
Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

BCG - Boletim de Ciências Geodésicas - On-Line version, ISSN 1982-2170
http://dx.doi.org/10.1590/S1982-21702014000200015

OPTIMIZATION APPROACHES TO MPI AND AREA

MERGING-BASED PARALLEL BUFFER ALGORITHM

Estratégias de otimização de algoritmos de armazenamento paralelo baseados em
fusão de área e MPI

JUNFU FAN1, 2, 3

MIN JI4(1)
GUOMIN GU5
YONG SUN4

1State Key Laboratory of Resources and Environmental Information System,
Institute of Geographic and Nature Resources Research, Chinese Academy of

Sciences, Beijing 100101, China
2University of Chinese Academy of Sciences, Beijing 100049, China

3School of Architectural Engineering, Shandong University of Technology, Zibo
255049, China

4College of geomatics, Shandong University of Science and Technology, Qingdao
266510, China

5Computer Science and Technology College, Zhejiang University of Technology,
Hangzhou 310023, China

fanjf@lreis.ac.cn ; jamesjimin@126.com

ABSTRACT
On buffer zone construction, the rasterization-based dilation method inevitably
introduces errors, and the double-sided parallel line method involves a series of
complex operations. In this paper, we proposed a parallel buffer algorithm based on
area merging and MPI (Message Passing Interface) to improve the performances of
buffer analyses on processing large datasets. Experimental results reveal that there
are three major performance bottlenecks which significantly impact the serial and
parallel buffer construction efficiencies, including the area merging strategy, the
task load balance method and the MPI inter-process results merging strategy.
Corresponding optimization approaches involving tree-like area merging strategy,

(1)Corresponding author

Optimization approaches to MPI and area merging-based...

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 3 8

the vertex number oriented parallel task partition method and the inter-process
results merging strategy were suggested to overcome these bottlenecks. Experiments
were carried out to examine the performance efficiency of the optimized parallel
algorithm. The estimation results suggested that the optimization approaches could
provide high performance and processing ability for buffer construction in a cluster
parallel environment. Our method could provide insights into the parallelization of
spatial analysis algorithm.
Keywords: Area Merging; Parallel Buffer; Task Partition; Vertex Accumulation
Effect; Tree-like Merging; MPI.

RESUMO
Na construção de uma área de influência, o método de dilatação baseada em
rasterização inevitavelmente introduz erros, e o método de dupla linha paralela
envolve uma série de operações complexas. Neste artigo, propõe-se um algoritmo
de armazenamento paralelo baseado na fusão de área e MPI (Interface de
transferência de Mensagem) para melhorar o desempenho de análise de
armazenamento, no processamento de grandes conjuntos de dados. Os resultados
experimentais revelam que há três grandes gargalos de desempenho que impactam
significativamente a eficiência de construção de armazenamentos seriais e paralelos,
incluindo a estratégia de fusão de área, a tarefa / método do balanceamento de carga
e os MPI resultantes da estratégia de fusão. Para superar esses gargalos, são
sugeridas abordagens de correspondência de otimização envolvendo a estratégia de
fusão em árvore, um método orientado de partição do número de vértices em tarefas
paralelas e uma estratégia de fusão dos inter-processos. Os experimentos foram
realizados para examinar a eficiência do algoritmo paralelo de otimização. Os
resultados estimados sugerem que as abordagens de otimização podem fornecer alto
desempenho e capacidade de processamento para a construção de armazenamento
em um ambiente paralelo agrupado. Esse método pode fornecer sugestões sobre a
paralelização de algoritmos de análise espacial.
Palavras-chave: Fusão de Área; Armazenamento Paralelo; Tarefa de Partição;
Efeito de acumulação de Vérices; Fusão em Árvore; MPI.

1. INTRODUCTION

Rapidly expanded spatial datasets has brought unprecedented pressure to
existing computational resources and the traditional analysis algorithms in
geoscience. With the advancement in computer hardware technology and the
development of parallel programming models, high performance computation has
become an important issue for analyzing, processing, and visualizing massive geo-
spatial data (TURTON and OPENSHAW, 1998 and 2000; CLARKE, 2003;
HAWICK et al., 2003). High-performance computation can be implemented via
many ways, such as multi-core parallelization, cluster parallelization, graphic
processing unit (GPU) acceleration, and hybrid parallelization (LIN and SNYDER,

Junfu, F. et al.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 3 9

2009; McKENNEY et al., 2011), which all depend on the paradigm of parallelism
(BARNEY, 2012). In a cluster computing environment, most of proposed
parallelized spatial analytical algorithms are based on the framework of the message
passing interface (MPI). The two major modes for the realization of parallel
computation are data decomposition and task partition (GRAMA et al., 2003),
which correspond to spatial data division and pipeline parallel processing,
respectively. Data division strategies for parallel spatial analysis algorithms with
topological relations have been extensively discussed (SLOAN et al., 1999;
MINETER and DOWERS, 1999; DARLING et al., 2000). For instance, a parallel
task partition approach based on the partition of geometries has been designed and
implemented (MINETER and DOWERS, 2000), and an idea of software stratifying
at a low level has been proposed to encapsulate the complexity and reuse the codes
of parallel algorithms (MINETER and DOWERS, 2000). Furthermore, Mineter
(2003) presented a parallel vector spatial analysis platform called the TSO
(Topology-Stitching-Output) software framework. This approach were based on the
NTF data model, containing topological information allowing complex topology to
be created and checked in parallel task partition and result sewing. However, the
processing and maintenance of topological information are time consuming for large
dataset.

In GIS (Geographical Information System), a buffer is defined as a zone
around a map feature measured in units of distance or time (ESRI, 2013). As an
important function in map information retrieval, comprehensive spatial analysis, and
processing in GIS, buffer analysis solves the problem of proximity and represents an
influence extent or service extent (WU, 1997). Buffer analysis algorithm is widely
used in many geo-spatial fields, such as spatial data query, hybrid overlay analysis
of vector and raster data, thematic mapping, and so on.

Most previous studies of buffer algorithms focused on the double-sided
parallel line generation algorithm with a self-intersected polygon processing model
and the dilation method by means of rasterization and vector boundary extraction.
Zalik et al. (2003) elaborated an algorithm for asymmetric segment buffer
generation based on the idea of sweep line through the following steps: creating
basic geometric outlines, identifying intersection points between them, construct
rings, and determining spatial relationships amongst the rings. Based on Zalik's
algorithm, an algorithm for buffer creation and result area merging has been
implemented using the sweep line approach and vector algebra (BHATIA et al.,
2013). Despite their precision, the aforementioned algorithms require complex
computation and spatial relation identification, and their realization is complicated.
In response, Li and Du (2005) proposed a buffer creation algorithm based on a
dilation algorithm. Essentially, the idea of rasterization is used to simplify vector
buffer creation, and the target buffer is created by extracting the boundaries of
rasterized geometries, which are expanded according to certain window sizes and
rules. However, these algorithms based on the extraction of rasterized boundaries

Optimization approaches to MPI and area merging-based...

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 4 0

result in many errors. In research and engineering applications, buffer analysis
algorithms also face efficiency limitations caused by large dataset.

Area merging can be achieved through polygon clipping algorithms, which
have been intensively studied, and many algorithms have been proposed
(SUTHERLAND and HODGMAN, 1974; WEILER and ATHERTON, 1977;
LIANG and BARSKY, 1983). The currently recognized efficient algorithms that
can process arbitrary polygon clipping within a limited amount of time include
Vatti's algorithm (VATTI, 1992) and Greiner-Hormann’s algorithm (GREINER and
HORMANN, 1998), which with similar performances. The Vatti’s algorithm
supports clipping between polygons with any number of edges and in any shape
(e.g., self-intersection with islands and/or holes). Murta (1998) then modified Vatti's
algorithm to overcome the problem that horizontal edges could not be processed
properly. Based on Vatti's algorithm, we implemented area merging and avoided its
performance bottleneck by using a divide-and-conquer method. Moreover, area
merging was introduced into the buffer creation to replace the complex ring
construction and spatial relationship processing. Thus, the buffer creation algorithm
was simplified, and a parallel buffer analytical algorithm was implemented.

At present, there is little research on optimization approaches to parallel buffer
algorithms under high-performance computation, and the buffer analytical tools
provided by GIS software do not have satisfactory efficiency. Therefore, it is
valuable to further explore and discuss parallel buffer algorithms and their
optimization approaches under the background of big data. Firstly, a serial buffer
construction algorithm based on area merging was proposed, and an optimization
approach based on area merging and the divide-and-conquer method was proposed.
The efficiencies of the optimized algorithm and ArcGISTM Buffer tool were
compared with or without dissolving of the buffer result polygons. Secondly, a
parallel buffer analysis algorithm was developed on the basis of data parallelism,
and its accelerating abilities under the above two conditions were analyzed. Thirdly,
the operation of the parallel buffer analysis algorithm was analyzed to identify the
possible performance bottlenecks, and corresponding optimization solutions were
then proposed.

In this paper, the experiments were performed under the same hardware
conditions. The results showed that the buffer creation algorithm based on area
merging and optimized using the divide-and-conquer method was feasible and had
some advantages over the general buffer algorithm. The optimized algorithm
effectively improved efficiencies in buffer creation and result dissolving, and an
ideal speedup ratio was obtained. Therefore, the optimizing approaches are feasible
pathway to improve area merging-based serial and parallel buffer algorithms.

2. AREA-MERGING BASED BUFFER ALGORITHM

The area-merging buffer construction algorithm will be introduced in this
section, and then a divide-and-conquer method-based buffer zone merge strategy
will be described to improve the buffer algorithm. Based on the above work,

Junfu, F. et al.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 4 1

comparison experiments between our serial buffer algorithm and the ArcGISTM
buffer tool are conducted. The vertex accumulation effect and the optimization
solution to it in the process of polygon merging will be discussed in this section too.

2.1 Construction of Buffering Zone

Buffer creation algorithms based on vector geometry are generally
implemented through the following steps: creation of parallel lines, construction of
rings, and processing of spatial relationships between intersected rings. The latter
two steps involve numerous complex numerical computations (e.g., intersection
calculation, vector computation, identification of included angles, and processing of
self-intersection). These two steps may hardly be realized owing to many types of
special cases should be handled. Therefore, we proposed a new method to replace
these two steps for simplification of buffer creation by introducing the mature
polygon clipping algorithm into vector buffer construction. Vatti's algorithm
supports the polygon clipping operation and boolean operations (e.g., union and
difference) in polygon overlay, so it is recognized as being able to process arbitrary
polygon overlay within a limited time. In this study, area merging was realized on
the basis of Vatti's algorithm. With the area merging approach, an unilateral buffer
can be easily realized, and an asymmetric buffer can be realized using bilateral
distinction and endpoint arc center translation. In this paper, only the most typical
bilateral and symmetric buffer was discussed. The buffer creation algorithm based
on area merging for the three basic types of geometries (point, polyline and
polygon) is described as below:
(1) - For point object, when the radius (r) of a buffer is known, the buffer creation
and construction methods for a point are the simplest because users can only draw
an end-to-end ring with P0 as the center and r as the radius. A point (P(x,y)) on the
ring and the center (P0(xP,yP)) satisfy the following equation:

() ()2 2 2
P Px x y y r− + − = (1)

A point on the ring can be computed from Eq. (1), and the points are connected one-
by-one to form a closed ring, namely a buffer zone with P0 as the center and r as the
radius (Figure 1-(a)). For a multi-point geometry, the results may be overlapped if
the buffer of each point is created as per the rule for point geometry (Figure 1-(b)).
Area merging can then be called to dissolve the overlapped areas, and the final
result is shown in Figure 1-(c).

Figure 1 - Buffer of point geometry.

Optimization approaches to MPI and area merging-based...

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 4 2

(2) - For polyline object, polyline geometry can be regarded as a group of end-to-
end segments, and each segment is composed of a starting point and an ending
point. Figure 2-(a) shows that the buffer for segment L is created in 3 steps as
follows: 1) find L's two parallel lines (Lleft and Lright) at two sides and with a distance
of r; 2) draw two semi-arcs (Cs and Ce) with the starting point (Ps) and the end point
(Pe) as the center, respectively; and 3) connect Lleft, Cs, Lright, and Ce successively to
construct a polygon (Figure 2-(c)), namely a buffer zone of segment L with r as the
radius. If a polyline consisted of several segments (Figure 2-(b)), area merging will
be used to dissolve all segment buffer zones to form a final buffer polygon result for
it (Figure 2-(d)). A linear geometry composed of several independent polylines is
called a multi-polyline, and its buffer zone can be created by dissolving the buffer
zones of all its polylines.

Figure 2 – Buffer of polyline geometry.

(3) - For polygon object, a polygon denotes a plane-shaped area enclosed by a group
of closed polylines. As shown in Figure 3-(a), an enclosed polyline is also called a
ring, which can be divided into an interior ring and an exterior ring according to the
strike of the points constituting the ring. A simple polygon only contains one
exterior ring and several interior rings, and a polygon that contains several exterior
rings is called a multi-polygon. Buffer creation based on area merging for a simple
polygon includes the following steps: decomposition, ring construction, dissolving,
and deletion. First, the rings of a polygon are decomposed into a group of polylines,
and independent buffer polygons are then constructed for each polyline as per the
method in Figure 2. The polyline buffers are then dissolved, and the rings are
selected and deleted. For instance, in creation of a bilateral buffer, the rules are as
follows: the exterior ring created from the input polygon’s exterior ring is reserved;
the interior ring created from the polygon’s interior ring is reserved; and other rings
are deleted. Figure 3-(b) shows that the input polygon was composed of an exterior
ring (R0) and an interior ring (R1), and all of the rings were split up at the starting
point/end point. A buffer was created for each ring by using the buffer creation

Junfu, F. et al.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 4 3

algorithm for polyline resulting in 4 rings (R0’ , R0’’ , R1’ and R1’’) (Figure 3-(c)).
Based on the conservation rule for result buffer polygon rings, the R0’ exterior ring
created from the R0 exterior ring as well as the R1’’ interior ring created from the R1
interior ring were conserved, while R0’’ and R1’ were deleted. Finally, a result
polygon was created as indicted by the shadow-filled region enclosed by the real
line (Figure 3-(d)). The buffer of a multi-polygon can be created by dissolving the
buffers of simple polygons. In creation of the interior ring's inside buffer, the
buffer's radius exceeded the buffer range that the interior ring could hold if the
buffer polygon's interior ring disappeared after dissolving, so all rings created from
this interior ring should be discarded. The buffer created from an interior ring will
never surpass the buffer created from the exterior ring that contains it.

Figure 3 – Buffer zone construction of polygon geometry.

2.2 Divide-and-Conquer Method for Area Merging

In this study, the widely validated Vatti's algorithm was used for area merging,
and the time costs relation in area merging were statistically analyzed with different
data volumes. Table 1 shows that the time cost of the UNION operation of Vatti's
algorithm increased with the increasing number of polygons, but the performance
was unsatisfactory. Thus, we statistically analyzed how the time cost in a single
UNION operation changed with the increasing number of vertices, and regression
analysis was also used.

Table 1 – Time costs of polygon merging implemented by Vatti’s algorithm.
polygon number merging time/s

400 3.283
2 000 135.198
4 000 1 650.110
6 000 4 727.272
8 000 7 034.313
10 000 13 595.301

Optimization approaches to MPI and area merging-based...

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 4 4

With the increasing number of vertices, Figure 4 shows that the Vatti's
algorithm showed a rapid growth similar to the power function. In dissolving a
polygon set, we used a one-by-one ‘snowball’ strategy. With the progression of
dissolving, the number of vertices contained in the polygons in each operation
would inevitably be increased in most cases. In Figure 5, UAB is the dissolved result
from polygons A and B, and the number of vertices in UAB was obviously larger than
that of B or A. When Vatti's algorithm is used, UAB will consume more time than A
and B, which is called the vertex accumulation effect in area merging and is the
major cause of the low efficiency shown in Table 1.

Figure 4 – Fitting curve of time costs of UNION operator of Vatti’s algorithm.

Figure 5 – Vertex accumulation effect existing in the polygon merge process.

A tree-like merging strategy for polygon sets was designed on the basis of the
divide-and-conquer method (Figure 6), which well avoided the vertex accumulation
effect and effectively shortened time costs in area merging. In the divide-and-
conquer method, the original problem was divided into smaller scale sub-problems
(n) in a similar structure as the original problem. The sub-problems were then

Junfu, F. et al.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 4 5

recursively solved, and their results were conquered to obtain the solution to the
original problem (Thomas et al., 2011). This method is the foundation for many
efficient algorithms, such as sorting algorithms (fast sorting and merge sorting), and
the Fast Fourier Transform (FFT). The divide-and-conquer method has long been
applied to solving geo-spatial problems, such as the divide-and-conquer algorithm
for finding the closest point pairs proposed by Bentley and Shamos (1976) and the
improved algorithm in calculation of the Delaunay triangular network based on the
plane point set in the divide-and-conquer method (Dwyer, 1987). Under recursive
mode, each recurring operation contains three steps as follows: divide, solve, and
dissolve. The final result of area merging is not related to the internal dissolving
order of the polygon set. Though the divide-and-conquer method is used mainly in
recursive problems, it can also be used to dissolve a polygon set with a fixed
number of polygons because the process and target of dissolving are explicit.

Figure 6 – Process of tree-like merging of polygons.

In tree-like merging, the polygons are first paired and dissolved, and the results
of two adjacent pairs are then dissolved until only one polygon remains. Compared
to ‘snowball’ merging, tree-like merging does not increase (or reduce) the number
of calls of the UNION operator, but it accelerates computation by successfully
avoiding the vertex cumulative effect. The data in Table 1 were also used for tree-
like merging, and the statistics of time costs are listed in Table 2.

Table 2 – Time costs of tree-like merging of polygons.

polygon number dissolving time/s
400 0.140

2 000 0.796
4 000 2.824
6 000 6.053
8 000 10.234
10 000 17.222

Optimization approaches to MPI and area merging-based...

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 4 6

Tree-like merging showed obvious efficiency improvement because it
effectively reduced the average number of vertices contained in the polygons in
each function call of the UNION operator and, thus, successfully avoided the vertex
accumulation effect hidden in the process of polygon set dissolving. The tree-like
merging method was not only used in the creation of the single feature buffer
polygon but also in the dissolving of intersected multi-feature buffer polygons.

2.3 Performance Analysis of Serial Algorithm
 For the three major types of geometries of point, polyline, and polygon, the
proposed algorithm was most representative in processing polyline geometries. To
analyze the performances of the serial buffer algorithm with different data volumes,
relevant experiments were conducted using real road network polyline datasets, and
comparisons to the serial Buffer tool of ArcGISTM 9.3/10.1 SP1 software on the
same hardware platform were made.

Table 3 shows that when the intersected multi-feature buffer result polygons
were not dissolved, the proposed algorithm showed a lower efficiency (0.7-1 lower)
than the ArcGISTM buffer tool. However, if the buffer result polygons were
dissolved, ArcGISTM 10.1 SP1 failed even after more than 10 h. Although some
results were achieved by ArcGISTM 9.3, the time cost was considerably greater than
the proposed algorithm, and the proposed algorithm was more efficient with the
increase of data volume. Therefore, the algorithm proposed in this study was
feasible and could effectively overcome the severe performance bottleneck faced by
GIS software during buffer analysis and result dissolving.

Table 3 – Time costs of serial polygon merging based buffer algorithm. a

a Experiments were carried out on Windows 7 Ultimate (x64).
b ArcGISTM 10.1 with SP1 and background geo-processing switched off.
c Task did not get results within 10 hours and was canceled.

 Some abnormalities were observed during the experiments. In ArcGISTM 10.1,
when the Parallel Processing Factors under ArcToolBox were set as 0, 1 or below
10% and when the created buffer result polygons were not dissolved, the CPU
utilization rate of the Buffer tool was still maintained at 25-27%, but this rate was
only 12% in the proposed algorithm. The computer's CPU was an Intel i7-2600,
which is a quad-core CPU with hyper-threading function. In general, multiple

polyline
number

vertex
number

time/s (merge none) time/s (merge intersected)

our alg.
ArcGISTM
9.3/10.1b

our alg.
ArcGISTM

9.3/10.1
1 950 24 012 1.030 <1/<1 1.677 10.50/42.00
13 324 147 824 6.911 4.00/3.67 13.291 189.00/2 053.00
33 205 318 590 14.547 9.33/7.60 32.098 787.00/—c
45 850 470 825 21.544 13.67/10.50 57.885 1 243.50/—
108 414 1 067 682 52.097 31.33/25.00 128.545 3 676.50/—

Junfu, F. et al.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 4 7

physical or virtual cores were engaged in computation when the CPU utilization rate
was greater than 12%. Thus, ArcGISTM might conduct hyper-threading optimization
or multi-core parallelization and optimization for its Buffer tool codes, which also
explained why the proposed algorithm showed approximately doubled time costs
compared to the ArcGISTM buffer tool.

3. PARALLEL BUFFER ALGORITHM BASED ON MPI

The logical flow of the parallel buffer algorithm based on MPI will be
described and the performance of the parallel algorithm will be studied by
conducting of some parallel experiments in detail in this section. Experiments
results reveal that the task load balancing and MPI inter-process results merging
methods are two main bottlenecks of the parallel buffer algorithm.

3.1 Logical Flow of Parallel Buffer Algorithm
 In practices, buffer analysis tools also face the challenge of large data
volumes. Therefore, it is necessary to use high performance computation technology
to design a parallel buffer algorithm and to study its optimization algorithms to
overcome the problem of massive data in buffer analysis. The logic flow of parallel
buffer analysis algorithms includes the following 4 stages: task division,
parallelization to create buffer polygons, buffer area merging, and output of result
data. These tasks correspond to decompose, compute, dissolve, and output in Figure
7.

Figure 7 – Logic flow of parallel buffer algorithm.

Data decomposition for parallelization based on a simple feature model uses
feature identifier (FID) as the foundation, and it allocates the vector features into
each computation node and concurrently creates a series of buffer polygon sets. The
outputs from all processes are then delivered to the main process for dissolving. The

Optimization approaches to MPI and area merging-based...

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 4 8

first three steps are the core of parallel buffer analysis algorithms, and the
optimization of the proposed algorithm was discussed considering these three
aspects. Data output may involve several detail conditions of application
environments (e.g., vector data model, parallel file system, and parallel database).
These detail conditions are largely different from each other and are not the core
procedures in the parallel buffer analysis algorithm. These conditions consume little
time compared with other steps; therefore, they were not discussed in this paper.

3.2 Performance Analysis of Parallel Buffer Algorithm

Based on the above logic flow, a parallel buffer analysis algorithm was
implemented on the basis of the MPI program model and data parallelism, and it
was tested using data of several groups of real linear road networks. Table 4 shows
that the proposed algorithm could improve efficiency to a certain level. When buffer
result polygons were not dissolved, the 4-process parallel computation could
achieve efficiency as high as that of ArcGISTM. However, MPI and data parallelism
did not bring buffer analysis algorithms with an ideal speedup ratio. With increased
processes, parallel computation efficiency was reduced, indicating that parallel
algorithms based on plain parallelism could be optimized further, which suggested
that its bottleneck should be analyzed carefully and eliminated

Table 4 – Time costs of area merging-based parallel buffer algorithma.

3.3 Bottlenecks of Parallel Buffer Algorithm
 In achieving high performance using parallel computation, one inevitable
problem is how to balance the loads among parallel tasks because all computation
tasks can be completed within a similar time only under load balance, which is
extremely important for MPI-based parallel buffer algorithms under cluster parallel
environments as the cluster system's overall utilization rate can be improved only
when the waiting time before the dissolve is reduced for MPI processes that finished
early. We performed two parallel buffer analysis experiments for parallel task
distribution using the FID-based data decomposition strategy, and we statistically

Junfu, F. et al.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 4 9

analyzed the time costs for the two procedures of buffer zone generation and
dissolving with the largest velocity difference.
 Table 5 shows that the numbers of features were evenly distributed among
MPI processes and that certain parallel acceleration was achieved, but the numbers
of vertices contained in the vector features were different among processes.

Table 5 – Differences of time costs between MPI processes (data partition by FIDs).

process
/feature
number

speed

time costs of single
process/s

data volume of single
process

buffering
tree-like
merging

feature
number

vertex
number

4/134 145
fastest 9.284 9.073 33 536 256 908
slowest 20.150 57.449 33 537 492 465

8/269 450
fastest 21.491 7.833 33 681 313 627
slowest 37.772 91.226 33 683 547 461

The area merging based on Vatti's algorithm was sensitive to the number of

vertices, and the buffer algorithm based on this operation was inevitably affected,
which would cause large computation time differences among processes. The
slowest process had a time cost that was 2.2 times that of the fastest process and a
dissolving time that was 11.6 times that of the fastest one. Unreasonable data
decomposition would result in a potential performance bottleneck for MPI
algorithms; therefore, the premise for MPI inter-process load balance was to
homogeneously decompose the parallel tasks under data parallelism mode, which is
also an important direction for the optimization of parallel algorithms.

Based on the principle to reduce the mutual waiting time among MPI
processes, there is also space for optimization and acceleration in result set merging
after all processes are completed, which usually requires the redesign of a strategy
to merge the MPI inter-process result sets. Table 5 shows the difference of
computation time costs among different processes, especially when load balance
cannot be achieved. As a result, the first finished process had to wait for the other
unfinished processes. If the task of inter-process result merging is assigned to a
single process (e.g., the main process in Figure 7), the single process can continue
the task only after all processes are finished, which obviously reduces the parallel
computation efficiency and thus becomes a performance bottleneck. In response,
considering that the principle of MPI inter-process result merging is similar to that
of tree-like area merging, the final target result is not associated with the order of
merging between processes, and its result and process are all explicit. Thus, the final
target result can also be optimized using the divide-and-conquer method. Therefore,
at the process level, a tree-like merger strategy can be designed for MPI inter-
process result sets to reduce the merging waiting time for inter-process result sets
and to optimize and accelerate the parallel buffer algorithm.

Optimization approaches to MPI and area merging-based...

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 5 0

4. APPROACHES TO OPTIMIZING THE PARALLEL BUFFER
ALGORITHM
To overcome the bottlenecks introduced in section 3, a vertex amount-based

parallel task partition strategy and a tree-like inter-process results merging method
are proposed and described in this section.

4.1 Parallel Task Partition
 The most straightforward method to process vector spatial data based on a
simple feature model is to realize a parallel task partition through dataset division by
the number of features. The principle of this method is easy. Suppose that the input
data have F features and that a parallel environment contains n MPI processes, the
number (m) of features that are distributed to each process are as follows when
based on data decomposition:

/m F n=    Or /m F n=    (2)

 This method can obtain uniform results when the dataset has uniform features,
but this situation rarely occurs. Furthermore, the low level algorithm is sensitive to
the volume of vertices holding the features, not to the number of features. In most
cases, this method cannot obtain load balance; therefore, new data decomposition
methods should be developed.
 In response to this defect, we proposed a parallel task data decomposition
method based on vertex number statistics because the UNION operator for parallel
vector buffer results is sensitive to the number of vertices in polygons. For data
decomposition, this method depends on the number of vertices contained in
geometries. Suppose that a group of input data contains N vertices and a parallel
environment contains n MPI processes, then each process is expected to be assigned
with a group of vector features with P vertices as follows:

/P N n=    (3)

 The number of features distributed into a process is no longer constant.
However, the geometries cannot be split, and the total number of vertices Pi
(i=1,2,3,…,n) should be values close to P. The data decomposition can be finished
by reviewing the numbers of vertices for all vector feature geometries. This method
is more time-consuming than the task partition method based on the FID of features,
but the experiments revealed that the higher time cost for counting the amount of
vertices is acceptable considering the performance improvement. The number of
MPI processes was consistently 4. When the other experimental characteristics were
held constant, each of the 7 groups of road network data with different data volumes

Junfu, F. et al.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 5 1

was divided based on the number of features and on the number of vertices. The
contradistinction experimental results are listed in Table 6.
 In Table 6, TFIDs is the total time costs of parallel computation based on the
number of features, and Tpoints is the total time costs of parallel computation based
on the number of vertices. Moreover, TDP is the time cost in data division based on
the number of vertices, which is already contained in Tpoints.

Table 6 – Improvements by the method of point number-based data partition.

feature/point number
time costs (4 MPI processes)T/s

TFIDs Tpoints TDP
13 324/147 824 7.517 6.558 0.042
18 154/215 048 14.043 11.618 0.101
33 205/318 590 18.267 15.594 0.103
45 850/470 825 52.023 46.478 0.142

108 414/1 067 682 110.365 101.155 0.396
134 145/1 482 071 224.633 204.446 0.429
269 450/3 231 870 430.176 419.370 1.379

The results indicate that the partition method based on the number of vertices

achieved a 10% higher performance at the expense of a 0.43% time consumption
increase. Therefore, this method can improve computation efficiency for the parallel
vector buffer algorithm.

4.2 Tree-Like Merging Between MPI Processes
 When several parallel MPI processes are finished, the polygon result sets
derived from all processes should also be determined for intersection and be
dissolved. A simple method is to distribute all results to a single process (e.g., the
main process shown in Figure 7) for area merging and output. The operation flow of
this method is shown in Figure 8.

Figure 8 – Single-process merging flow of buffer results of 4 MPI processes.

Optimization approaches to MPI and area merging-based...

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 5 2

One evident defect of this method is that the single process responsible for
results merging has to wait until all processes are finished to continue and finish the
final merge process. Regarding the significant effect of tree-like merging, we
proposed to design a new strategy for merging inter-process result sets, which
accelerates computation by decreasing the inter-process waiting time. This process
was called the MPI inter-process tree-like merging optimization strategy, and its
work flow is shown in Figure 9.

Figure 9 - Tree-like merging flow of buffer results of 4 MPI processes.

 With the 4 MPI processes in Figure 9 as an example, the result will be
preserved and processed by the 1st process when the 1st and 2nd processes are
merged. When the 3rd and 4th processes are merged, the result will be preserved
and processed by the 3rd process, followed by the results of the 1st and 3rd
processes being merged again. In this way, the difficulty of developing the MPI
program can be reduced by providing a tree-like merging pathway for predesigned
MPI parallel processes. The parallel buffer algorithm with the above merging flow
was implemented to compare the parallel buffer algorithm with a single process
merging strategy. Seven groups of road network data with different data volumes
were used, and the other characteristics were kept constant.

Table 7 shows that the optimization of tree-like merging in MPI processes can
improve efficiency by 46.6% for parallel buffer analysis algorithms on average.
With regard to the 4 MPI processes, the parallel speedup ratio was increased from
1.411 to 2.708, which indicated a significant effect. Therefore, this result suggested
that the tree-like merging approach in the MPI inter-process polygon set shows a
significant optimizing effect for parallel buffer analysis algorithms and shows
certain practical values. The logic flow of the parallel buffer analysis algorithm
based on this optimizing strategy is presented in Figure 10.

Junfu, F. et al.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 5 3

Table 7 – Time costs of parallel buffer algorithm optimized by tree-like merge
strategy between MPI processes.

The optimization of the MPI inter-process tree-like merging can still be

improved. For instance, the merging order is not preset, but a ‘first finish first
merge’ mode is used. An evolution coefficient can be defined for each process, and
the two earliest finishing processes are merged first. After each merging process, the
evolution coefficient of one process is added by 1, and the other process is ended. In
each merging step, only the processes with the same evolution coefficient are
merged, unless the number of processes marked by a certain evolution coefficient is
only 1. After all processes are merged, the results are finally merged and output by
the process with the highest evolution coefficient. However, this method would
greatly increase the complexity of inter-process communication and programming.
Thus, this method would significantly increase the difficulty for developing MPI
parallel programs; therefore, appropriate selection and rejection are necessary in
practical applications, which should be further studied.

Figure 10 - Logic flow of optimized parallel buffer algorithm.

Optimization approaches to MPI and area merging-based...

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 5 4

5. CONCLUSIONS AND FUTURE ISSUES
In this paper, a vector buffer generation algorithm based on the traditional

segment buffer zone construction algorithm and the area merging approach was
proposed. The algorithm simplified the process of buffer zone construction by
introducing a mature polygon clipping algorithm to dissolve the buffer results of a
single feature or several features, and the processing of complex spatial
relationships during feature buffer creation was avoided. Moreover, the code
complexity and coupling degree were reduced. For optimization of the buffer result
dissolving, a divide-and-conquer method was used to overcome the bottleneck of
the vertex accumulation effect in serial buffer algorithms. The efficiency of this
method was lower than that of mature commercial GIS software when the buffer
results of different features were not dissolved, but numerous experiments revealed
that this method could finish buffer construction for a massive dataset with arbitrary
geometries in a reasonable amount of time. In creating intersected buffer zones that
should be dissolved, the proposed algorithm was far more efficient in serial
computation than the ArcGISTM Buffer tool. Therefore, this buffer creation
algorithm based on area merging has certain practical values.

Parallel computation is a feasible way to overcome the problem of increasingly
larger spatial data volumes. Though the development of parallel algorithms is
important, their optimization is also important for accelerating computation and
scaling up the problems to be solved. In this paper, parallel buffer construction and a
dissolving algorithm were implemented on the basis of a serial buffer algorithm and
the MPI parallel programming model. We elaborated the two possible performance
bottlenecks in the parallel buffer algorithm that caused low efficiency, and we
proposed specific solutions, including the parallel task partition approach based on
the number of vertices for parallel task load equilibrium and the tree-like merging
approach to MPI inter-process result polygon sets. In the case of 4 MPI processes,
the results showed that the new parallel task partition strategy improved
performance by 10% at a 0.43% time cost increase. Moreover, the inter-process
tree-like merging method improved efficiency by 46.6%, and the parallel speedup
ratio was increased from 1.4 to 2.7, which indicated a significant effect. Therefore,
we suggest that the two optimization approaches mentioned above could effectively
improve performance for buffer construction and are feasible for the parallel
optimization of buffer analytical algorithms. The two approaches provide certain
reference values for the parallelization and optimization of other vector analysis
algorithms in GIS.

In addition, the more reasonable ‘first finish first merge’ mode can be used in
merging MPI inter-process result sets. Considering the hypothesis that buffer result
polygons of adjacent vector features are more likely intersected, the relationships of
adjacent vector features should be considered in parallel task division. Other rules
(e.g., Hilbert spatial division curves coordinated with the number of vertices of
features) can be used to obtain a better optimization approach. The above problems
were not discussed in this paper and will be studied further.

Junfu, F. et al.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 5 5

ACKNOWLEDGEMENTS
 This study was supported by National Key Technology R&D Program (No.
2011BAH06B03 and No. 2011BAH24B10, and No. 2012BAH27B04) and Research
Fund for the Doctoral Program of Higher Education of China (No.
20113718110001). Additional supports were provided by Chinese Academy of
Sciences (No. KZZD-EW-07). The authors thank Dr. Jorge Pimentel Cintra for his
help in the Brazilian Portuguese translation.

BIBLIOGRAPHICAL REFERENCES
BARNEY B. Introduction to Parallel Computing. 2012. Accessed 10/01/2013.

https://computing.llnl.gov/tutorials/parallel_comp/.
BENTLEY J. L., SHAMOS M. I. Divide-and-conquer in multidimensional space.

In: Proceedings of the eighth annual ACM symposium on Theory of computing
(Proceeding STOC '76), Proceedings, New York: ACM Press, p. 220-230,
1976.

BHATIA S., VIRA V., CHOKSI D. An algorithm for generating geometric buffers
for vector feature layers, Geo-spatial Information Science, 16(2), p. 130-138,
2013.

CLARKE K. C. Geocomputation’s Future at the Extremes: High Performance
Computing and Nanoclients. Parallel Computing, 29(10), p. 1281-1295, 2003.

CORMEN T., LEISERSON C., RIVEST R. Section 2: Sorting and Order Statistics,
Introduction to Algorithms (Second ed.), MIT Press, Cambridge, MA USA, p.
123-196, 2001.

DARLING G.J., SLOAN T.M., MULHOLLAND C. The input, preparation and
distribution of data for parallel GIS operations. In: Proceedings of Euro-Par
2000, Lecture Notes in Computer Science, 1900, p. 500–505, 2000.

DWYER R. A. A Faster Divide-and-Conquer Algorithm for Constructing Delaunay
Triangulations. Algorithmica, 2(2), p. 137–151, 1987.

ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE, INC. Buffer - GIS
Dictionary. 2012. Accessed 01/03/2013. http://support.esri.com/en/
knowledgebase/GISDictionary/term/buffer.

GRAMA A, GUPTA A, KARYPIS G,. Chapter 3: Principles of Parallel Algorithm
Design, Introduction to Parallel Computing (Second Edition). Pearson
Education Limited, p. 86-143, 2003.

GREINER G., HORMANN K. Efficient clipping of arbitrary polygons. ACM
Transactions on Graphics, 17(2), p. 71-83, 1998.

HAWICK K.A., CODDINGTON P.D., JAMES H.A. Distributed frameworks and
parallel algorithms for processing large-scale geographic data. Parallel
Computing, 29(10), p. 1297-1333, 2003.

LI K., DU L. An Algorithm of Buffer Zones Based on Algorithm of Dilation.
Journal of Institute of Surveying and Mapping, 22(3), p. 229-231, 2005. (in
Chinese)

Optimization approaches to MPI and area merging-based...

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 2, p.237-256, abr-jun, 2014.

2 5 6

LIANG Y. BARSKY B. A. An analysis and algorithm for polygon clipping.
Communications of the ACM, 26(11), p. 868-877, 1983.

LIN C., SNYDER L. Principles of Parallel Programming. Addison-Wesley
Publishing Company, Reading, MA, USA, 352pp, 2009.

MCKENNEY M., LUNA G D., HILL S. Geospatial overlay computation on the
GPU. In: Proceedings of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, Proceedings, ACM. NY,
USA, p. 473-476, 2011.

MINETER M. J., DOWERS S. Parallel processing for geographical applications: A
layered approach. Journal of Geographical Systems, 1(1), p. 61-74, 1999.

MINETER M. J., DOWERS S. Towards a HPC Framework for Integrated
Processing of Geographical Data: Encapsulating the Complexity of Parallel
Algorithms. Transactions in GIS, 4(3), p. 245-262, 2000.

MINETER M. J. A software framework to create vector-topology in parallel GIS
operations. International Journal of Geographical Information Science, 17(3),
p. 203-222, 2003.

MURTA A. A Generic Polygon Clipping Library, 1998. Accessed 01/11/2012.
http://www.cs.man.ac.uk/~toby/alan/software/gpc.html.

OPENSHAW S., ABRAHART R J. GeoComputation. Tylor & Francis Ltd., New
York, USA, 432pp, 2000.

SLOAN T. M., MINETER M.J., DOWERS S., Partitioning of Vector-Topological
Data for Parallel GIS Operations: Assessment and Performance Analysis. In:
Proceedings of Euro-Par’99 Parallel Processing, Lecture Notes in Computer
Science, Proceedings, 1685, p. 691-694, 1999.

SUTHERLAND I. E., HODGMAN G. W. Reentrant Polygon Clipping.
Communications of the ACM, 17(1), p. 32-42, 1974.

TURTON I., OPENSHAW S. High-performance computing and geography:
developments, issues, and case studies. Environment and Planning: A. 30, p.
1839-1856, 1998.

VATTI B. R. A Generic Solution to Polygon Clipping. Communications of the
ACM, 35(7), p. 56-63, 1992.

WEILER K., ATHERTON P. Hidden surface removal using polygon area sorting.
In: Proceedings of the SIGGRAPH’77, Proceedings, New York: ACM Press, p.
214~222, 1977.

WU H. H. Problem of Buffer Zone Construction in GIS. Journal of Wuhan
Technical University of Surveying and Mapping (WTUSM), 22(4), p. 358-366,
1997. (in Chinese)

ZALIK, B., ZADRAVEC, M., CLAPWORTHY, G. Construction of a Non-
Symmetric Geometric Buffer From a Set of Line Segments. Computers &
Geosciences, 29(1), p. 53–63, 2003.

(Recebido em setembro de 2013. Aceito em janeiro de 2014).

