Accessibility / Report Error

Diaspis echinocacti (Hemiptera: Diaspididae) on cactus pear cladodes: biological aspects at different temperatures

Diaspis echinocacti (Hemiptera: Diaspididae) em cladódios de palma forrageira: aspectos biológicos em diferentes temperaturas

Abstract

The scale mealybug, Diaspis echinocacti (Bouché, 1833) (Hemiptera: Diaspididae), is one of the main pests of the cactus pear in Brazil. The objective was to study biological aspects of D. echinocacti at the constant temperatures of 25, 28, 30, 33 and 35 °C with relative humidity of 60 ± 10% and photoperiod of 12 hours in the laboratory on the cactus pear cultivar, “Orelha de Elefante Mexicana”, Opuntia stricta [Haw.] Haw. The development period (22 to 35 days) and survival in the egg (92 to 100%) and nymph (21.8 to 100%) stages and of the egg-adult cycle (20 to 100%), longevity (34.1 to 59.6 days) and fecundity (33 to 112 eggs) of D. echinocacti females with the different temperature and absence of males at the highest temperatures (> 30°C), indicated that the range between 25 °C and 30°C is the most favorable for this scale mealybug. This information may help to improve integrated management programs for D. echinocacti, in areas subject to seasonal temperature changes in the Brazilian regions where cactus pear is cultivated.

Keywords:
development temperature; insect-pest; Opuntia stricta

Resumo

A cochonilha-escama, Diaspis echinocacti (Bouché, 1833) (Hemiptera: Diaspididae), é uma das principais pragas da palma forrageira no Brasil. O objetivo foi estudar aspectos biológicos de D. echinocacti nas temperaturas constantes de 25, 28, 30, 33 e 35 °C, umidade relativa de 60 ± 10% e fotoperíodo de 12 horas em laboratório na cultivar de palma forrageira, “Orelha de Elefante Mexicana”, Opuntia stricta [Haw.] Haw. O período de desenvolvimento (22 a 35 dias) e a sobrevivência nas fases de ovo (92 a 100%) e ninfa (21,8 a 100%) e o ciclo ovo-adulto (20 a 100%), longevidade (34,1 a 59,6 dias) e fecundidade (33 a 112 ovos) de fêmeas de D. echinocacti nas diferentes temperaturas e ausência de machos nas maiores (> 30°C) indicam ser a faixa entre 25°C e 30°C a mais favorável para esta cochonilha de escama. Essas informações podem auxiliar no aprimoramento de programas de manejo integrado de D. echinocacti em áreas sujeitas a variações sazonais de temperatura nas regiões brasileiras onde a palma forrageira é cultivada.

Palavras-chave:
temperatura de desenvolvimento; inseto-praga; Opuntia stricta

1. Introduction

Semi-arid regions of Africa, Americas, Asia and Oceania are 37% of the world's land (Huang et al., 2016HUANG, J., JI, M., XIE, Y., WANG, S., HE, Y. and RAN, J., 2016. Global semi‑arid climate change over last 60 years. Climate Dynamics, vol. 46, no. 3-4, pp. 1131-1150. http://dx.doi.org/10.1007/s00382-015-2636-8.
http://dx.doi.org/10.1007/s00382-015-263...
; Golla, 2021GOLLA, B., 2021. Agricultural production system in arid and semi-arid regions. International Journal of Agriculture Science and Food Technology, vol. 7, no. 2, pp. 234-244.) with 969,589.4 km2 in Argentina, Chile, Colombia, Ecuador and Venezuela (Rossato et al., 2017ROSSATO, L., ALVALÁ, R.C.S., MARENGO, J.A., ZERI, M., CUNHA, A.P.M., PIRES, L.B.M. and BARBOSA, H.A., 2017. Impact of soil moisture on crop yields over Brazilian Semiarid. Frontiers in Environmental Science, vol. 5, pp. 73. http://dx.doi.org/10.3389/fenvs.2017.00073.
http://dx.doi.org/10.3389/fenvs.2017.000...
) and in 1,136 municipalities of eight states in the Northeast region and in the north of the Minas Gerais state in Brazil (Rossato et al., 2017ROSSATO, L., ALVALÁ, R.C.S., MARENGO, J.A., ZERI, M., CUNHA, A.P.M., PIRES, L.B.M. and BARBOSA, H.A., 2017. Impact of soil moisture on crop yields over Brazilian Semiarid. Frontiers in Environmental Science, vol. 5, pp. 73. http://dx.doi.org/10.3389/fenvs.2017.00073.
http://dx.doi.org/10.3389/fenvs.2017.000...
).

The caatinga biome, vegetation native to Brazil with high temperatures, unstable rains, prolonged droughts and unfavorable geological structures to accumulate underground water, characterizes this semi-arid region (Barbosa et al., 2015BARBOSA, H.A., LAKSHMI KUMAR, T.V. and SILVA, L.R.M., 2015. Recent trends in vegetation dynamics in the South America and their relationship to rainfall. Natural Hazards, vol. 77, no. 2, pp. 883-899. http://dx.doi.org/10.1007/s11069-015-1635-8.
http://dx.doi.org/10.1007/s11069-015-163...
; Barbosa and Kumar, 2016BARBOSA, H.A. and KUMAR, T.V.L., 2016. Influence of rainfall variability on the vegetation dynamics over Northeastern Brazil. Journal of Arid Environments, vol. 124, no. 1, pp. 377-387. http://dx.doi.org/10.1016/j.jaridenv.2015.08.015.
http://dx.doi.org/10.1016/j.jaridenv.201...
; Marengo et al., 2017MARENGO, J.A., TORRES, R.R. and ALVES, L.M., 2017. Drought in Northeast Brazil - past, present, and future. Theoretical and Applied Climatology, vol. 129, no. 3-4, pp. 1189-1200. http://dx.doi.org/10.1007/s00704-016-1840-8.
http://dx.doi.org/10.1007/s00704-016-184...
). This reduces the production of forage plants and difficult maintaining and raising cattle, goat and sheep (Moraes et al., 2019MORAES, G.S.O., GUIM, A., TABOSA, J.N., CHAGAS, J.C.C., ALMEIDA, M.P. and FERREIRA, M.A., 2019. Cactus [Opuntia stricta (Haw.) Haw] cladodes and corn silage: how do we maximize the performance of lactating dairy cows reared in semiarid regions? Livestock Science, vol. 221, pp. 133-138. http://dx.doi.org/10.1016/j.livsci.2019.01.026.
http://dx.doi.org/10.1016/j.livsci.2019....
).

Plant species adapted to semi-arid regions, such as the forage palms Opuntia spp. and Nopalea spp. (Cactaceae), can increase the viability of raising livestock (Silva et al., 2015SILVA, T.G.F.S., ARAÚJO PRIMO, J.T., MORAIS, J.E.F., DINIZ, W.J.S., SOUZA, C.A.A. and SILVA, M.C., 2015. Crescimento e produtividade de clones de palma forrageira no semiárido e relações com variáveis meteorológicas. Revista Caatinga, vol. 28, no. 2, pp. 10-18. , Gusha et al., 2015GUSHA, J., HALIMANI, T.E., KATSANDE, S. and ZVINOROVA, P.I., 2015. The effect of Opuntia ficus indica and forage legumes based diets on goat productivity in smallholder sector in Zimbabwe. Small Ruminant Research, vol. 125, pp. 21-25. http://dx.doi.org/10.1016/j.smallrumres.2015.02.018.
http://dx.doi.org/10.1016/j.smallrumres....
). Forage palms are native to the Americas and cultivated in different countries (Miranda-Romero et al., 2018MIRANDA-ROMERO, L.A., VAZQUEZ-MENDOZA, P., BURGUEÑO-FERREIRA, J.A. and ARANDA-OSORIO, G., 2018. Nutritive value of cactus pear silages for finishing lambs. Journal of the Professional Association for Cactus Development, vol. 20, pp. 196-215. http://dx.doi.org/10.56890/jpacd.v20i.37.
http://dx.doi.org/10.56890/jpacd.v20i.37...
; Perrotta and Arambarri, 2018PERROTTA, V.G. and ARAMBARRI, A.M., 2018. Cladodes anatomy of Opuntia (Cactaceae) from the province of Buenos Aires (Argentina). Boletín de la Sociedad Argentina de Botánica, vol. 53, no. 3, pp. 345-357. http://dx.doi.org/10.31055/1851.2372.v53.n3.21310.
http://dx.doi.org/10.31055/1851.2372.v53...
) in arid and hot environments with reduced cost and food “in natura” or in silage for animals (Gusha et al., 2015GUSHA, J., HALIMANI, T.E., KATSANDE, S. and ZVINOROVA, P.I., 2015. The effect of Opuntia ficus indica and forage legumes based diets on goat productivity in smallholder sector in Zimbabwe. Small Ruminant Research, vol. 125, pp. 21-25. http://dx.doi.org/10.1016/j.smallrumres.2015.02.018.
http://dx.doi.org/10.1016/j.smallrumres....
). The uniform harvest of cactus pear increases regrowth and productivity, reduces costs and the use of labor, and enables the constant production of silage for animals confined during the dry season (Souza et al., 2020SOUZA, A.F.N., ARAÚJO, G.G.L., SANTOS, E.M., AZEVEDO, P.S., OLIVEIRA, J.S., PERAZZO, A.F., PINHO, R.M.A. and ZANINE, A.M., 2020. Carcass traits and meat quality of lambs fed with cactus (Opuntia fıcus-indica Mill) silage and subjected to an intermittent water supply. PLoS One, vol. 15, no. 4, pp. e0231191. http://dx.doi.org/10.1371/journal.pone.0231191. PMid:32255804.
http://dx.doi.org/10.1371/journal.pone.0...
).

The scale mealybug, Diaspis echinocacti (Bouché, 1833) (Hemiptera: Diaspididae), is one of the main pests of cactus pears in Brazil, infesting the cladodes and sucking the sap of these plants (Oetting, 1984OETTING, R.D., 1984. Biology of the cactus scale, D. echinocacti (Bouche) (Homoptera: Diaspidae). Annals of the Entomological Society of America, vol. 77, no. 1, pp. 88-92. http://dx.doi.org/10.1093/aesa/77.1.88.
http://dx.doi.org/10.1093/aesa/77.1.88...
). Yellowing of the cladode racquets followed by wilting, rotting and its death by microorganisms penetrating the lesions caused by mealybug feeding characterize damage to the giant cactus pear (Opuntia ficus-indica) as reported in the states of Alagoas, Bahia, Ceará, Paraíba, Pernambuco, Rio Grande do Norte and Sergipe, Brazil (Lima and Gama, 2001LIMA, I.M.M. and GAMA, S., 2001. Record of host plants (Cactaceae) and new dissemination strategy of D. echinocacti (Bouché) (Hemiptera: Diaspididae), prickly-pear-scale, in the States of Pernambuco and Alagoas, Brazil. Neotropical Entomology, vol. 30, no. 3, pp. 479-481. http://dx.doi.org/10.1590/S1519-566X2001000300025.
http://dx.doi.org/10.1590/S1519-566X2001...
; Claps et al., 2001CLAPS, L.E., WOLFF, V.R.S. and GONZÁLEZ, R.H., 2001. Catálogo de las Diaspididae (Hemiptera: Coccoidea) exóticas de la Argentina, Brasil y Chile. Revista de la Sociedad Entomológica Argentina, vol. 60, no. 1-4, pp. 9-34.). The effect of the temperature on the life cycle, population dynamics and spatial and seasonal distribution of the scale mealybug D. echinocacti, in the main cactus pear producing regions of Brazil, needs to be studied (Bayindir and Birgücü, 2016BAYINDIR, L. and BIRGÜCÜ, A.K., 2016. Effect of temperature on life history of Chrysomphalus dictyospermi (Morgan) (Hemiptera: diaspididae). Redia (Firenze), vol. 99, pp. 145-149.; Oliveira et al., 2019OLIVEIRA, S.R., SILVA, C.A.D., CARVALHO, T.S. and COSTA, L.A.A., 2019. Biology of Corythucha gossypii Fabricius, 1794 (Hemiptera: Tingidae) in Ricinus communis at different temperatures and thermal requirements. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 79, no. 2, pp. 278-285. http://dx.doi.org/10.1590/1519-6984.180501. PMid:30088527.
http://dx.doi.org/10.1590/1519-6984.1805...
).

The objective was to study biological aspects of D. echinocacti at the constant temperatures of 25, 28, 30, 33 and 35 °C, relative humidity of 60 ± 10% and photoperiod of 12 hours, in the laboratory, on cladodes of the cactus pear cultivar “Orelha de Elefante Mexicana” Opuntia stricta [Haw.] Haw.

2. Material and Methods

2.1. Study location

This study was carried out at the entomology laboratory (7º 13'32''S latitude and 35º 54'19'' W longitude) of Embrapa Algodão in the municipality of Campina Grande, Paraíba state, Brazil in 2021.

2.2. Insects and plants

The females of the scale mealybug D. echinocacti were collected on cactus pear cladodes of the cultivar “Orelha de Elefante Mexicana”, Opuntia stricta [Haw.] Haw. at 90 days after infestation in a plantation at the experimental field of Embrapa Algodão (7º13'50"S latitude and 35º52'52"W longitude) in the municipality of Campina Grande, Paraíba state, Brazil. The cladodes of this plant were collected and packed in Kraft paper bags, placed in a Styrofoam box and taken to the Entomology laboratory at Embrapa Algodão and kept in climate-controlled chambers until the beginning of the bioassay.

2.3. Biology at different temperatures

Freshly eggs (≤ 24 h) laid by D. echinocacti females were submitted to constant temperatures of 25, 28, 30, 33 and 35 °C, relative humidity of 60 ± 10% and a photoperiod of 12 hours representing the treatments. Each experimental unit had a cladode disk of the cactus pear cultivar “Orelha de Elefante Mexicana” (9.62 cm2) infested with 10 eggs of D. echinocacti, recently laid (≤ 8 hours), with five replications per temperature (treatment) in climatized chamber and observed daily. The total number of nymphs hatched per temperature and egg incubation and development periods for this pest were recorded.

Newly emerged and mobile first-instar D. echinocacti nymphs were placed on non-infested cladodes (25 x 15 cm with an ellipse area of 294.4 cm2) in plastic trays (46.5 cm x 29.6 cm x 7.5 cm in length, wide and height, respectively) to evaluate the nymph stage of this scale mealybug per temperature. The epidermis of the cladode, next to the nymph attached to it, was numbered with blue ink to facilitate observing the sessile nymph. The sectioned part of the cladode was wrapped in a cotton swab soaked in distilled water and moistened every two days to reduce water losses. Diaspis echinocacti nymphs were divided into five replications with the nearest 10 sessile being each one. These nymphs were observed daily using an EL224 stereomicroscope (BEL Engenharia, Monza, Milan, Italy) with a 20x magnification until the emergence of D. echinocacti adults.

The D. echinocacti stages were determined according to the external morphology and the period between one molt to the next. Diaspis echinocacti eggs, deposited under the armor of the female of this insect, are initially clear and translucent and, near hatching, yellowish (Figure 1A). First-instar nymphs are easily recognized because they are mobile with legs, a pair of red eyes and visible antennae (Figure 1B) and those of the second-instar with marked sexual dimorphism, as female carapaces ou armor increase in diameter (Figure 1C). A posterior extension projecting under it identifies males (Oetting, 1984OETTING, R.D., 1984. Biology of the cactus scale, D. echinocacti (Bouche) (Homoptera: Diaspidae). Annals of the Entomological Society of America, vol. 77, no. 1, pp. 88-92. http://dx.doi.org/10.1093/aesa/77.1.88.
http://dx.doi.org/10.1093/aesa/77.1.88...
). Male pupae are white with an elongated oval shape, covered by white mucoprotein filaments (Figure 1D). D. echinocacti females are neotenic with white to light yellow color (Figure 1E) and similar to their second-instar nymphs, but differing in size and sexual maturity, while males are winged (Figure 1F). Eggs deposited on cactus pear cladodes were daily quantified at 8:00 A.M. and 04:00 P.M.

Figure 1
Immature stages of D. echinocacti (Bouché) (Hemiptera: Diaspididae) on cladodes of the cactus pear “Orelha de Elefante Mexicana” Opuntia stricta [Haw.] Haw. with the egg mass next to the female with the carapace removed (A), mobile nymph of the first (B) and sessile of the second (C) instar, male pupa (D), female with carapace (E) and winged male (F).

The development period, egg viability and nymph and pupae survival, duration of egg-to-adult (immature stage) and longevity of adults and fecundity of D. echinocacti females were determinate.

2.4. Data analysis

Survival data per stage and from egg to adult of D. echinocacti were transformed into 1/√x and those of the development into log (x) (Box and Cox, 1964BOX, G.E.P. and COX, D.R., 1964. An analysis of transformations. Journal of the Royal Statistical Society. Series B, Statistical Methodology, vol. 26, no. 2, pp. 211-252.) and submitted to a two-way analysis of variance (ANOVA) with the averages compared by Tukey’s test (P= 0.05) using the Statistical and Genetic Analysis System (Ribeiro Júnior, 2001RIBEIRO JÚNIOR, J.I., 2001. Análises estatísticas no SAEG. Viçosa: UFV. 301 p.).

3. Results

The interaction of temperature with the survival of eggs, nymphs and in the of egg-adult period of D. echinocacti was significant and negative (Table 1).

Table 1
Summary models of the effects of temperatures of 25 ºC, 28 ºC, 30 ºC, 33 ºC and 35 ºC on survival1 1 Survival: data transformed into 1/root(x). 2Development: data transformed into log(x). DF= Degree of freedom. F= Fisher’s test. P= Probability. and development period2 of the cochineal Diaspis echinocacti (Bouché) (Hemiptera: Diaspididae) using two-way analysis of variance (ANOVA).

Survival of D. echinocacti females ranged from 52 to 100% at all temperatures and that of males was 100% at 25oC, 28oC and 30oC. These values were higher at the temperature of 28ºC for the former and between 25ºC and 30ºC for the latter (Table 2).

Table 2
Survival (Mean ± SE ) during egg, nymph and pupa stages and from egg to adult of Diaspis echinocacti (Bouché) (Hemiptera: Diaspididae) on cladodes of the cactus pear “Orelha de Elefante Mexicana”, Opuntia stricta [Haw.] Haw. at the temperatures (Temp.) of 25°C, 28°C, 30°C, 33°C and 35°C, relative humidity of 60 ± 10% and photophase of 12 hours.

The duration of the egg and nymph stages and egg-adult periods of D. echinocacti females, fed on cladodes cultivar “Orelha de Elefante Mexicana”, Opuntia stricta [Haw.] Haw., decreased, from 2.50 to 4.04, 19.37 to 31.03 and 22.10 to 35.01 days, respectively, between temperatures of 35º C and 25º C. Most individuals emerged between 25º C and 30º C were females and the duration of the period from egg to adult of males ranged from 28.3 to 36.0 days (Table 3).

Table 3
Duration (Mean ± SE) of egg, nymph and pupa stages and egg to adult of Diaspis echinocacti (Bouché) (Hemiptera: Diaspididae) on cladodes of cactus pear “Orelha de Elefante Mexicana”, Opuntia stricta [Haw.] Haw. at temperatures (Temp.) of 25°C, 28°C, 30°C, 33°C and 35°C, relative humidity of 60 ± 10% and photophase of 12 hours.

The periods of pre-oviposition, oviposition and post-oviposition of D. echinocacti females, fed on cladodes, were longer and shorter at 25º C and 33 ºC, respectively. (Table 4).

Table 4
Reproductive parameters (mean ± standard error) of Diaspis echinocacti (Bouché) (Hemiptera: Diaspididae) on cladodes of the cactus pear “Orelha de Elefante Mexicana”, Opuntia stricta [Haw.] Haw. at temperatures of 25° C, 28º C, 30°C and 33°C, relative humidity of 60 ± 10% and 12-hour photophase.

The longevity of D. echinocacti females between 25º C and 35º C decreased from 58.2 to 21.3 days, being longer than that of males at the temperatures of 25oC, 28oC and 30oC. (Figure 2).

Figure 2
Longevity of D. echinocacti (Bouché) (Hemiptera: Diaspididae) females and males on cladodes of the cactus pear “Orelha de Elefante Mexicana”, Opuntia stricta [Haw.] Haw. at the temperatures of 25°C, 28°C, 30°C, 33°C and 35°C, relative humidity of 60 ± 10% and 12-hour photophase. Bars followed by the same lowercase letter per treatment do not differ by Tukey's test, at 5% probability.

The total number of eggs and eggs/female/day of D. echinocacti was greater and lower at 25º C and 33º C (Table 4). Females of this insect did not lay eggs at 35°C.

4. Discussion

The significant and negative interactions between the temperature and survival of D. echinocacti in the egg, nymph and egg-adult stages indicate a decrease in this parameter with increasing temperature. This may be related to changes in enzymatic activity denaturizing proteins that regulate process of the development and survival of this scale mealybug at higher temperatures (Sreedevi et al., 2013SREEDEVI, G., PRASAD, Y.G., PRABHAKAR, M., RAO, G.R., VENNILA, S. and VENKATESWARLU, B., 2013. Bioclimatic thresholds, thermal constants and survival of mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in response to constant temperatures on hibiscus. PLoS One, vol. 8, no. 9, pp. e75636. http://dx.doi.org/10.1371/journal.pone.0075636. PMid:24086597.
http://dx.doi.org/10.1371/journal.pone.0...
; Shi et al., 2012SHI, P., LI, B.L. and GE, F., 2012. Intrinsic optimum temperature of the diamondback moth and its ecological meaning. Environmental Entomology, vol. 41, no. 3, pp. 714-722. http://dx.doi.org/10.1603/EN12058. PMid:22732631.
http://dx.doi.org/10.1603/EN12058...
). The lack of observation of this effect on male survival may be due to the reduced number of its individuals emerged.

The greater survival of D. echinocacti females at 28º C and of males at 25 ºC and 30 ºC indicates that these temperatures are ideal for this insect, as reported for Aonidiella aurantii (Maskell, 1879) (Hemiptera: Diaspididae) between 23 ºC and 27 ºC on butternut squash (Mohammed et al., 2020MOHAMMED, K., KARACA, I., AGARWAL, M., NEWMAN, J. and REN, Y., 2020. Age-specific life tables of Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae) and its parasitoid Aphytis melinus DeBach (Hymenoptera: Aphelinidae). Turkish Journal of Agriculture and Forestry, vol. 44, no. 2, pp. 180-188. http://dx.doi.org/10.3906/tar-1905-36.
http://dx.doi.org/10.3906/tar-1905-36...
).

The shorter duration of egg and nymph and from egg-adult stage periods of D. echinocacti females fed with cladodes of the forage cactus O. stricta as the temperature increased is due to the inability of insects to regulate their internal temperature with the environment. The development of most individuals of this insect, composed of females at all temperatures and their males only between 25 ºC and 30 ºC can be attributed to changes in the sex ratio of the progeny, common in Coccidae species (El-Awady et al., 2021EL-AWADY, S.M., EL-KHOULY, A.S., MEGAHED, M.M. and METWALLY, M.M., 2021. The effect of different temperatures on Chrysomphalus aonidum and Parlatoria blanchardii (Hemiptera Diaspididae). Al-Azhar Journal of Agricultural Research, vol. 46, no. 2, pp. 139-144. http://dx.doi.org/10.21608/ajar.2021.245630.
http://dx.doi.org/10.21608/ajar.2021.245...
). The shorter period of egg-nymph and egg-adult stages of D. echinocacti females and males fed with cactus pear cladodes as the temperature increased was expected, as this parameter is inversely correlated for poikilothermic organisms, such as insects (Van Der Meer, 2021VAN DER MEER, J., 2021. Production efficiency differences between poikilotherms and homeotherms have little to do with metabolic rate. Ecology Letters, vol. 24, no. 2, pp. 219-226. http://dx.doi.org/10.1111/ele.13633. PMid:33166039.
http://dx.doi.org/10.1111/ele.13633...
). Temperature increase accelerate metabolism and, consequently, movement, fecundity, population size and geographic distribution, but reduces longevity of insects (Hamblin et al., 2017HAMBLIN, A.L., YOUNGSTEADT, E., LOPEZ-URIBE, M.M. and FRANK, S.D., 2017. Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biological Letters, vol. 13, no. 6, pp. 20170125. http://dx.doi.org/10.1098/rsbl.2017.0125. PMid:28637837.
http://dx.doi.org/10.1098/rsbl.2017.0125...
; Just and Frank, 2020JUST, M.G. and FRANK, S.D., 2020. Thermal tolerance of gloomy scale (Hemiptera: Diaspididae) in the Eastern United States. Environmental Entomology, vol. 49, no. 1, pp. 104-114. http://dx.doi.org/10.1093/ee/nvz154. PMid:31904081.
http://dx.doi.org/10.1093/ee/nvz154...
). The incubation period of D. echinocacti eggs at 25 oC and 28 oC was similar to the 2.9 days and 3.7 days for this mealybug on Opuntia sp. in a climate-controlled chamber (27 ºC) and in a greenhouse (26.5º C) (Oetting, 1984OETTING, R.D., 1984. Biology of the cactus scale, D. echinocacti (Bouche) (Homoptera: Diaspidae). Annals of the Entomological Society of America, vol. 77, no. 1, pp. 88-92. http://dx.doi.org/10.1093/aesa/77.1.88.
http://dx.doi.org/10.1093/aesa/77.1.88...
). However, the nymph and pupa periods of males of this insect, at 25 oC and 28 oC were longer, respectively, than the 19.8 days and 21.2 days and 7.6 days and 8.1 days for this mealybug with Opuntia sp. in acclimatized chamber (27 ºC) and greenhouse (26.5 ºC), respectively (Oetting, 1984OETTING, R.D., 1984. Biology of the cactus scale, D. echinocacti (Bouche) (Homoptera: Diaspidae). Annals of the Entomological Society of America, vol. 77, no. 1, pp. 88-92. http://dx.doi.org/10.1093/aesa/77.1.88.
http://dx.doi.org/10.1093/aesa/77.1.88...
). Biological parameters of D. echinocacti on cactus pears vary with temperature and the species or cultivar of these plants.

The longer and shorter pre-oviposition, oviposition and post-oviposition periods of D. echinocacti females at 25 ºC and 33 ºC reduce the reproduction of this scale mealybug at the first temperature (Beardsley Junior and Gonzalez, 1975). The pre-oviposition and oviposition periods of D. echinocacti at 25 ºC were shorter than the 15 and 36 days with cactus pear in a greenhouse (26.5 ºC), but shorter and similar at 28 ºC, respectively, for this insect in a climate-controlled chamber (27 ºC) (Oetting, 1984OETTING, R.D., 1984. Biology of the cactus scale, D. echinocacti (Bouche) (Homoptera: Diaspidae). Annals of the Entomological Society of America, vol. 77, no. 1, pp. 88-92. http://dx.doi.org/10.1093/aesa/77.1.88.
http://dx.doi.org/10.1093/aesa/77.1.88...
). This is possibly due to the chemical defenses of the cactus pear, against alkaloids, flavonoids, phenols and saponins, with concentrations varying between cactus species (Pooja and Vidyasagar, 2016POOJA, S. and VIDYASAGAR, G.M., 2016. Phytochemical screening for secondary metabolites of Opuntia dillenii Haw. Journal of Medicinal Plants Studies, vol. 4, no. 5, pp. 39-43.; El Aalaoui and Sbaghi, 2022EL AALAOUI, M. and SBAGHI, M., 2022. Temperature dependence for survival, development, and reproduction of the cactus cochineal Dactylopius opuntiae (Cockerell). Insects, vol. 13, no. 5, pp. 426. http://dx.doi.org/10.3390/insects13050426. PMid:35621762.
http://dx.doi.org/10.3390/insects1305042...
).

The longer longevity of females than males of D. echinocacti is typical of species of this cochineal family and is due to the fact that the mouthparts of the latter are not functional, preventing them from feeding and, therefore, reducing their survival to a few days (Beardsley Junior and Gonzalez, 1975).

The highest and lowest total numbers of eggs and eggs/female/day of D. echinocacti at 25 ºC and 33 ºC, respectively, indicate that the latter temperature is inadequate for oviposition of this scale mealybug as reported for Aspidiotus nerii Bouché (Homoptera: Diaspididae) females fed potato with 99.7 and 55.1 eggs per female at 24 ºC and 28 ºC (Gerson and Hazan, 1979GERSON, U. and HAZAN, A., 1979. A biosystematic study of Aspidiotus nerii Bouché (Homoptera: Diaspididae) with the description of one new species. Journal of Natural History, vol. 13, no. 3, pp. 275-284. http://dx.doi.org/10.1080/00222937900770211.
http://dx.doi.org/10.1080/00222937900770...
) and A. aurantii on butternut squash with 109.7 and 129.4 eggs per female at 23°C and 27°C, respectively (Mohammed et al., 2020MOHAMMED, K., KARACA, I., AGARWAL, M., NEWMAN, J. and REN, Y., 2020. Age-specific life tables of Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae) and its parasitoid Aphytis melinus DeBach (Hymenoptera: Aphelinidae). Turkish Journal of Agriculture and Forestry, vol. 44, no. 2, pp. 180-188. http://dx.doi.org/10.3906/tar-1905-36.
http://dx.doi.org/10.3906/tar-1905-36...
).

The inverse correlation between the development periods of D. echinocacti females and males with temperature confirms impact of this parameter on males and females of this insect (Li et al., 2017LI, G.P., FENG, H.Q., HUANG, B., ZHONG, J., TIAN, C.H., QIU, F. and HUANG, J.R., 2017. Effects of short-term heat stress on survival and fecundity of two plant bugs: Apolygus lucorumm (Meyer-Dür) and Adelphocoris suturalis Jakovlev (Hemiptera: Miridae). Acta Ecologica Sinica, vol. 37, no. 11, pp. 3939-3945. ). In addition, the lack of development of males, between 30º C and 35º C, is probably due to sexual dimorphism of this scale mealybug, with these developing in a similar way to holometabolous insects and, therefore, more vulnerable to higher temperatures (Mathenge et al., 2009MATHENGE, C.W., HOLFORD, P., HOFFMANN, J.H., SPOONER-HART, R., BEATTIE, G.A.C. and ZIMMERMANN, H.G., 2009. The biology of Dactylopius tomentosus (Hemiptera: dactylopiidae). Bulletin of Entomological Research, vol. 99, no. 6, pp. 551-559. http://dx.doi.org/10.1017/S0007485308006597. PMid:19203403.
http://dx.doi.org/10.1017/S0007485308006...
). The waxy carapace, over the body, increases protection against high temperatures and desiccation, facilitating the development of D. echinocacti females (Beardsley Junior and Gonzalez, 1975BEARDSLEY JUNIOR, J.W. and GONZALEZ, R.H., 1975. The biology and ecology of armored scales. Annual Review of Entomology, vol. 20, no. 1, pp. 47-73. http://dx.doi.org/10.1146/annurev.en.20.010175.000403. PMid:1090245.
http://dx.doi.org/10.1146/annurev.en.20....
; Mitov et al., 2018MITOV, M., SOLDAN, V. and BALOR, S., 2018. Observation of an anisotropic texture inside the wax layer of insect cuticle. Arthropod Structure & Development, vol. 47, no. 6, pp. 622-626. http://dx.doi.org/10.1016/j.asd.2018.10.003. PMid:30394343.
http://dx.doi.org/10.1016/j.asd.2018.10....
).

The results obtained are important to improve integrated management programs to reduce population outbreaks of D. echinocacti in areas subject to seasonal temperature changes in the Brazilian regions where cactus pear is cultivated, especially in the current scenario of global warming.

Acknowledgements

The authors would like to thank the Brazilian agencies “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - Código Financeiro 001) for the scholarship and to “Empresa Brasileira de Pesquisa Agropecuária (Embrapa)” for financial support (código SEG 20.20.00.120.00.00).

References

  • BARBOSA, H.A. and KUMAR, T.V.L., 2016. Influence of rainfall variability on the vegetation dynamics over Northeastern Brazil. Journal of Arid Environments, vol. 124, no. 1, pp. 377-387. http://dx.doi.org/10.1016/j.jaridenv.2015.08.015
    » http://dx.doi.org/10.1016/j.jaridenv.2015.08.015
  • BARBOSA, H.A., LAKSHMI KUMAR, T.V. and SILVA, L.R.M., 2015. Recent trends in vegetation dynamics in the South America and their relationship to rainfall. Natural Hazards, vol. 77, no. 2, pp. 883-899. http://dx.doi.org/10.1007/s11069-015-1635-8
    » http://dx.doi.org/10.1007/s11069-015-1635-8
  • BAYINDIR, L. and BIRGÜCÜ, A.K., 2016. Effect of temperature on life history of Chrysomphalus dictyospermi (Morgan) (Hemiptera: diaspididae). Redia (Firenze), vol. 99, pp. 145-149.
  • BEARDSLEY JUNIOR, J.W. and GONZALEZ, R.H., 1975. The biology and ecology of armored scales. Annual Review of Entomology, vol. 20, no. 1, pp. 47-73. http://dx.doi.org/10.1146/annurev.en.20.010175.000403 PMid:1090245.
    » http://dx.doi.org/10.1146/annurev.en.20.010175.000403
  • BOX, G.E.P. and COX, D.R., 1964. An analysis of transformations. Journal of the Royal Statistical Society. Series B, Statistical Methodology, vol. 26, no. 2, pp. 211-252.
  • CLAPS, L.E., WOLFF, V.R.S. and GONZÁLEZ, R.H., 2001. Catálogo de las Diaspididae (Hemiptera: Coccoidea) exóticas de la Argentina, Brasil y Chile. Revista de la Sociedad Entomológica Argentina, vol. 60, no. 1-4, pp. 9-34.
  • EL AALAOUI, M. and SBAGHI, M., 2022. Temperature dependence for survival, development, and reproduction of the cactus cochineal Dactylopius opuntiae (Cockerell). Insects, vol. 13, no. 5, pp. 426. http://dx.doi.org/10.3390/insects13050426 PMid:35621762.
    » http://dx.doi.org/10.3390/insects13050426
  • EL-AWADY, S.M., EL-KHOULY, A.S., MEGAHED, M.M. and METWALLY, M.M., 2021. The effect of different temperatures on Chrysomphalus aonidum and Parlatoria blanchardii (Hemiptera Diaspididae). Al-Azhar Journal of Agricultural Research, vol. 46, no. 2, pp. 139-144. http://dx.doi.org/10.21608/ajar.2021.245630
    » http://dx.doi.org/10.21608/ajar.2021.245630
  • GERSON, U. and HAZAN, A., 1979. A biosystematic study of Aspidiotus nerii Bouché (Homoptera: Diaspididae) with the description of one new species. Journal of Natural History, vol. 13, no. 3, pp. 275-284. http://dx.doi.org/10.1080/00222937900770211
    » http://dx.doi.org/10.1080/00222937900770211
  • GOLLA, B., 2021. Agricultural production system in arid and semi-arid regions. International Journal of Agriculture Science and Food Technology, vol. 7, no. 2, pp. 234-244.
  • GUSHA, J., HALIMANI, T.E., KATSANDE, S. and ZVINOROVA, P.I., 2015. The effect of Opuntia ficus indica and forage legumes based diets on goat productivity in smallholder sector in Zimbabwe. Small Ruminant Research, vol. 125, pp. 21-25. http://dx.doi.org/10.1016/j.smallrumres.2015.02.018
    » http://dx.doi.org/10.1016/j.smallrumres.2015.02.018
  • HAMBLIN, A.L., YOUNGSTEADT, E., LOPEZ-URIBE, M.M. and FRANK, S.D., 2017. Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biological Letters, vol. 13, no. 6, pp. 20170125. http://dx.doi.org/10.1098/rsbl.2017.0125 PMid:28637837.
    » http://dx.doi.org/10.1098/rsbl.2017.0125
  • HUANG, J., JI, M., XIE, Y., WANG, S., HE, Y. and RAN, J., 2016. Global semi‑arid climate change over last 60 years. Climate Dynamics, vol. 46, no. 3-4, pp. 1131-1150. http://dx.doi.org/10.1007/s00382-015-2636-8
    » http://dx.doi.org/10.1007/s00382-015-2636-8
  • JUST, M.G. and FRANK, S.D., 2020. Thermal tolerance of gloomy scale (Hemiptera: Diaspididae) in the Eastern United States. Environmental Entomology, vol. 49, no. 1, pp. 104-114. http://dx.doi.org/10.1093/ee/nvz154 PMid:31904081.
    » http://dx.doi.org/10.1093/ee/nvz154
  • LI, G.P., FENG, H.Q., HUANG, B., ZHONG, J., TIAN, C.H., QIU, F. and HUANG, J.R., 2017. Effects of short-term heat stress on survival and fecundity of two plant bugs: Apolygus lucorumm (Meyer-Dür) and Adelphocoris suturalis Jakovlev (Hemiptera: Miridae). Acta Ecologica Sinica, vol. 37, no. 11, pp. 3939-3945.
  • LIMA, I.M.M. and GAMA, S., 2001. Record of host plants (Cactaceae) and new dissemination strategy of D. echinocacti (Bouché) (Hemiptera: Diaspididae), prickly-pear-scale, in the States of Pernambuco and Alagoas, Brazil. Neotropical Entomology, vol. 30, no. 3, pp. 479-481. http://dx.doi.org/10.1590/S1519-566X2001000300025
    » http://dx.doi.org/10.1590/S1519-566X2001000300025
  • MARENGO, J.A., TORRES, R.R. and ALVES, L.M., 2017. Drought in Northeast Brazil - past, present, and future. Theoretical and Applied Climatology, vol. 129, no. 3-4, pp. 1189-1200. http://dx.doi.org/10.1007/s00704-016-1840-8
    » http://dx.doi.org/10.1007/s00704-016-1840-8
  • MATHENGE, C.W., HOLFORD, P., HOFFMANN, J.H., SPOONER-HART, R., BEATTIE, G.A.C. and ZIMMERMANN, H.G., 2009. The biology of Dactylopius tomentosus (Hemiptera: dactylopiidae). Bulletin of Entomological Research, vol. 99, no. 6, pp. 551-559. http://dx.doi.org/10.1017/S0007485308006597 PMid:19203403.
    » http://dx.doi.org/10.1017/S0007485308006597
  • MIRANDA-ROMERO, L.A., VAZQUEZ-MENDOZA, P., BURGUEÑO-FERREIRA, J.A. and ARANDA-OSORIO, G., 2018. Nutritive value of cactus pear silages for finishing lambs. Journal of the Professional Association for Cactus Development, vol. 20, pp. 196-215. http://dx.doi.org/10.56890/jpacd.v20i.37
    » http://dx.doi.org/10.56890/jpacd.v20i.37
  • MITOV, M., SOLDAN, V. and BALOR, S., 2018. Observation of an anisotropic texture inside the wax layer of insect cuticle. Arthropod Structure & Development, vol. 47, no. 6, pp. 622-626. http://dx.doi.org/10.1016/j.asd.2018.10.003 PMid:30394343.
    » http://dx.doi.org/10.1016/j.asd.2018.10.003
  • MOHAMMED, K., KARACA, I., AGARWAL, M., NEWMAN, J. and REN, Y., 2020. Age-specific life tables of Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae) and its parasitoid Aphytis melinus DeBach (Hymenoptera: Aphelinidae). Turkish Journal of Agriculture and Forestry, vol. 44, no. 2, pp. 180-188. http://dx.doi.org/10.3906/tar-1905-36
    » http://dx.doi.org/10.3906/tar-1905-36
  • MORAES, G.S.O., GUIM, A., TABOSA, J.N., CHAGAS, J.C.C., ALMEIDA, M.P. and FERREIRA, M.A., 2019. Cactus [Opuntia stricta (Haw.) Haw] cladodes and corn silage: how do we maximize the performance of lactating dairy cows reared in semiarid regions? Livestock Science, vol. 221, pp. 133-138. http://dx.doi.org/10.1016/j.livsci.2019.01.026
    » http://dx.doi.org/10.1016/j.livsci.2019.01.026
  • OETTING, R.D., 1984. Biology of the cactus scale, D. echinocacti (Bouche) (Homoptera: Diaspidae). Annals of the Entomological Society of America, vol. 77, no. 1, pp. 88-92. http://dx.doi.org/10.1093/aesa/77.1.88
    » http://dx.doi.org/10.1093/aesa/77.1.88
  • OLIVEIRA, S.R., SILVA, C.A.D., CARVALHO, T.S. and COSTA, L.A.A., 2019. Biology of Corythucha gossypii Fabricius, 1794 (Hemiptera: Tingidae) in Ricinus communis at different temperatures and thermal requirements. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 79, no. 2, pp. 278-285. http://dx.doi.org/10.1590/1519-6984.180501 PMid:30088527.
    » http://dx.doi.org/10.1590/1519-6984.180501
  • PERROTTA, V.G. and ARAMBARRI, A.M., 2018. Cladodes anatomy of Opuntia (Cactaceae) from the province of Buenos Aires (Argentina). Boletín de la Sociedad Argentina de Botánica, vol. 53, no. 3, pp. 345-357. http://dx.doi.org/10.31055/1851.2372.v53.n3.21310
    » http://dx.doi.org/10.31055/1851.2372.v53.n3.21310
  • POOJA, S. and VIDYASAGAR, G.M., 2016. Phytochemical screening for secondary metabolites of Opuntia dillenii Haw. Journal of Medicinal Plants Studies, vol. 4, no. 5, pp. 39-43.
  • RIBEIRO JÚNIOR, J.I., 2001. Análises estatísticas no SAEG. Viçosa: UFV. 301 p.
  • ROSSATO, L., ALVALÁ, R.C.S., MARENGO, J.A., ZERI, M., CUNHA, A.P.M., PIRES, L.B.M. and BARBOSA, H.A., 2017. Impact of soil moisture on crop yields over Brazilian Semiarid. Frontiers in Environmental Science, vol. 5, pp. 73. http://dx.doi.org/10.3389/fenvs.2017.00073
    » http://dx.doi.org/10.3389/fenvs.2017.00073
  • SHI, P., LI, B.L. and GE, F., 2012. Intrinsic optimum temperature of the diamondback moth and its ecological meaning. Environmental Entomology, vol. 41, no. 3, pp. 714-722. http://dx.doi.org/10.1603/EN12058 PMid:22732631.
    » http://dx.doi.org/10.1603/EN12058
  • SILVA, T.G.F.S., ARAÚJO PRIMO, J.T., MORAIS, J.E.F., DINIZ, W.J.S., SOUZA, C.A.A. and SILVA, M.C., 2015. Crescimento e produtividade de clones de palma forrageira no semiárido e relações com variáveis meteorológicas. Revista Caatinga, vol. 28, no. 2, pp. 10-18.
  • SOUZA, A.F.N., ARAÚJO, G.G.L., SANTOS, E.M., AZEVEDO, P.S., OLIVEIRA, J.S., PERAZZO, A.F., PINHO, R.M.A. and ZANINE, A.M., 2020. Carcass traits and meat quality of lambs fed with cactus (Opuntia fıcus-indica Mill) silage and subjected to an intermittent water supply. PLoS One, vol. 15, no. 4, pp. e0231191. http://dx.doi.org/10.1371/journal.pone.0231191 PMid:32255804.
    » http://dx.doi.org/10.1371/journal.pone.0231191
  • SREEDEVI, G., PRASAD, Y.G., PRABHAKAR, M., RAO, G.R., VENNILA, S. and VENKATESWARLU, B., 2013. Bioclimatic thresholds, thermal constants and survival of mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in response to constant temperatures on hibiscus. PLoS One, vol. 8, no. 9, pp. e75636. http://dx.doi.org/10.1371/journal.pone.0075636 PMid:24086597.
    » http://dx.doi.org/10.1371/journal.pone.0075636
  • VAN DER MEER, J., 2021. Production efficiency differences between poikilotherms and homeotherms have little to do with metabolic rate. Ecology Letters, vol. 24, no. 2, pp. 219-226. http://dx.doi.org/10.1111/ele.13633 PMid:33166039.
    » http://dx.doi.org/10.1111/ele.13633

Publication Dates

  • Publication in this collection
    18 Aug 2023
  • Date of issue
    2023

History

  • Received
    18 Apr 2023
  • Accepted
    10 July 2023
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br