BCG - Boletim de Ciéncias Geodésicas - On-Line i@rsISSN 1982-2170
http://dx.doi.or g/10.1590/S1982-21702014000200015

OPTIMIZATION APPROACHESTO MPI AND AREA
MERGING-BASED PARALLEL BUFFER ALGORITHM

Estratégias de otimizagdo de algoritmos de armazmmdo paralelo baseados em
fuséo de area e MPI

JUNFU FAN" 23
MIN J14®
GUOMIN GU®
YONG SUN

IState Key Laboratory of Resources and Environménfaimation System,
Institute of Geographic and Nature Resources Relsg@hinese Academy of
Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijll@§049, China
3School of Architectural Engineering, Shandong Ursitg of Technology, Zibo
255049, China
“*College of geomatics, Shandong University of Saéemod Technology, Qingdao
266510, China
*Computer Science and Technology College, Zhejianiyéssity of Technology,
Hangzhou 310023, China
fanjf@lreis.ac.cn ; jamesjimin@126.com

ABSTRACT
On buffer zone construction, the rasterization-dadédation method inevitably
introduces errors, and the double-sided paralfed lnethod involves a series of
complex operations. In this paper, we proposedrallphbuffer algorithm based on
area merging and MPI (Message Passing Interfaceypgoove the performances of
buffer analyses on processing large datasets. Expetal results reveal that there
are three major performance bottlenecks which fggmtly impact the serial and
parallel buffer construction efficiencies, includinhe area merging strategy, the
task load balance method and the MPI inter-processilts merging strategy.
Corresponding optimization approaches involvingiike area merging strategy,

Wcorresponding author

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 202np.237-256, abr-jun, 2014.

238 Optimization approaches to MPI and area mergingdas

the vertex number oriented parallel task partitoethod and the inter-process
results merging strategy were suggested to overtbese bottlenecks. Experiments
were carried out to examine the performance effiyeof the optimized parallel
algorithm. The estimation results suggested thatojstimization approaches could
provide high performance and processing abilitylfoffer construction in a cluster
parallel environment. Our method could provideghss into the parallelization of
spatial analysis algorithm.

Keywords: Area Merging; Parallel Buffer; Task Partition; tex Accumulation
Effect; Tree-like Merging; MPI.

RESUMO
Na construcdo de uma area de influéncia, o métadlihtacdo baseada em
rasterizacdo inevitavelmente introduz erros, e d@od® de dupla linha paralela
envolve uma série de operacdes complexas. Ne#e,apropbde-se um algoritmo
de armazenamento paralelo baseado na fusdo de eargd®l (Interface de
transferéncia de Mensagem) para melhorar o desdmpate andlise de
armazenamento, no processamento de grandes can@tdados. Os resultados
experimentais revelam que ha trés grandes gardelaesempenho que impactam
significativamente a eficiéncia de construcdo aeaaenamentos seriais e paralelos,
incluindo a estratégia de fuséo de area, a tamfstddo do balanceamento de carga
e os MPI resultantes da estratégia de fuséo. Rgrarax esses gargalos, sdo
sugeridas abordagens de correspondéncia de otéizag/olvendo a estratégia de
fusdo em arvore, um método orientado de particawidwero de vértices em tarefas
paralelas e uma estratégia de fusdo dos intergsose Os experimentos foram
realizados para examinar a eficiéncia do algorifpaoalelo de otimizacdo. Os
resultados estimados sugerem que as abordagetisndggao podem fornecer alto
desempenho e capacidade de processamento paratauc®n de armazenamento
em um ambiente paralelo agrupado. Esse método fpadecer sugestdes sobre a
paralelizacéo de algoritmos de analise espacial.
Palavras-chave: Fusdo de Area; Armazenamento Paralelo; TarefdPaiicao;
Efeito de acumulagéo de Vérices; Fusdo em Arvoret. M

1. INTRODUCTION

Rapidly expanded spatial datasets has brought cegeated pressure to
existing computational resources and the traditioamalysis algorithms in
geoscience. With the advancement in computer hasdvechnology and the
development of parallel programming models, highfqggenance computation has
become an important issue for analyzing, processing visualizing massive geo-
spatial data (TURTON and OPENSHAW, 1998 and 200QARKE, 2003;
HAWICK et al., 2003). High-performance computatioan be implemented via
many ways, such as multi-core parallelization, telusparallelization, graphic
processing unit (GPU) acceleration, and hybrid Ipdization (LIN and SNYDER,

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 202np.237-256, abr-jun, 2014.

Junfu, Fetal 239

2009; McKENNEY et al., 2011), which all depend twe fparadigm of parallelism
(BARNEY, 2012). In a cluster computing environmemhost of proposed
parallelized spatial analytical algorithms are lase the framework of the message
passing interface (MPI). The two major modes foe tiealization of parallel
computation are data decomposition and task partiiGRAMA et al., 2003),
which correspond to spatial data division and el parallel processing,
respectively. Data division strategies for parafiphtial analysis algorithms with
topological relations have been extensively diseds¢SLOAN et al., 1999;
MINETER and DOWERS, 1999; DARLING et al., 2000).rRostance, a parallel
task partition approach based on the partitionesfngetries has been designed and
implemented (MINETER and DOWERS, 2000), and an iofesoftware stratifying
at a low level has been proposed to encapsulatectimplexity and reuse the codes
of parallel algorithms (MINETER and DOWERS, 200@urthermore, Mineter
(2003) presented a parallel vector spatial analydatform called the TSO
(Topology-Stitching-Output) software framework. $kipproach were based on the
NTF data model, containing topological informatalfowing complex topology to
be created and checked in parallel task partitiosh Besult sewing. However, the
processing and maintenance of topological inforomagire time consuming for large
dataset.

In GIS (Geographical Information System), a bufferdefined as a zone
around a map feature measured in units of distandéme (ESRI, 2013). As an
important function in map information retrieval,raprehensive spatial analysis, and
processing in GIS, buffer analysis solves the mobbf proximity and represents an
influence extent or service extent (WU, 1997). Bufénalysis algorithm is widely
used in many geo-spatial fields, such as spati@ daery, hybrid overlay analysis
of vector and raster data, thematic mapping, arehso

Most previous studies of buffer algorithms focused the double-sided
parallel line generation algorithm with a self-irstected polygon processing model
and the dilation method by means of rasterizatioth ector boundary extraction.
Zalik et al. (2003) elaborated an algorithm for rasyetric segment buffer
generation based on the idea of sweep line thrahghfollowing steps: creating
basic geometric outlines, identifying intersectipoints between them, construct
rings, and determining spatial relationships ambnige rings. Based on Zalik's
algorithm, an algorithm for buffer creation and ulesarea merging has been
implemented using the sweep line approach and vedgebra (BHATIA et al.,
2013). Despite their precision, the aforementiomdgorithms require complex
computation and spatial relation identificationdaheir realization is complicated.
In response, Li and Du (2005) proposed a buffeataa algorithm based on a
dilation algorithm. Essentially, the idea of ragtation is used to simplify vector
buffer creation, and the target buffer is creatgdeltracting the boundaries of
rasterized geometries, which are expanded accotdirggrtain window sizes and
rules. However, these algorithms based on the @idraof rasterized boundaries

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 802, p.237-256, abr-jun, 2014.

240 Optimization approaches to MPI and area mergingdas

result in many errors. In research and engineeapglications, buffer analysis
algorithms also face efficiency limitations causgdarge dataset.

Area merging can be achieved through polygon datigpalgorithms, which
have been intensively studied, and many algorithhae been proposed
(SUTHERLAND and HODGMAN, 1974; WEILER and ATHERTONL977;
LIANG and BARSKY, 1983). The currently recognizeffiaient algorithms that
can process arbitrary polygon clipping within aited amount of time include
Vatti's algorithm (VATTI, 1992) and Greiner-Hormasmlgorithm (GREINER and
HORMANN, 1998), which with similar performances. &hvatti’'s algorithm
supports clipping between polygons with any numbfeedges and in any shape
(e.g., self-intersection with islands and/or hal@&4)irta (1998) then modified Vatti's
algorithm to overcome the problem that horizont@djess could not be processed
properly. Based on Vatti's algorithm, we implemendeea merging and avoided its
performance bottleneck by using a divide-and-conguethod. Moreover, area
merging was introduced into the buffer creationréplace the complex ring
construction and spatial relationship processitsT the buffer creation algorithm
was simplified, and a parallel buffer analyticaj@iithm was implemented.

At present, there is little research on optimizatigpproaches to parallel buffer
algorithms under high-performance computation, #mel buffer analytical tools
provided by GIS software do not have satisfactoificiency. Therefore, it is
valuable to further explore and discuss paralleffdsualgorithms and their
optimization approaches under the background ofdaig. Firstly, a serial buffer
construction algorithm based on area merging wapgsed, and an optimization
approach based on area merging and the divide-amgier method was proposed.
The efficiencies of the optimized algorithm and @&t8™ Buffer tool were
compared with or without dissolving of the buffasult polygons. Secondly, a
parallel buffer analysis algorithm was developedtloa basis of data parallelism,
and its accelerating abilities under the above daaditions were analyzed. Thirdly,
the operation of the parallel buffer analysis ailfpon was analyzed to identify the
possible performance bottlenecks, and correspondpignization solutions were
then proposed.

In this paper, the experiments were performed urttler same hardware
conditions. The results showed that the buffer tavaaalgorithm based on area
merging and optimized using the divide-and-conquethod was feasible and had
some advantages over the general buffer algoritiitre optimized algorithm
effectively improved efficiencies in buffer creati@and result dissolving, and an
ideal speedup ratio was obtained. Therefore, thienging approaches are feasible
pathway to improve area merging-based serial arallpbbuffer algorithms.

2. AREA-MERGING BASED BUFFER ALGORITHM

The area-merging buffer construction algorithm wbk introduced in this
section, and then a divide-and-conquer method-basé@r zone merge strategy
will be described to improve the buffer algorithfdased on the above work,

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 202np.237-256, abr-jun, 2014.

Junfu, Fetal 241

comparison experiments between our serial buffgorithm and the ArcGI¥
buffer tool are conducted. The vertex accumulatiffect and the optimization
solution to it in the process of polygon mergingd| e discussed in this section too.

2.1 Construction of Buffering Zone

Buffer creation algorithms based on vector geometme generally
implemented through the following steps: creatiémparallel lines, construction of
rings, and processing of spatial relationships betwintersected rings. The latter
two steps involve numerous complex numerical comfputs (e.g., intersection
calculation, vector computation, identificationinéluded angles, and processing of
self-intersection). These two steps may hardlydsdized owing to many types of
special cases should be handled. Therefore, weopeapa new method to replace
these two steps for simplification of buffer creatiby introducing the mature
polygon clipping algorithm into vector buffer consttion. Vatti's algorithm
supports the polygon clipping operation and booleperations (e.g., union and
difference) in polygon overlay, so it is recognizsibeing able to process arbitrary
polygon overlay within a limited time. In this stydarea merging was realized on
the basis of Vatti's algorithm. With the area meggapproach, an unilateral buffer
can be easily realized, and an asymmetric buffer lma realized using bilateral
distinction and endpoint arc center translationthiis paper, only the most typical
bilateral and symmetric buffer was discussed. Tieb creation algorithm based
on area merging for the three basic types of geteseipoint, polyline and
polygon) is described as below:
(1) - For point object, when the radiu3 ¢f a buffer is known, the buffer creation
and construction methods for a point are the sistglecause users can only draw
an end-to-end ring witR, as the center and r as the radius. A pdifx,{/) on the
ring and the centePg(xp,yp)) satisfy the following equation:

(x—xp)2+(y— yP)2= r 1)
A point on the ring can be computed from Eq. (b the points are connected one-
by-one to form a closed ring, namely a buffer zaiith P, as the center and r as the
radius (Figure 1-(a)). For a multi-point geomettye results may be overlapped if
the buffer of each point is created as per the fiauigoint geometry (Figure 1-(b)).
Area merging can then be called to dissolve therlapped areas, and the final
result is shown in Figure 1-(c).

Figure 1 - Buffer of point geometry.

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 802, p.237-256, abr-jun, 2014.

242 Optimization approaches to MPI and area mergingdas

(2) - For polyline object, polyline geometry can fegjarded as a group of end-to-
end segments, and each segment is composed oftiagsf@oint and an ending
point. Figure 2-(a) shows that the buffer for segtre is created in 3 steps as
follows: 1) findL's two parallel linesl(e andLgn;) at two sides and with a distance
of r; 2) draw two semi-arcsC{ andC,) with the starting pointRs) and the end point
(Pe) as the center, respectively; and 3) conhget Cs, Liigh, andC, successively to
construct a polygon (Figure 2-(c)), namely a buffene of segmerit with r as the
radius. If a polyline consisted of several segméRigure 2-(b)), area merging will
be used to dissolve all segment buffer zones to fofinal buffer polygon result for
it (Figure 2-(d)). A linear geometry composed ofeal independent polylines is
called a multi-polyline, and its buffer zone candreated by dissolving the buffer
zones of all its polylines.

Figur(/eizw— Buffer of polyline geometry.

N C. b. AN
a. — \ e - S ~_
. \ 3 [Pra ~_
_ ? \\\ > "// ,// \\\\ L,— D ™ e

,,/// L

<P s <P 0 e
— - e

(3) - For polygon object, a polygon denotes a plstmeped area enclosed by a group
of closed polylines. As shown in Figure 3-(a), aclesed polyline is also called a
ring, which can be divided into an interior ringdaan exterior ring according to the
strike of the points constituting the ring. A simppolygon only contains one
exterior ring and several interior rings, and aygoh that contains several exterior
rings is called a multi-polygon. Buffer creationskd on area merging for a simple
polygon includes the following steps: decompositiong construction, dissolving,
and deletion. First, the rings of a polygon areotigmosed into a group of polylines,
and independent buffer polygons are then constluitte each polyline as per the
method in Figure 2. The polyline buffers are thassalved, and the rings are
selected and deleted. For instance, in creatiom lofateral buffer, the rules are as
follows: the exterior ring created from the inpatygon’s exterior ring is reserved;
the interior ring created from the polygon’s interiing is reserved; and other rings
are deleted. Figure 3-(b) shows that the input grmiywas composed of an exterior
ring (Ry) and an interior ringH;), and all of the rings were split up at the stayti
point/end point. A buffer was created for each rimgusing the buffer creation

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 202np.237-256, abr-jun, 2014.

Junfu, Fetal 243

algorithm for polyline resulting in 4 ringR{, Ry", Ry andR,”) (Figure 3-(c)).
Based on the conservation rule for result buffdygan rings, theRy exterior ring
created from th&, exterior ring as well as tHg,” interior ring created from thig,
interior ring were conserved, whilg,” and R,’ were deleted. Finally, a result
polygon was created as indicted by the shadowdfitiegion enclosed by the real
line (Figure 3-(d)). The buffer of a multi-polygaan be created by dissolving the
buffers of simple polygons. In creation of the e ring's inside buffer, the
buffer's radius exceeded the buffer range thatiritexior ring could hold if the
buffer polygon's interior ring disappeared aftessdiving, so all rings created from
this interior ring should be discarded. The buffezated from an interior ring will
never surpass the buffer created from the exterigrthat contains it.

Figure 3 — Buffer zone construction of polygon getmn
a. b. e

Interior

YRing (R1)

2.2 Divide-and-Conquer M ethod for Area Merging

In this study, the widely validated Vatti's algbrit was used for area merging,
and the time costs relation in area merging weatistically analyzed with different
data volumes. Table 1 shows that the time cosh@fiiNION operation of Vatti's
algorithm increased with the increasing number a@f/gons, but the performance
was unsatisfactory. Thus, we statistically analyhetv the time cost in a single
UNION operation changed with the increasing numdfevertices, and regression
analysis was also used.

Table 1 — Time costs of polygon merging implemetttg®/atti’'s algorithm.

polygon number | merging time/s
400 3.283
2 000 135.198
4 000 1 650.110
6 000 4727.272
8 000 7 034.313
10 000 13 595.301

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 802, p.237-256, abr-jun, 2014.

244 Optimization approaches to MPI and area mergingdas

With the increasing number of vertices, Figure 4veh that the Vatti's
algorithm showed a rapid growth similar to the powvignction. In dissolving a
polygon set, we used a one-by-one ‘snowball’ sypatéVith the progression of
dissolving, the number of vertices contained in flwdygons in each operation
would inevitably be increased in most cases. lufed,Uxg is the dissolved result
from polygonsA andB, and the number of verticeslihg was obviously larger than
that of B or A. When Vatti's algorithm is usetdg will consume more time thasy
and B, which is called the vertex accumulation effectaiea merging and is the
major cause of the low efficiency shown in Table 1.

Figure 4 — Fitting curve of time costs of UNION ogter of Vatti's algorithm.

3504
e Union Time/s

300 4 Fitting Curve v

Union Time/s
S
=3
<3

5o y=0.0094+0.0175%x>""%°
R’=0.9991

"

T T T T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100110120130
Vertex Number(x10000)

Figure 5 — Vertex accumulation effect existinghe polygon merge process.

A tree-like merging strategy for polygon sets wasigned on the basis of the
divide-and-conquer method (Figure 6), which welbided the vertex accumulation
effect and effectively shortened time costs in ameerging. In the divide-and-
conquer method, the original problem was divided smaller scale sub-problems
(n) in a similar structure as the original problefihe sub-problems were then

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 202np.237-256, abr-jun, 2014.

Junfu, Fetal 245

recursively solved, and their results were congligoeobtain the solution to the

original problem (Thomas et al., 2011). This meth®dhe foundation for many

efficient algorithms, such as sorting algorithrmes{fsorting and merge sorting), and
the Fast Fourier Transform (FFT). The divide-andepger method has long been
applied to solving geo-spatial problems, such asdiride-and-conquer algorithm

for finding the closest point pairs proposed by tBgnand Shamos (1976) and the
improved algorithm in calculation of the Delaunawngular network based on the
plane point set in the divide-and-conquer methody&, 1987). Under recursive

mode, each recurring operation contains three sisp®llows: divide, solve, and

dissolve. The final result of area merging is nelated to the internal dissolving
order of the polygon set. Though the divide-andeg@m method is used mainly in
recursive problems, it can also be used to dissalyeolygon set with a fixed

number of polygons because the process and tardetsolving are explicit.

Figure 6 — Process of tree-like merging of polygons

rovenrs 2) P o] B
MERGE ’ ‘
-]
‘Ul&_?m&[n/i’] ‘ Uniaj+1)& &n
MERGE ‘ [

final result

In tree-like merging, the polygons are first paiegttl dissolved, and the results
of two adjacent pairs are then dissolved until aag polygon remains. Compared
to ‘snowball’ merging, tree-like merging does notrease (or reduce) the number
of calls of the UNION operator, but it accelerammmputation by successfully
avoiding the vertex cumulative effect. The dat& able 1 were also used for tree-
like merging, and the statistics of time costslasted in Table 2.

Table 2 — Time costs of tree-like merging of polygo

polygon number | dissolving time/s
400 0.140
2000 0.796
4 000 2.824
6 000 6.053
8 000 10.234
10 000 17.222

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 802, p.237-256, abr-jun, 2014.

246 Optimization approaches to MPI and area mergingdas

Tree-like merging showed obvious efficiency impnoment because it
effectively reduced the average number of vertioestained in the polygons in
each function call of the UNION operator and, thas;cessfully avoided the vertex
accumulation effect hidden in the process of patyget dissolving. The tree-like
merging method was not only used in the creatiorthef single feature buffer
polygon but also in the dissolving of intersectedtirfeature buffer polygons.

2.3 Performance Analysis of Serial Algorithm

For the three major types of geometries of pgielyline, and polygon, the
proposed algorithm was most representative in gRing polyline geometries. To
analyze the performances of the serial buffer d@lgor with different data volumes,
relevant experiments were conducted using real neadork polyline datasets, and
comparisons to the serial Buffer tool of ArcG1S9.3/10.1 SP1 software on the
same hardware platform were made.

Table 3 shows that when the intersected multi-feahuffer result polygons
were not dissolved, the proposed algorithm showieaver efficiency (0.7-1 lower)
than the ArcGIS" buffer tool. However, if the buffer result polygorwere
dissolved, ArcGI&" 10.1 SP1 failed even after more than 10 h. Althoagme
results were achieved by ArcGl69.3, the time cost was considerably greater than
the proposed algorithm, and the proposed algoritvtas more efficient with the
increase of data volume. Therefore, the algorithmoppsed in this study was
feasible and could effectively overcome the seyperormance bottleneck faced by
GIS software during buffer analysis and resultaligag.

Table 3 — Time costs of serial polygon merging Hdseffer algorithm?

. time/s (merge none) time/s (mer ge inter sected)
polyline vertex ArcGIS™ ArcGIS™
number number our alg. 93/10.1° our alg. 93/10.1

1 950 24 012 1.030 <1/<1 1.677 10.50/42.00
13 324 147 824 6.911 4.00/3.67 13.291 189.00/20063.
33 205 318590 14.547 9.33/7.60 32.098 787.60/—
45 850 470 825 21.544 13.67/10.50 57.88b 1243.50/—
108 414 1 067 682 52.097 31.33/25.00 128.545 HO7-6-

2Experiments were carried out on Windows 7 Ultim@ae?).
® ArcGIS™ 10.1 with SP1 and background geo-processing sedtcif.
¢ Task did not get results within 10 hours and vwarsceled.

Some abnormalities were observed during the expais. In ArcGIS" 10.1,

when the Parallel Processing Factors under ArcT@olBere set as 0, 1 or below
10% and when the created buffer result polygonsewet dissolved, the CPU
utilization rate of the Buffer tool was still maamhed at 25-27%, but this rate was
only 12% in the proposed algorithm. The comput&J was an Intel i7-2600,
which is a quad-core CPU with hyper-threading figrct In general, multiple

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 202np.237-256, abr-jun, 2014.

Junfu, Fetal 247

physical or virtual cores were engaged in compaatvhen the CPU utilization rate
was greater than 12%. Thus, ArcGYSnight conduct hyper-threading optimization
or multi-core parallelization and optimization fits Buffer tool codes, which also
explained why the proposed algorithm showed appratély doubled time costs
compared to the ArcGI¥ buffer tool.

3. PARALLEL BUFFER ALGORITHM BASED ON MPI

The logical flow of the parallel buffer algorithmased on MPI will be
described and the performance of the parallel dhgor will be studied by
conducting of some parallel experiments in detailthis section. Experiments
results reveal that the task load balancing and Mr-process results merging
methods are two main bottlenecks of the paralléfebalgorithm.

3.1 Logical Flow of Parallel Buffer Algorithm

In practices, buffer analysis tools also face tmllenge of large data
volumes. Therefore, it is necessary to use higfopaance computation technology
to design a parallel buffer algorithm and to stutdy optimization algorithms to
overcome the problem of massive data in bufferyaigl The logic flow of parallel
buffer analysis algorithms includes the following €tages: task division,
parallelization to create buffer polygons, buffeeaamerging, and output of result
data. These tasks correspond to decompose, contiiggelve, and output in Figure
7.

Figure 7 — Logic flow of parallel buffer algorithm.

data input
task
partition
by FIDs
v v v v v
process| |process| |process process
buffer zone 1 2 3 n
construction
\\\\\\ \\\ {) //’// ///
polygon T A
merging - . <
by main S merging
process ~
process 1
result buffer results
export v

Data decomposition for parallelization based onnapke feature model uses
feature identifier (FID) as the foundation, andilibcates the vector features into
each computation node and concurrently createsess® buffer polygon sets. The
outputs from all processes are then delivereddarthin process for dissolving. The

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 802, p.237-256, abr-jun, 2014.

248 Optimization approaches to MPI and area mergingdas

first three steps are the core of parallel buffealgsis algorithms, and the
optimization of the proposed algorithm was discdssensidering these three
aspects. Data output may involve several detail ditmms of application
environments (e.g., vector data model, parallel §iystem, and parallel database).
These detail conditions are largely different freach other and are not the core
procedures in the parallel buffer analysis alganithese conditions consume little
time compared with other steps; therefore, theyevmart discussed in this paper.

3.2 Performance Analysis of Parallel Buffer Algorithm

Based on the above logic flow, a parallel bufferlgsis algorithm was
implemented on the basis of the MPI program model data parallelism, and it
was tested using data of several groups of re@htinoad networks. Table 4 shows
that the proposed algorithm could improve efficieta certain level. When buffer
result polygons were not dissolved, the 4-proceamligl computation could
achieve efficiency as high as that of ArcGf{SHowever, MPI and data parallelism
did not bring buffer analysis algorithms with aead speedup ratio. With increased
processes, parallel computation efficiency was cedu indicating that parallel
algorithms based on plain parallelism could berogéd further, which suggested
that its bottleneck should be analyzed carefully eiiminated

Table 4 — Time costs of area merging-based patziliéér algorithnf.

time-with-different-processes/s¥ time-with-different-processes/s¥ .
palling: | vertex . .
. (dlssuh'e-uuueﬂ: » (dissolve-intersected)s
number: berz
1= 20 1o 4z 1= 24 3:- 4z 0
24:012¢ 1341z 1.2008z 1161z | 1288z 14216z 12232 1.091= 253 io
147824z 3930z 6.0702 | 3.03%z| 46672 11.191c| B8.046c 8280z 72172 io
318:3902 | 197232 | 12.064= | 11.211=2| 10.0922 26.802=| 21248z | 1888l=| 17.7360 =
470-823= | 26.797c| 17.671= | 163382 149762 36.901=| 32738z | 330622| 323500 =
108-4142| 1-067-6822| 68.1132 | 39.0482 | 34.747c| 333242 1269072| 103.7492| 108.7332| 108.827z12
1341432 14820712 B6.3182 | 499532 | 442082 43.0162| 243.1102| 214.1802| 2119972 224811000
268-4302| 3-231-8702| 192.4632| 106.2412| 93,7412 842202 404 808c| 368.687=| 418.4332| 44283020

*Exvenmentswere-camed-out-onFedora-13{Linux-2.6.38.6-26rcl fel3 =36 x6h T

3.3 Bottlenecks of Parallel Buffer Algorithm
In achieving high performance using parallel cotapan, one inevitable

problem is how to balance the loads among partkis because all computation
tasks can be completed within a similar time onhder load balance, which is
extremely important for MPI-based parallel bufféggagithms under cluster parallel
environments as the cluster system's overall atibn rate can be improved only
when the waiting time before the dissolve is reduioe MPI processes that finished
early. We performed two parallel buffer analysigpenments for parallel task
distribution using the FID-based data decomposittrategy, and we statistically

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 202np.237-256, abr-jun, 2014.

Junfu, Fetal 249

analyzed the time costs for the two procedures uifeb zone generation and
dissolving with the largest velocity difference.

Table 5 shows that the numbers of features weealgwistributed among
MPI processes and that certain parallel acceleratias achieved, but the numbers
of vertices contained in the vector features wéfferént among processes.

Table 5 — Differences of time costs between MPEpsses (data partition ByDs).

r ocess time costs of single data volume of single
P process/'s process
[feature speed -
. tree-like feature vertex
number buffering .
merging number number
fastest 9.284 9.073 33536 256 908
4/134 145 slowest 20.150 57.449 33 537 492 465
fastest 21.491 7.833 33681 313 627
8/269 450 slowest 37.772 91.226 33683 547 461

The area merging based on Vatti's algorithm wasitea to the number of
vertices, and the buffer algorithm based on thisrafion was inevitably affected,
which would cause large computation time differen@mong processes. The
slowest process had a time cost that was 2.2 tihadsof the fastest process and a
dissolving time that was 11.6 times that of thetdsals one. Unreasonable data
decomposition would result in a potential perforeanbottleneck for MPI
algorithms; therefore, the premise for MPI inteogess load balance was to
homogeneously decompose the parallel tasks undempdaallelism mode, which is
also an important direction for the optimizationpairallel algorithms.

Based on the principle to reduce the mutual waittmge among MPI
processes, there is also space for optimizatioraanéleration in result set merging
after all processes are completed, which usuatiyires the redesign of a strategy
to merge the MPI inter-process result sets. Tablshbws the difference of
computation time costs among different processsge@ally when load balance
cannot be achieved. As a result, the first finispeatess had to wait for the other
unfinished processes. If the task of inter-proaesult merging is assigned to a
single process (e.g., the main process in Figuréhé)single process can continue
the task only after all processes are finished clwlubviously reduces the parallel
computation efficiency and thus becomes a perfocmaiottleneck. In response,
considering that the principle of MPI inter-processult merging is similar to that
of tree-like area merging, the final target ressilhot associated with the order of
merging between processes, and its result and gs@ge all explicit. Thus, the final
target result can also be optimized using the dradd-conquer method. Therefore,
at the process level, a tree-like merger strateayy loe designed for MPI inter-
process result sets to reduce the merging waiting for inter-process result sets
and to optimize and accelerate the parallel buffgorithm.

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 802, p.237-256, abr-jun, 2014.

250 Optimization approaches to MPI and area mergingdas

4. APPROACHES TO OPTIMIZING THE PARALLEL BUFFER
ALGORITHM
To overcome the bottlenecks introduced in sectipa 8ertex amount-based
parallel task partition strategy and a tree-likiisprocess results merging method
are proposed and described in this section.

4.1 Parallel Task Partition

The most straightforward method to process vespatial data based on a
simple feature model is to realize a parallel faakition through dataset division by
the number of features. The principle of this mdti®easy. Suppose that the input
data have features and that a parallel environment contaifP| processes, the
number (n) of features that are distributed to each pro@essas follows when
based on data decomposition:

m=[F/n]orm=| F/n|)

This method can obtain uniform results when thiagkt has uniform features,
but this situation rarely occurs. Furthermore, Ithe level algorithm is sensitive to
the volume of vertices holding the features, noth® number of features. In most
cases, this method cannot obtain load balanceeftiver new data decomposition
methods should be developed.

In response to this defect, we proposed a partld data decomposition
method based on vertex number statistics becaes&NiON operator for parallel
vector buffer results is sensitive to the numbeweftices in polygons. For data
decomposition, this method depends on the numbeweofices contained in
geometries. Suppose that a group of input dataagms vertices and a parallel
environment contains MPI processes, then each process is expectedassigmned
with a group of vector features wikhvertices as follows:

P=[N/n] (3)

The number of features distributed into a prociss®io longer constant.
However, the geometries cannot be split, and thal toumber of verticed;
(i=1,2,3,...n) should be values close B The data decomposition can be finished
by reviewing the numbers of vertices for all vedeaiture geometries. This method
is more time-consuming than the task partition métbased on the FID of features,
but the experiments revealed that the higher tiowt for counting the amount of
vertices is acceptable considering the performang@ovement. The number of
MPI processes was consistently 4. When the othgererental characteristics were
held constant, each of the 7 groups of road netwat& with different data volumes

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 202np.237-256, abr-jun, 2014.

Junfu, Fetal 251

was divided based on the number of features anth@mumber of vertices. The
contradistinction experimental results are listedable 6.

In Table 6,Tgps is the total time costs of parallel computatiorsdzh on the
number of features, anb.ins iS the total time costs of parallel computatiosdzh
on the number of vertices. Moreov@ge is the time cost in data division based on
the number of vertices, which is already contaiinet,ints

Table 6 — Improvements by the method of point nunttased data partition.
time costs (4 MPI processes)T/s

feature/point number

TFIDs Tooints TDP
13 324/147 824 7.517 6.558 0.042
18 154/215 048 14.043 11.618 0.101
33 205/318 590 18.267 15.594 0.103
45 850/470 825 52.023 46.478 0.142

108 414/1 067 682 110.365 101.155 0.396
134 145/1 482 071 224.633 204.446 0.429
269 450/3 231 870 430.174 419.370 1.379

The results indicate that the partition method base the number of vertices
achieved a 10% higher performance at the expense(43% time consumption
increase. Therefore, this method can improve coatiout efficiency for the parallel
vector buffer algorithm.

4.2 Tree-Like Merging Between M Pl Processes

When several parallel MPI processes are finistied, polygon result sets
derived from all processes should also be detednifoe intersection and be
dissolved. A simple method is to distribute allulesto a single process (e.g., the
main process shown in Figure 7) for area mergirtjarnput. The operation flow of
this method is shown in Figure 8.

Figure 8 — Single-process merging flow of buffesulées of 4 MPI processes.

Comm. TP. W. Comm.
Status of A A
Process 0: I? k—’l 4Buffering»H T _«Merging»
MPI = >
— Process 0 smeemo=z Process 0

Start

Section | Process3 |

Comm.: Communication; TP.: Task Partition; W.: Waitting

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 802, p.237-256, abr-jun, 2014.

252 Optimization approaches to MPI and area mergingdas

One evident defect of this method is that the singlocess responsible for
results merging has to wait until all processesfiargshed to continue and finish the
final merge process. Regarding the significant atffef tree-like merging, we
proposed to design a new strategy for merging 4omtecess result sets, which
accelerates computation by decreasing the intesgsowaiting time. This process
was called the MPI inter-process tree-like mergiapgimization strategy, and its
work flow is shown in Figure 9.

Figure 9 - Tree-like merging flow of buffer resuits4 MPI processes.
Status of Comm. TP. Wy

| Comm.
Prof\:/?ls)i 0: M4Buffering»<H7Mergin>44

Start Process 0 ..

Comm.: Communication; TP.: Task Partition; W.: Waitting

With the 4 MPI processes in Figure 9 as an exaniple result will be
preserved and processed by the 1st process whehsthend 2nd processes are
merged. When the 3rd and 4th processes are metgedesult will be preserved
and processed by the 3rd process, followed by éselts of the 1st and 3rd
processes being merged again. In this way, thécudlif§ of developing the MPI
program can be reduced by providing a tree-likegingr pathway for predesigned
MPI parallel processes. The parallel buffer aldgwnitwith the above merging flow
was implemented to compare the parallel buffer ritlgm with a single process
merging strategy. Seven groups of road network daiia different data volumes
were used, and the other characteristics weredaydtant.

Table 7 shows that the optimization of tree-likergieg in MPI processes can
improve efficiency by 46.6% for parallel buffer &ws algorithms on average.
With regard to the 4 MPI processes, the paralleedpp ratio was increased from
1.411 to 2.708, which indicated a significant efféitherefore, this result suggested
that the tree-like merging approach in the MPI ocess polygon set shows a
significant optimizing effect for parallel buffernalysis algorithms and shows
certain practical values. The logic flow of the gdbal buffer analysis algorithm
based on this optimizing strategy is presentedgargé 10.

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 202np.237-256, abr-jun, 2014.

Junfu, Fetal 253

Table 7 — Time costs of parallel buffer algorithptimized by tree-like merge
strategy between MPI processes.

parallel-time-costs? z

feature/point- (4-MPI-processes)/sc serial-time- final” efficiency-
number: single-process costs = speedup- = improvements: (2

. tree-like-merge:
merge:

13-324/147-8242 6.432z 5.303z 11.288= 2.051= 16.9%c z
33-205/318-390c 13691z 10,4882 27.067z 25782 33.1%c £
45-850/470-825c 46.7472 21900z 57271c 2614z 33.1%c £
108-414/1-067-6822 100,939z 446120 127.707¢ 2.8632 53.8%x0 z
134-145/1-482-071= 198,670z 78781z 243.979¢ 3.097z 60.3%0 o
260-450/3-231-870z 4193062 172288z 490723z 2801z 38.9%a z
1-320-738/12-471-234z 1-683.0362 878841z 2-309.740z 2.856z 47 8% o
Average: — — —C 2,708z 46.6%: c

The optimization of the MPI inter-process tree-likgerging can still be
improved. For instance, the merging order is naset, but a ‘first finish first
merge’ mode is used. An evolution coefficient cendefined for each process, and
the two earliest finishing processes are mergetl #tfter each merging process, the
evolution coefficient of one process is added bgrid the other process is ended. In
each merging step, only the processes with the sewotution coefficient are
merged, unless the number of processes markedestain evolution coefficient is
only 1. After all processes are merged, the resultsfinally merged and output by
the process with the highest evolution coefficiditwever, this method would
greatly increase the complexity of inter-processicmnication and programming.
Thus, this method would significantly increase th#ficulty for developing MPI
parallel programs; therefore, appropriate selectiod rejection are necessary in
practical applications, which should be furtheidgtd.

Figure 10 - Logic flow of optimized parallel buffafgorithm.

task ‘ data input ‘
partition
by point
amount ‘ ‘ \ 4 ‘ ‘
rocess rocess rocess rocess
buffer zone P 1 P 5 P 3 P n
construction & \'/ # \ \/
tree-like <\/\nzergirl g:j:? e /{frﬁergir;;? —
merging process 1 </\/r\;1/ergir\1\g\/> process n-1
~ | or n-2
result Process
export y buffer results

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 802, p.237-256, abr-jun, 2014.

254 Optimization approaches to MPI and area mergingdas

5. CONCLUSIONS AND FUTURE ISSUES

In this paper, a vector buffer generation algorithased on the traditional
segment buffer zone construction algorithm and ahea merging approach was
proposed. The algorithm simplified the process offdr zone construction by
introducing a mature polygon clipping algorithmdissolve the buffer results of a
single feature or several features, and the prowpssf complex spatial
relationships during feature buffer creation waided. Moreover, the code
complexity and coupling degree were reduced. Ftimigation of the buffer result
dissolving, a divide-and-conquer method was usedvErcome the bottleneck of
the vertex accumulation effect in serial buffercaithms. The efficiency of this
method was lower than that of mature commercial &8ware when the buffer
results of different features were not dissolvad, umerous experiments revealed
that this method could finish buffer constructian & massive dataset with arbitrary
geometries in a reasonable amount of time. In icigatersected buffer zones that
should be dissolved, the proposed algorithm was nfiare efficient in serial
computation than the ArcGI% Buffer tool. Therefore, this buffer creation
algorithm based on area merging has certain pedatadues.

Parallel computation is a feasible way to overcaineeproblem of increasingly
larger spatial data volumes. Though the developnaénparallel algorithms is
important, their optimization is also important faccelerating computation and
scaling up the problems to be solved. In this papermallel buffer construction and a
dissolving algorithm were implemented on the basia serial buffer algorithm and
the MPI parallel programming model. We elaboratesltivo possible performance
bottlenecks in the parallel buffer algorithm thatused low efficiency, and we
proposed specific solutions, including the parathsk partition approach based on
the number of vertices for parallel task load eftiilim and the tree-like merging
approach to MPI inter-process result polygon detshe case of 4 MPI processes,
the results showed that the new parallel task tparti strategy improved
performance by 10% at a 0.43% time cost increasare®er, the inter-process
tree-like merging method improved efficiency by @i, and the parallel speedup
ratio was increased from 1.4 to 2.7, which indidagesignificant effect. Therefore,
we suggest that the two optimization approachegiored above could effectively
improve performance for buffer construction and #&easible for the parallel
optimization of buffer analytical algorithms. Thea approaches provide certain
reference values for the parallelization and opation of other vector analysis
algorithms in GIS.

In addition, the more reasonable ‘first finish firmerge’ mode can be used in
merging MPI inter-process result sets. Considetireghypothesis that buffer result
polygons of adjacent vector features are moreylikgersected, the relationships of
adjacent vector features should be considered rallphtask division. Other rules
(e.g., Hilbert spatial division curves coordinateih the number of vertices of
features) can be used to obtain a better optiroizatpproach. The above problems
were not discussed in this paper and will be stlifliether.

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 202np.237-256, abr-jun, 2014.

Junfu, Fetal 255

ACKNOWLEDGEMENTS

This study was supported by National Key Technpl®&&D Program (No.
2011BAH06B03 and No. 2011BAH24B10, and No. 2012B&B@4) and Research
Fund for the Doctoral Program of Higher Educatiorf €hina (No.
20113718110001). Additional supports were providgd Chinese Academy of
Sciences (No. KZZD-EW-07). The authors thank DrgéoPimentel Cintra for his
help in the Brazilian Portuguese translation.

BIBLIOGRAPHICAL REFERENCES

BARNEY B. Introduction to Parallel Computing2012. Accessed 10/01/2013.
https://computing.linl.gov/tutorials/parallel_comp/

BENTLEY J. L., SHAMOS M. I. Divide-and-conquer inuttidimensional space.
In: Proceedings of the eighth annual ACM symposiumt@oily of computing
(Proceeding STOC '76)Proceedings, New York: ACM Press, p. 220-230,
1976.

BHATIA S., VIRA V., CHOKSI D. An algorithm for gegrating geometric buffers
for vector feature layers;eo-spatial Information Scienc&6(2), p. 130-138,
2013.

CLARKE K. C. Geocomputation's Future at the Extreméligh Performance
Computing and NanoclientBarallel Computing29(10), p. 1281-1295, 2003.

CORMEN T., LEISERSON C., RIVEST R. Section 2: Smgtend Order Statistics,
Introduction to Algorithms (Second edMIT Press, Cambridge, MA USA, p.
123-196, 2001.

DARLING G.J., SLOAN T.M., MULHOLLAND C. The inputpreparation and
distribution of data for parallel GIS operations: Proceedings of Euro-Par
2000, Lecture Notes in Computer Scierk®00, p. 500-505, 2000.

DWYER R. A. A Faster Divide-and-Conquer Algorithior fConstructing Delaunay
TriangulationsAlgorithmica 2(2), p. 137-151, 1987.

ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE, INCBuffer - GIS
Dictionary. 2012. Accessed 01/03/2013. http://support.esrilen/
knowledgebase/GISDictionary/term/buffer.

GRAMA A, GUPTA A, KARYPIS G,. Chapter 3: Principled Parallel Algorithm
Design, Introduction to Parallel Computing (Second EditionPearson
Education Limited, p. 86-143, 2003.

GREINER G., HORMANN K. Efficient clipping of arb#iry polygons.ACM
Transactions on Graphi¢47(2), p. 71-83, 1998.

HAWICK K.A., CODDINGTON P.D., JAMES H.A. Distributk frameworks and
parallel algorithms for processing large-scale gaphic data. Parallel
Computing 29(10), p. 1297-1333, 2003.

LI K., DU L. An Algorithm of Buffer Zones Based oAlgorithm of Dilation.
Journal of Institute of Surveying and Mappirz2(3), p. 229-231, 2005in(
Chineség

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 802, p.237-256, abr-jun, 2014.

256 Optimization approaches to MPI and area mergingdas

LIANG Y. BARSKY B. A. An analysis and algorithm fopolygon clipping.
Communications of the ACN6(11), p. 868-877, 1983.

LIN C., SNYDER L. Principles of Parallel Programming Addison-Wesley
Publishing Company, Reading, MA, USA, 352pp, 2009.

MCKENNEY M., LUNA G D., HILL S. Geospatial overlagomputation on the
GPU. In:Proceedings of the 19th ACM SIGSPATIAL Internati@@@nference
on Advances in Geographic Information SysteRoceedings, ACM. NY,
USA, p. 473-476, 2011.

MINETER M. J., DOWERS S. Parallel processing fooggaphical applications: A
layered approacllournal of Geographical Systenig1), p. 61-74, 1999.
MINETER M. J., DOWERS S. Towards a HPC Framework fategrated
Processing of Geographical Data: EncapsulatingGbmplexity of Parallel

Algorithms. Transactions in GIS4(3), p. 245-262, 2000.

MINETER M. J. A software framework to create veetopology in parallel GIS
operationsinternational Journal of Geographical Informatiorti€nce 17(3),
p. 203-222, 2003.

MURTA A. A Generic Polygon Clipping Library1998. Accessed 01/11/2012.
http://www.cs.man.ac.uk/~toby/alan/software/gpclhtm

OPENSHAW S., ABRAHART R JGeoComputationTylor & Francis Ltd., New
York, USA, 432pp, 2000.

SLOAN T. M., MINETER M.J., DOWERS S., Partitionirgf Vector-Topological
Data for Parallel GIS Operations: Assessment antbfPeance Analysis. In:
Proceedings of Euro-Par'99 Parallel Processing, tuze Notes in Computer
ScienceProceedings, 1685, p. 691-694, 1999.

SUTHERLAND |I. E., HODGMAN G. W. Reentrant Polygon ligping.
Communications of the ACM7(1), p. 32-42, 1974.

TURTON 1., OPENSHAW S. High-performance computingdageography:
developments, issues, and case studiesironment and Planning: .A30, p.
1839-1856, 1998.

VATTI B. R. A Generic Solution to Polygon Clippin€ommunications of the
ACM, 35(7), p. 56-63, 1992.

WEILER K., ATHERTON P. Hidden surface removal usipglygon area sorting.
In: Proceedings of the SIGGRAPH’Hroceedings, New York: ACM Press, p.
214~222, 1977.

WU H. H. Problem of Buffer Zone Construction in Gl3ournal of Wuhan
Technical University of Surveying and Mapping (WM)S22(4), p. 358-366,
1997. (n Chinesg

ZALIK, B., ZADRAVEC, M., CLAPWORTHY, G. Constructio of a Non-
Symmetric Geometric Buffer From a Set of Line SegtseComputers &
Geoscience29(1), p. 53-63, 2003.

(Recebido em setembro de 2013. Aceito em janei20d4).

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 202np.237-256, abr-jun, 2014.

