3)

While the test statistic is given by:

�̂�𝑑 = 𝑥𝑥2 − 𝑥𝑥1
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+�̂�𝑑

𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0 = 𝛥𝛥
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                                                                                     (4)

Which follows (central) X2-distribution with h degrees of freedom in H0, is compared with the theoretical value 
of 2

( , )hαχ  corresponding to the α -significance level. If the test statistic Φ  is smaller than the threshold value, the 
null hypothesis H0 is not rejected with the confidence level of 1-, and it is concluded that there is no deformation 
between the two epochs. Otherwise, it is decided that displacement has occurred with the probability risk of a 
false positive given by . This congruence test may be performed by considering the estimated variance factor. 
In this case, the test follows F (Fisher)-distribution. Nonetheless, this case is outside the scope of this paper. More 
information can be found in Aydin (2014).

2.2 Sensitivity analysis

The capacity of the network to detect displacements can be quantified by sensitivity analysis (Aydin, 2014). 
Based on the deformation test, a theoretical vector of expected displacement, denoted by ∆ , is related to the 
alternative hypothesis defined as:

�̂�𝑑 = 𝑥𝑥2 − 𝑥𝑥1

𝐶𝐶𝑑𝑑 = 𝜎𝜎0
2𝑄𝑄𝑑𝑑
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𝛷𝛷 = �̂�𝑑𝑇𝑇𝐶𝐶𝑑𝑑
+�̂�𝑑

𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0 = 𝛥𝛥

𝑇𝑇 = 𝜆𝜆 = 𝛥𝛥𝑇𝑇𝐶𝐶𝑑𝑑
+𝛥𝛥

𝜆𝜆 ≥ 𝜆𝜆0

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

                                                                               (5)

Here the non-rejection of HA implies that the expected displacement values of the vector ∆  can be detected 
by the monitoring network. The theoretical relationship of the non-centrality parameter (λ ) and the test statistic 
(T) is given by:

�̂�𝑑 = 𝑥𝑥2 − 𝑥𝑥1

𝐶𝐶𝑑𝑑 = 𝜎𝜎0
2𝑄𝑄𝑑𝑑

𝐻𝐻0 : 𝐸𝐸 (�̂�𝑑) = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0

𝛷𝛷 = �̂�𝑑𝑇𝑇𝐶𝐶𝑑𝑑
+�̂�𝑑

𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0 = 𝛥𝛥

𝑇𝑇 = 𝜆𝜆 = 𝛥𝛥𝑇𝑇𝐶𝐶𝑑𝑑
+𝛥𝛥

𝜆𝜆 ≥ 𝜆𝜆0

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                   (6)

The condition to define if the network is sensitive to displacements is given by:

�̂�𝑑 = 𝑥𝑥2 − 𝑥𝑥1

𝐶𝐶𝑑𝑑 = 𝜎𝜎0
2𝑄𝑄𝑑𝑑

𝐻𝐻0 : 𝐸𝐸 (�̂�𝑑) = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0

𝛷𝛷 = �̂�𝑑𝑇𝑇𝐶𝐶𝑑𝑑
+�̂�𝑑

𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0 = 𝛥𝛥

𝑇𝑇 = 𝜆𝜆 = 𝛥𝛥𝑇𝑇𝐶𝐶𝑑𝑑
+𝛥𝛥

𝜆𝜆 ≥ 𝜆𝜆0

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                           (7)

3 Felipe Carvajal Rodríguez et al.

Boletim de Ciências Geodésicas, 30: e2024003, 2024



Where 0λ  is the so-called lower bound of the non-centrality parameter which fulfills the given power of the 
test 0γ  being the complement of the type-II error probability 0 0 0:  1β γ β= − . Here   0λ  is obtained from Aydin & 
Demirel (2004).

2.3 Minimal detectable displacements (MDD)

To evaluate the MDD, firstly a vector with the expected displacements is defined from a vector of 
directions g and a scale factor value denoted by b (Aydin, 2014). Thereby, the condition bg∆ =  is fulfilled. If 

( )  min min minb b b g= ∆ = , then the determination of minb  is given by:

�̂�𝑑 = 𝑥𝑥2 − 𝑥𝑥1

𝐶𝐶𝑑𝑑 = 𝜎𝜎0
2𝑄𝑄𝑑𝑑

𝐻𝐻0 : 𝐸𝐸 (�̂�𝑑) = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0

𝛷𝛷 = �̂�𝑑𝑇𝑇𝐶𝐶𝑑𝑑
+�̂�𝑑

𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0 = 𝛥𝛥

𝑇𝑇 = 𝜆𝜆 = 𝛥𝛥𝑇𝑇𝐶𝐶𝑑𝑑
+𝛥𝛥

𝜆𝜆 ≥ 𝜆𝜆0

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                 (8)

Where maxλ  is the maximum eigenvalue of the covariance matrix of Cd. According to Küreç & Konak (2014)  
bmin is the best sensitivity level of the network. On the other hand, the worst sensitivity level of the network can be 
computed as:

�̂�𝑑 = 𝑥𝑥2 − 𝑥𝑥1

𝐶𝐶𝑑𝑑 = 𝜎𝜎0
2𝑄𝑄𝑑𝑑

𝐻𝐻0 : 𝐸𝐸 (�̂�𝑑) = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0

𝛷𝛷 = �̂�𝑑𝑇𝑇𝐶𝐶𝑑𝑑
+�̂�𝑑

𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0 = 𝛥𝛥

𝑇𝑇 = 𝜆𝜆 = 𝛥𝛥𝑇𝑇𝐶𝐶𝑑𝑑
+𝛥𝛥

𝜆𝜆 ≥ 𝜆𝜆0

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚                                                                                  (9)

Where 

�̂�𝑑 = 𝑥𝑥2 − 𝑥𝑥1

𝐶𝐶𝑑𝑑 = 𝜎𝜎0
2𝑄𝑄𝑑𝑑

𝐻𝐻0 : 𝐸𝐸 (�̂�𝑑) = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0

𝛷𝛷 = �̂�𝑑𝑇𝑇𝐶𝐶𝑑𝑑
+�̂�𝑑

𝐻𝐻𝐴𝐴 : 𝐸𝐸 (�̂�𝑑) ≠ 0 = 𝛥𝛥

𝑇𝑇 = 𝜆𝜆 = 𝛥𝛥𝑇𝑇𝐶𝐶𝑑𝑑
+𝛥𝛥

𝜆𝜆 ≥ 𝜆𝜆0

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = √𝜆𝜆0𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚  is the minimum eigenvalue of Cd. According to Hsu & Hsiao (2002) the average between bmax and  
bmin can be interpreted as the global sensitivity for the entire network.

To obtain the vector of directions of displacements, Aydin (2014) computed the (unity) eigenvectors 
corresponding to the maximum eigenvalue ( maxλ ) and the minimum eigenvalue ( minλ ) of the dC  matrix ( maxΛ and 

minΛ  respectively). Hence: min min maxbΛ = Λ  and max max minbΛ = Λ . The MDD in each thi  element of the vector d̂  is 
given by the respective thi  element of min∆  or max∆ . For details, we suggest Aydin, (2014).

2.4 Global and Local sensitivity analysis

The sensitivity analysis can be carried out under a global or local approach. Here an important analysis related 
to simultaneous and unitary displacements arises. If the global analysis is applied the MDD represents simultaneous 
displacements of all the points that make up the monitoring network. Conversely, if the local sensitivity is applied 
the MDD is computed for a specific point. These conditions imply that the h -dimensional vector of displacements 
changes and therefore the non-centrality parameter also. Here, for 2D and 3D networks, the local sensitivity can be 
computed under multivariate (simultaneous displacements) or univariate approaches. For example, a multivariate 
analysis for a 3D point with 0 5%α =  and 0 80%γ =  implies ( )0 080%, 5%, 3 10.9hγ αλ = = = = . On another hand, if the 
univariate approach is used, the non-centrality parameter is computed as ( )0 080%, 5%, 1 7.85hγ αλ = = = = . These conditions 

are fulfilled for the significance test also (
0

2
( 5%, 3) 7.81hαχ = = =  and 

0

2
( 5%, 1) 3.84hαχ = = = ) (Bandeira et al., 2021).

Therefore, the multivariate and univariate approaches are related to aspects of detectability, where the 
multivariate approach has more difficulty to detect deformation due to critical values being calculated from 
stochastic models without covariance (e.g., GNSS). For the univariate approach, the neglect of covariance can be 
generated false positives and false negatives in addition to providing only a displacement magnitude and not their 
directions. Based on this, the multivariate approach is recommended Bandeira et al. (2021).

4Influence of network configuration and stochastic model on the determination of the...

Boletim de Ciências Geodésicas, 30: e2024003, 2024



2.5 Confidence region determination supported by network sensitivity characteristics

The theoretical basis for the confidence region determination supported by network sensitivity characteristics 
is developed for the scenarios where 2

0σ  is used. Here, a specific value for the power of test 0γ  is determined 
through a value of 0β  coordinated with the stipulated level of significance 0α  and the h -dimensional displacement 
vector. This approach provides equality between the critical value for the significance test and the non-centrality 
parameter of the sensitivity test: ( ) ( )0 0 0, , ,  h hα α βλΦ =  (Prószyński & Łapiński, 2021).

Initially for 1 h = the relation 
0 0 0, , ,h hα β αλ > Φ  is fulfilled. If the h  value increases, both values 

0 0, ,  h α βλ
and 

0,h αΦ  also increase. However, for a specific value of h (namely *h ), the relation 
0 0 0, , ,h hα α βλΦ =  is achieved 

(Prószyński & Łapiński, 2021). The results presented by the authors show that for * 7.3h =  the above equality holds 
to 0 0.05α =  and 0 0.20β = .  In addition, for values greater than * 7.3h = , the relation 

0 0 0, , ,h hα α βλΦ >  is fulfilled. 
Note that for different values for 0α  and 0β , the value for *h  also changes.

The approach proposed by Prószyński & Łapiński (2021) is based on the size comparison of three concentric 
ellipsoids; sensitivity ellipsoid, confidence ellipsoid, and significance ellipsoid. This comparison is carried out by 
global sensitivity. For the significance ellipsoid, the relation 

0,
ˆ ˆT

d hü α
+ = Φ  is fulfilled for a 0α  significance level; 

for the confidence ellipsoid, ,
ˆ ˆT

d h CLd C d+ = Φ  is fulfilled for a given confidence level ( CL ) and for the sensitivity 
ellipsoid, 

0 0, ,
ˆ ˆT

d hd C d α β
+ = Φ . Considering 01CL α= − , the significance ellipsoid turns into the confidence ellipsoid 

and the analysis focuses on the determination of  
0 0 0, , ,h hα α βλΦ = . In this case, two scenarios were defined:  *h h>

and *h h< , where *h  is the value for h  that satisfies the equality 
0 0 0, , ,h hα α βλΦ = . Then the confidence and 

sensitivity ellipsoids were determined, for *h h<  the confidence ellipsoid is smaller than the sensitivity ellipsoid 
(Figure 1) while for *h h>  the sensitivity ellipsoid is smaller than the confidence ellipsoid (Figure 2).

Source: Adapted from Prószyński & Łapiński (2021).

Figure 1: Ellipsoids of confidence and sensitivity for *h h< . 
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3. Experiments and analyses

In this section, we conducted several experiments to evaluate the behavior of the MDD under different 
scenarios, such as network configuration, number of observations, local or global MDD, as well as different stochastic 
models. For this, we utilized two leveling networks: Network A, which comprises 6 points as depicted in Figure 3, 
and Network B, which consists of 9 points as shown in Figure 5. The number of observations for each network is 
denoted by n , while h  represents the dimensionality of the displacement vector. Table 1 provides a description of 
each experiment.

Source: Adapted from Prószyński & Łapiński (2021).

Figure 2: Ellipsoids of confidence and sensitivity for *h h> .

Table 1: Summary of experiments.

Experiment Description
Experiment 1 Local MDD (h = 1) for network A with n = 11
Experiment 2 Local MD (h = 1) for network A improved redundancy (n = 15)
Experiment 3 Test of local MDD values for n = 15 on network A with n = 11
Experiment 4 MDD for three simultaneous points (h = 3) on network A with n = 15
Experiment 5 Global MDD (h = 6) on network A with n = 11
Experiment 6 Global MDD (h = 9) on network B with n = 12
Experiment 7 Global MDD for network A with n = 15 and network B with n = 20

Experiment 8 Global MDD for network A with n = 15 and network B  with and gradients of different 
precisions n = 20

For the first experiment, Figure 3 shows a leveling monitoring network with 11 height differences and a 
standard deviation of 1 mm (Nowel, 2018). To evaluate the MDD, a trial and error methodology presented by 
Bandeira et al., (2021) was applied for each point of the network (local sensitivity approach). In this step, in 
addition to the application of the significance test, which considers only false positives in 0H ; the sensitivity 
analysis was applied also, namely, the occurrences of false positives in 0H  and false negatives in AH  were 
considered, in both cases 2d xQ Q= ⋅  (Qx, cofactor matrix of the unknowns). In the last case, the critical value is 
determined by the non-centrality parameter 

0 0( , , )hγ αλ instead of  ( )0

2
,hαχ .
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The results of the first experiment show that the MDD values are lower for the significance approach 
(Table 2). These results are equivalent to the theoretical basis presented in Prószyński & Łapiński, (2021), since

*h h< . Another relevant aspect of this experiment is related to points 2 and 5. These points have a small magnitude 
for MDD in comparison with the points 1,3,4,6. The main difference between these two groups is the number of 
observation connections which are 5 and 3 respectively.

Source: Adapted from Nowel (2018).

Figure 3: leveling network.

Table 2: Local MDD for significance and sensitivity approach based on the GCT.

Point
( ),1id (mm) (Significance analysis) ( ),1id  (mm) (Sensitivity analysis )

1 1.5 2.1
2 1.1 1.5
3 1.5 2.1
4 1.5 2.1
5 1.1 1.5
6 1.5 2.1

To evaluate the role of the network configuration, observations were added between points 1-3,1-4,3-6,4-6 
with 1 mm of standard deviation. Figure 4 shows the new network configuration.

Source: Author’s.

Figure 4: leveling network.
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From the new configuration, all the points have the same local MDD. Thus, the local MDD is 1.1 mm and 1.5 
mm for the significance and sensitivity respectively. Therefore, here the configuration of the network influences the 
MDD values. To evaluate this condition, the new local MDD found was tested in the first configuration (11 leveling 
differences). The results are presented in Table 3.

Table 3: Results for tested of MDD obtained in the second configuration inserted in the first configuration.

Deformation considered for significance analysis Deformation considered for  sensitivity analysis

Point
( ),1id  (mm)

𝑑𝑑𝑇𝑇(𝑖𝑖,1) ⋅ 𝐶𝐶𝑑𝑑(𝑖𝑖,𝑖𝑖)
+

⋅ 𝑑𝑑(𝑖𝑖,1)
0

2
( 5%, 1)dαχ = = Point

( ),1id  (mm)
𝑑𝑑𝑇𝑇(𝑖𝑖,1) ⋅ 𝐶𝐶𝑑𝑑(𝑖𝑖,𝑖𝑖)

+

⋅ 𝑑𝑑(𝑖𝑖,1) 0

2
( 5%, 1)dαχ = =

1 1.1 2.2926 3.8415 1 1.5 4.2632 7.8488
2 1.1 4.3560 3.8415 2 1.5 8.1 7.8488
3 1.1 2.2926 3.8415 3 1.5 4.2632 7.8488
4 1.1 2.2926 3.8415 4 1.5 4.2632 7.8488
5 1.1 4.3560 3.8415 5 1.5 8.1000 7.8488
6 1.1 2.2926 3.8415 6 1.5 4.2632 7.8488

From Table 3, the detection was successful for points 2 and 5 for both tests. Note that for these points the 
local of MDD was the same as in the first experiment. For the rest of the points, the test under the significance and 
sensitivity could not identify the deformations. These results showed the importance of the network configuration 
in the design stage.

Subsequently, simultaneous displacements were tested. For this, three displacements in the network with 
15 leveling differences and 1 mm of standard deviation were defined. In this case, the critical value for significance 
and sensitivity analysis becomes 

( 5%, 3)0

2 7.81
hα

χ
= =

= and ( 5%, 3) 10.9dαχ = = = , for both cases 0 80%γ = . Here two 
MDDs were computed, in the direction of the largest and in the direction of the smallest variances. The results are 
presented in Tables 4 and 5 for significance and sensitivity analysis respectively.

Table 4: MDDs for simultaneous displacement for significance analysis.

Point
MDDs (largest variance direction) Deformation considered for sensitivity analysis

( ), ,i j kd  (mm) 𝑑𝑑𝑇𝑇 ⋅ 𝐶𝐶𝑑𝑑(𝑖𝑖,𝑖𝑖)
+ ⋅ 𝑑𝑑

0

2
( 5%, 3)dαχ = = ( ), ,i j kd  (mm) 𝑑𝑑𝑇𝑇 ⋅ 𝐶𝐶𝑑𝑑(𝑖𝑖,𝑖𝑖)

+ ⋅ 𝑑𝑑
0

2
( 5%, 3)dαχ = =

1,3,5 1.4,0.2,0.2 9.4800 7.8147 0.6,-0.1,1.3 9.4800 7.8147
2,4,6 1.4,0.2,0.2 9.4800 7.8147 0.7,-0.2,1.2 9.4800 7.8147

Table 5: MDDs for simultaneous displacement for sensitivity analysis.

Point

MDDs (largest variance direction) Deformation considered for  sensitivity analysis

( ), ,i j kd  (mm)
𝑑𝑑𝑇𝑇 ⋅ 𝐶𝐶𝑑𝑑(𝑖𝑖,𝑖𝑖)

+

⋅ 𝑑𝑑 0 0

2
( 80%, 5%, 3)hγ αχ = = = ( ), ,i j kd  (mm)

𝑑𝑑𝑇𝑇 ⋅ 𝐶𝐶𝑑𝑑(𝑖𝑖,𝑖𝑖)
+

⋅ 𝑑𝑑 0 0

2
( 80%, 5%, 3)hγ αχ = = =

1,3,5 1.5,0.3,0.3 11.8200 10.903 0.7,-0.2,1.4 11.8200 10.903
2,4,6 1.5,0.3,0.3 11.8200 10.903 0.8,-0.1,1.3 11.8200 10.903
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From Tables 4 and 5 note that the local MDD from Table 3 can be less or greater than the global MDD 
(univariate or multivariate analysis).  These results show the importance of the type of analysis (if local or global) to 
compute the MDD values in both significance and sensitivity approaches.

The next experiments are focused on evaluating Prószyński & Łapiński, (2021) method. Therefore, we used 
the leveling network from Figure 3 with a standard deviation of 1 mm for each height difference (11 observations). 
The inner-constrained approach is applied in the adjustment (see Ogundare, (2018)). The covariance matrix for the 
deformation vector d̂  was obtained by Qd = 2Qx In this case h = rank (Qd) = 5. The values for the non-centrality 
parameter were obtained from Aydin & Demirel, (2004). Table 6 shows the results.

Table 6: non-centrality parameter for sensitivity and confidence for leveling network of Figure 3.

Ellipsoid 0α β , ,h bαλ

Sensitivity 0.05 0.20 12.828
Confidence 0.05 0.27 11.070

Table 7: Global sensitivity values for the third experiment.

Ellipsoid minb (mm) maxb (mm) Average (mm)

Sensitivity 2.06 3.58 2.82
Confidence 1.92 3.32 2.62

By analyzing Table 7, we note that the size of the sensitivity ellipsoid is higher than the confidence ellipsoid 
as expected, once that *5 7.3h h= < =  (Figure 1). After, a new experiment was developed with a leveling network 
with 9 points and 12 leveling differences with a standard deviation of 1 mm (Figure 5).

For the computation of the global sensitivity values (see Eqs. 4 and 5), we used the maximum and minimum 
eigenvalues of dC and the non-centrality parameters of Table 6. The results are presented in Table 7:

Source: Author’s

Figure 5: Leveling network with 9 points.
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The adjustment procedure, the determination of non-centrality parameter, and global sensitivity values were 
carried out according to the previous experiment. The results are presented in Table 8.

Table 8: non-centrality parameter for sensitivity and confidence ellipsoids for leveling network with 9 points and 
12 height differences.

Ellipsoid 0α β , ,h bαλ

Sensitivity 0.05 0.20 15.022
Confidence 0.05 0.18 15.507

The global sensitivity values are presented in Table 9.

Table 9: Global sensitivity values for leveling network with 9 point and 12 height differences.

Ellipsoid
minb (mm) maxb (mm) Average (mm)

Sensitivity 2.24 5.48 3.86
Confidence 2.27 5.67 3.97

The results in this experiment show that the non-centrality parameter (and thus the respective ellipsoid) 
obtained for the confidence approach was higher than the sensitivity approach, according to *8 7.3h h= > = . 
The difference between these experiments and those presented in Prószyński & Łapiński (2021) is that here we 
addressed geodetic network applications rather than a theoretical analysis without displacement values.

To evaluate the network configuration influence, observations were included in both networks analyzed. 
Figures 4 and 6 showed the new configuration for each network.

Source: Author’s.

Figure 6: 1D network adapted.
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In both cases, the new observations have a standard deviation of 1 mm. Note that the non-centrality 
parameters are the same as in Tables 6 and 8 respectively since we do not change the number of network points 
(and thus the value of h). The new global sensitivity values are presented in Tables 10 and 11.

Table 10: Global sensitivity values for the first network (6 network points) with new observations.

Ellipsoid
minb (mm) maxb (mm) Average (mm)

Sensitivity 2.07 2.07 2.07
Confidence 1.92 1.92 1.92

By Analyzing Tables 7 and 10 or Tables 9 and 11, we note that the global sensitivity values decrease for 
both networks adding new observations, especially the maxb values for the first network. We can also note that 

min maxb b= for the network when all points are tied with each other as in Figure 4 and all observations have the 
same precision (the same is not true for the second network as shown in Figure 6). Furthermore, the differences 
between the global sensitivity values of the sensitivity and the confidence approach decrease for both networks.

This kind of analysis provides interesting tools for the pre-analysis or design of deformation networks, being 
not covered before in the theoretical experiments of Prószyński & Łapiński (2021). To evaluate the role of the 
stochastic model, the new observations in Figure 4 were now defined with a standard deviation of 2 mm. The results 
are presented in Table 12.

Table 12: Global sensitivity values for network of Figure 4 with new observations with a standard deviation of 2 mm.

Ellipsoid minb (mm) maxb (mm) Average (mm)

Sensitivity 2.07 2.93 2.50
Confidence 1.92 2.72 2.32

The same case was considered with the new observations in Figure 6. Each new observation has now a 
standard deviation of 2 mm and the results are presented in Table 13.

Table 11: Global sensitivity values for the second network with new observations.

Ellipsoid minb (mm) maxb (mm) Average (mm)

Sensitivity 1.83 3.64 2.73
Confidence 1.86 3.69 2.77

Table 13: Global sensitivity values for the second network with new observations with a standard deviation of 2 mm.

Ellipsoid minb (mm) maxb (mm) Average (mm)

Sensitivity 2.18 4.76 3.47
Confidence 2.21 4.83 3.52
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By Analyzing Tables 10 and 12 or Tables 11 and 13, we note that the global sensitivity values increase if 
the standard deviation of the new observations increases from 1 mm to 2 mm as expected. However, the global 
sensitivity values decrease in relation to the original case without new observations for both networks. Besides that, 
the differences between the global sensitivity values of the sensitivity and the confidence approach decrease again 
for both networks (see Tables 7 and 12 or Tables 8 and 13). Consequently, these experiments also show the role of 
the stochastic model in this kind of analysis, especially when designing deformation networks.

Therefore, the addition of new observations reduces the MDD values, even if these observations are of poorer 
precision than the previous ones. Furthermore, increasing the network’s redundancy reduces the discrepancies 
between the results of significance and sensitivity analysis.

4. Conclusions

In this work, we have studied the relationship between significance and sensitivity in MDDs computation. 
First, under the GCT approach, we compare the detectability of significance and sensitivity analysis. Here we 
found that, the network configuration, stochastic model, and the type of analysis, i.e., if global or local influences 
on the MDD values. 

In addition, we analyzed the Prószyński & Łapiński, (2021) method under the same conditions. Thus, the 
influence of network configuration and stochastic model on the variance factor method (I), which jointly analyzes 
aspects of sensitivity and accuracy in the pre-analysis of geodetic networks showed that If the network and 
stochastic model improvement, namely, the addition of more observations and better standard deviations for the 
observations, provides on average better values for MDD and reduces the magnitude between the semi-major axis 
of the sensitivity and significance ellipsoids. These results provides key information for the optimization of geodetic 
network design. 

Hence, the geodesist must be aware of the following issue: only the occurrence of false positives will be 
considered (significance analysis) or also the occurrence of false negatives (sensitivity analysis).  It should be noted 
that in the case of geodetic monitoring, the occurrence of false negatives (undetected deformations) is generally 
more critical than the occurrence of false positives (“false alarm”). For future studies, we recommend analyze 
some properties of the MDD directions for the smallest and largest directions for simultaneous displacements 
(Table 4 and Table 5) and the design or pre-analysis of a real monitoring geodetic network considering all the 
aspects addressed here.
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