Acessibilidade / Reportar erro

The influence of osmotic shocks on the growth rate and chlorophyll-a content of planktonic algae species

Abstracts

The effect of salinity changes on the growth responses and chlorophyll-α content of four species of planktonic algae (Phaeodactylum tricornutum, Tetraselmisgracilis, Minutocelluspotymorphus, Chaetoceros sp) was evaluated using a batch culture technique. P. tricornutum, showing high values of maximum growth rate (div d-1) over the entire salinity range, revealed a great capability of metabolic adjustment when subjected to osmotic shocks. T. gracilis, M. polymorphus and Chaetoceros sp were able to displace the salinity optimum related to the maximum growth rate, depending on the preconditioning salinity. The four studied species showed oscillations of specific growth rate (div d-1) and chorophyll-α content (pg cell-1) related to light-dark cycles.

Algal assays; Salinity changes; Phaeodactylum tricornutum; Tetraselmis gracilis; Minutocellus polymorphus; Chaetoceros sp


Estudou-se o efeito de variações de salinidade sobre as respostas de crescimento e o conteúdo de clorofila-α de quatro espécies de algas planctónicas (Phaeodactylum tricornutum, Tetraselmis gracilis, Minutocellus polymorphus, Chaetoceros sp), usando a técnica de culturas estanques. P. tricornutum, apresentando altos valores de taxas máximas de crescimento (div d-1) em todo o gradiente de salinidade experimental, revelou uma alta capacidade de ajuste metabólico quando submetida a choques osmóticos. T. gracilis, M. polymorphus e Chaetoceros sp foram capazes de deslocar o ótimo de salinidade para a taxa máxima de crescimento, em função da salinidade de pré-cultivo. As quatro espécies estudadas mostraram oscilações da taxa específica de crescimento (div d-1) e do conteúdo de clorofila-α (pg cel-1), relacionadas aos ciclos de claro-escuro.

Bioensaios unialgais; Variações de salinidade; Phaeodactylum tricornutum; Tetraselmis gracilis; Minutocellus polymorphus; Chaetoceros sp


ARTIGOS

The influence of osmotic shocks on the growth rate and chlorophyll-a content of planktonic algae species

Teresa Cristina S. Sigaud-Kutner; Elizabeth Aidar

Instituto Oceanográfico da Universidade de São Paulo (Caixa Postal 66149,05389-970 São Paulo, SP, Brasil)

ABSTRACT

The effect of salinity changes on the growth responses and chlorophyll-α content of four species of planktonic algae (Phaeodactylum tricornutum, Tetraselmisgracilis, Minutocelluspotymorphus, Chaetoceros sp) was evaluated using a batch culture technique. P. tricornutum, showing high values of maximum growth rate (div d-1) over the entire salinity range, revealed a great capability of metabolic adjustment when subjected to osmotic shocks. T. gracilis, M. polymorphus and Chaetoceros sp were able to displace the salinity optimum related to the maximum growth rate, depending on the preconditioning salinity. The four studied species showed oscillations of specific growth rate (div d-1) and chorophyll-α content (pg cell-1) related to light-dark cycles.

Descriptors: Algal assays, Salinity changes, Phaeodactylum tricornutum, Tetraselmis gracilis, Minutocellus polymorphus, Chaetoceros sp.

RESUMO

Estudou-se o efeito de variações de salinidade sobre as respostas de crescimento e o conteúdo de clorofila-α de quatro espécies de algas planctónicas (Phaeodactylum tricornutum, Tetraselmis gracilis, Minutocellus polymorphus, Chaetoceros sp), usando a técnica de culturas estanques. P. tricornutum, apresentando altos valores de taxas máximas de crescimento (div d-1) em todo o gradiente de salinidade experimental, revelou uma alta capacidade de ajuste metabólico quando submetida a choques osmóticos. T. gracilis, M. polymorphus e Chaetoceros sp foram capazes de deslocar o ótimo de salinidade para a taxa máxima de crescimento, em função da salinidade de pré-cultivo. As quatro espécies estudadas mostraram oscilações da taxa específica de crescimento (div d-1) e do conteúdo de clorofila-α (pg cel-1), relacionadas aos ciclos de claro-escuro.

Descritores: Bioensaios unialgais, Variações de salinidade, Phaeodactylum tricornutum, Tetraselmis gracilis, Minutocellus polymorphus, Chaetoceros sp.

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

Acknowledgments

This work is part of the studies developed by T. C. S. Sigaud, submitted in partial fulfillment to the requirements for the M. Sc. degree at the University of São Paulo. It was conducted with financial support from CIRM - "Comissão Interministerial para os Recursos do Mar" and with an aid of a postgraduate fellowship (T.C.S.S.) provided by FAPESP - "Fundação de Amparo à Pesquisa do Estado de São Paulo". We wish to thank C. B. de Souza, S. M. Koyama and M. Fujimura for their assistance in statistical analysis.

(Manuscript received 07 February 1994; revised 07 December 1994; accepted 03 October 1995)

  • BRAND, L. E., 1984. The salinity tolerance of forty-six marine phytoplankton isolates. Estuar. coast. Shelf Sri., 18:543-556.
  • BROWN, L. M., 1982a. Photosynthetic and growth responses to salinity in a marine isolate of Nannochoris bacillaris (Chlorophyceae). J. Phycol, 18:483-488.
  • BROWN, L. M., 1982b. Production of axenic cultures of algae by an osmotic method. Phycologia, 21(3):408-410.
  • CHISHOLM, S. W. & BRAND, L. E. 1981. Persistence of cell division phasing in marine phytoplankton in continuous light after entraiment to light: dark cycles. J. expl mar. Biol. Ecol., 51:107-118.
  • CHISHOLM, S. W. & COSTELLO, J. C. 1980. Influence of environmental factors and population composition on the timing of cell division in Thalassiosira fluviatilis (Bacillariophyceae) grown on light/dark cycles. J. Phycol., 16:375-383.
  • ______ , MOREL, F. M. M. & SLOCUM,W.S. 1980. The phasing and distribution of cell division cycles in marine diatoms. In: Falkowski, P. ed. Primary productivity in the sea. Brookhaven Symp. Biol., New York, Plenum Press, 31:281-300.
  • EPPLEY, R. W.; HOLMES, R, W. & PAASCHE, E. 1967. Periodicity in cell division and physiological behavior of Ditylum brigfitwelliiy a marine planktonic diatom, during growth in light-dark cycles. Arch. Mikrobiol., 56:305-323.
  • FABREGAS, J.; ABALDE, J.; HERRERO, C; CABEZAS, B. & VEIGA, M. 1984. Growth of the marine microalga Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations. Aquaculture, 42:207-215.
  • ______; HERRERO, C; ABALDE, J. & CABEZAS, B. 1985. Growth, chlorophyll-α and protein of the marine microalga Isochrysis galbana in batch cultures with different salinities and high nutrient concentrations. Aquaculture, 50:1-11.
  • ______; ______; CABEZAS, B. & ABALDE , J. 1987. Growth and biochemical variability of the marine microalga Chlorella stigmatophora in batch cultures with different salinities and nutrient gradient concentration. Br. phycol. J., 22:269-276.
  • GESSNER, F. & SCHRAMM, W. 1971. Salinity: plants. In: Kinne, O. ed. Marine Ecology. Wiley-Interscience, London, v. 1, part 2, p.705-820.
  • GUILLARD, R. R. L. 1973. Division rates. In: Stein J. R. ed. Handbook of phycological methods, culture methods and growth measurements. Cambridge Univ. Press, London, p.289- 311.
  • HELLEBUST, J. A., 1976. Effect of salinity on photosynthesis and mannitol synthesis in the green flagellate Platymonas suecica. Can. J. Bot., 54:1735-1741.
  • JORGENSEN, E. G. 1966. Photosynthetic activity during the life cycle of synchronous Skeletonema cells. Physiol. Plant., 19:789- 799.
  • LIU, M. S. & HELLEBUST, J. A. 1976. Effects of salinity changes on growth and metabolism of the marine centric diatom Cyclotella cryptica. Can. J. Bot., 54:930-937.
  • MAEDA, O.; ZAMMA, M. & ICHIMURA, S. 1973. Photosynthetic response of estuarine phytoplankton to salinity variations in their habitat. La mer, 11(3):137-140.
  • MAHONEY, J. B. & McLAUGHLIN, J. J. A. 1979. Salinity influence on the ecology of phytoflagellate blooms in Lower New York Bay and adjacent waters. J. expl mar. Biol. Ecol., 37(3):213-223.
  • McLACHLAN, J. 1961. The effect of salinity on growth and chlorophyll content in representative classes of unicellular marine algae. Can. J. Microbiol., 7:399-406.
  • NELSON, D. M. & BRAND, L. E. 1979. Cell division periodicity in 13 species of marine phytoplankton on a light:dark cycle. J. Phycol., 15(1):65-75.
  • NETER, J., WASSERMAN, W. & KUTNER, M. H. 1985. Applied linear statistical models - models Regression, analysis of variance and experimental designs 2nd ed. R. D. Irwin, Inc., Illinois, 1127 p.
  • PAASCHE, E. 1967. Marine plankton algae grown with light-dark cycles. I. Coccolithus huxleyi. Physiol. Plant., 20(4):946-956.
  • ______ 1968. Marine plankton algae grown with light-dark cycles. II. Ditylum brightwellii and Nitzschia turgidula. Physiol. Plant., 21:66-77.
  • ______ 1975. The influence of salinity on the growth of some plankton diatoms from brackish water. Norw. J. Bot., 22:209-215.
  • PALMER, J. D.; LIVINGSTON, L. & ZUSY, D. 1964. A persistent diurnal rhythm in photosynthetic capacity. Nature, 203:1087-1088.
  • PROVASOLI, L.; MCLAUGHLIN, J. J. A. & DROOP, M.R. 1957. The development of artificial media for marine algae. Arch. Mikrobiol., 25:392-428.
  • QASIM, S. Z.; BHATTATHIRI, P. M. A. & DEVASSY, V. P. 1972. The influence of salinity on the rate of photosynthesis and abundance of some tropical phytoplankton. Mar. Biol., 12(3):200-206.
  • RICKETTS, T. R. 1977. Changes in average cell concentrations of various constituents during synchronous division of Platymonas striata Butcher (Prasinophyceae). J. expl Bot., 28(107):1278-1288.
  • SHIMURA, S,; SHIBUYA, H. & ICHIMURA, S. 1979. Growth and photosynthesis properties of some planktonic marine diatoms at various salinity regimes. La mer, 17:149-155.
  • SIGAUD, T. C. S. 1990. Efeitos de temperatura e salinidade sobre as respostas de crescimento e o conteúdo de clorofila-α de algumas espécies de algas planctónicas, em cultura. Dissertação de mestrado. Universidade de São Paulo, Instituto Oceanógrafico. 352 p.
  • SMAYDA, T. J. 1975. Phased cell division in natural populations of the marine diatom Ditylum brightwellii and the potential significance of diel phytoplankton behavior in the sea. Deep-Sea Res., 22:151-165.
  • SMAYDA,T.J. 1980. Phytoplankton species sucession. In: Morris, I. ed. The physiological ecology of phytoplankton. Blackwell Scientific Publications, Oxford, p.493-570.
  • STRICKLAND, J. D. H. & PARSONS, T. R. 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can., 167:311 p.
  • SWIFT, E. & DURBIN, E. G. 1972. The phased division - and cytological characteristics of Pyrocystis spp can be used to estimate doubling times of their populations in the sea. Deep-Sea Res., 19:189-198.
  • TERRY, K. L., HIRATA, J. & LAWS, E. A. 1983. Light-limited growth of two strains of the marine diatom Phaeodactylum tricornutum Bohlin: chemical composition, carbon partitioning and the diel periodicity of physiological processes. J. expl mar. Biol. Ecol., 68:209-227.
  • TSURUTA, A.; OHGAI, M.; UENO, S. & YAMADA, M. 1985. The effect of the chlorinity on the growth of planktonic diatom Skeletonema costatum (Greville) Cleve in vitro. Bull, japan. Soc. scient. Fish., 51(11):1883-1886.
  • WEILER, C S. & CHISHOLM, S. W. 1976. Phased cell division in natural populations of marine dinoflagellates from shipboard cultures. J. expl mar. Biol. Ecol., 25:239-247.

Publication Dates

  • Publication in this collection
    11 May 2012
  • Date of issue
    1995

History

  • Reviewed
    07 Dec 1994
  • Received
    07 Feb 1994
Instituto Oceanográfico da Universidade de São Paulo Praça do Oceanográfico, 191, 05508-120 São Paulo SP Brasil, Tel.: (55 11) 3091 6513, Fax: (55 11) 3032 3092 - São Paulo - SP - Brazil
E-mail: amspires@usp.br