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Abstract

We evaluate experimentally the effect of a sequential disturbance—desiccation—on the structure and dynamics of a 
periphytic algal community in a semilotic environment of the Upper Paraná River floodplain. We tested the hypothesis 
that the presence of recurrent disturbances have a direct negative effect on the attributes of the periphyton community. 
The sequential effect of desiccation on the periphytic community promoted its significant decrease in density, while 
the same was not observed in species richness. When desiccation was induced in a mature community, there was no 
difference in the community compared to control. The sequential disturbances on the community of periphytic algae in 
a mature stage, was characterised by greater stability. It is believed that the effects of variation in water levels caused 
by upstream reservoirs can likewise also modify the structure and stability of periphytic algae in the Upper Paraná 
River floodplain.
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Efeitos de distúrbios sequenciais na comunidade  
perifítica à jusante de um curso de água represado

Resumo

Avaliou-se experimentalmente o efeito de distúrbios sequenciais – dessecamento – na estrutura e na dinâmica da 
comunidade de algas perifíticas em um ambiente semilótico da Planície de Inundação do Alto Rio Paraná. Testou-se a 
hipótese de que a presença de distúrbios recorrentes tem efeito negativo direto nos atributos da comunidade de algas 
perifíticas. O efeito sequencial do dessecamento sobre a comunidade perifítica promoveu o decréscimo significativo da 
sua densidade, enquanto que, em relação à riqueza de espécies, o mesmo não foi observado. Quando o dessecamento foi 
aplicado em uma comunidade madura, em processo avançado de desenvolvimento, não houve diferença na comunidade 
em relação ao controle. As perturbações sequenciais sobre a comunidade de algas perifíticas em um estágio maduro foi 
caracterizada por maior estabilidade. Acredita-se que os efeitos da variação do nível da água, causada por reservatórios 
a montante, podem, do mesmo modo, também modificar a estrutura e a estabilidade de algas perifíticas na Planície 
de Inundação do Alto Rio Paraná.

Palavras-chave: distúrbio, perifíton, dessecamento, estabilidade, planície de inundação.

1. Introduction

The hydrological regime is considered to be the key 
factor driving ecological functioning and biodiversity 
patterns in river floodplain systems (RFSs) (Junk et al., 
1989; Neiff, 1990; Bunn and Arthington, 2002). Dammed 
watercourses have a hydrological regime that is artificially 
controlled by the dams, which work as discharge regulators. 
Flooding occurs only when the reservoir has reached its 
absolute maximum, and low discharges will only reoccur 
during long-term dry periods, or in the case of problems 
in the generation/consumption energy balance (Souza 
Filho et al., 2004).

This results in a highly variable flow regime, with abrupt 
changes that can spread several kilometers downstream 
until they are ameliorated (Petts, 1984), but which can 
still vary throughout the day, week or season of the year 
(Poff et al., 1997; Agostinho et al., 2007). The variation 
in the river’s water level can achieve daily differences of 
between 20cm to over one metre between morning and 
early evening (Souza Filho et al., 2004). This can cause 
partial exposure or, in extreme cases, total exposure of 
the riverbed downstream, creating a major impact on 
the resident ecological communities by exposing them 
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to desiccation. This process has a direct effect on littoral 
communities including the periphyton community.

As a physical disturbance, desiccation can cause 
significant effects on the function and structure of periphyton 
communities (Peterson, 1996). In fact, Biggs (1996) notes 
that periphyton can be directly affected through disturbance 
rather than other processes.

According to Agostinho et al. (2004), changes in 
the hydrological regime of floodplain rivers affect the 
physical and biological environments, constituting one 
of the most serious threats to the biotic integrity of the 
system, by direct or indirect interference with the structure 
of habitats, communities, and other functional aspects of 
the environment. These changes influence the structure 
and distribution of the various communities living in the 
floodplain, including the periphytic algal community which 
is commonly studied in these ecosystems (Gottlieb et al., 
2006; Luttenton and Baisden, 2006; Davidson et al., 2012; 
Mihaljević and Pfeiffer, 2012)

As the key factor, the intensity and frequency of the 
flood pulses also influence a series of other important 
factors that affect the structure of the periphytic algal 
community in the Upper Paraná River floodplain. These 
factors include the availability of propagules (Rodrigues 
and Bicudo, 2001), nutrient concentration (Murakami 
and Rodrigues, 2009), primary production (i.e. biomass) 
(Leandrini et al., 2008; Leandrini and Rodrigues, 2008), 

taxonomic composition (Algarte et al., 2009; Rodrigues 
and Bicudo, 2001) and density of organisms (Fonseca and 
Rodrigues, 2005). Additionally, Rodrigues and Bicudo 
(2001) suggest the importance of physical disturbances 
in this system.

The response of the periphytic community to desiccation 
varies according to various factors, including how thin the 
biofilm is, the taxonomic composition and production of 
external mucilage (Hawes et al., 1992; Blinn et al., 1995; 
Stanley et al., 2004; Mcknight et al., 2007; Ledger et al., 
2008). This study aimed at verifying the effect of sequential 
disturbances—experimental simulations of desiccation—on 
the structure and dynamics of the periphytic algal community 
during its process of colonisation and succession in the 
Upper Paraná River floodplain. We tested the hypothesis 
that a large number of desiccation disturbances produced 
by the daily variation of water level have a direct negative 
effect on the attributes of the periphytic community.

2. Material and Methods

The experiment was set up in Pau Veio Backwater 
(see Figure 1) which is directly connected to the Paraná 
River, one of the most regulated river stretches in the world 
(more than 46 large dams) (Agostinho et al., 2007), in the 
Upper Paraná River floodplain (22° 44’ 50.76” S and 53° 

15’ 11.16” W). A wooden support containing removable 

Figure 1. Location of the Pau Veio Backwater in the Upper Paraná River floodplain.
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drawers that held glass slides was placed on the littoral 
zone of the backwater for colonisation, next to stands of 
Eichhornia azurea Kunth.

Daily changes in water level, prompted by the dams 
upstream, expose, for a short period of time (about 12 
to 15 hours), the banks of floodplain lakes. To simulate 
this disturbance on periphytic communities, we removed 
from the water a given drawer and transferred it ashore, 
returning it after 12 to 15 hours, increasing the number 
of drawers removed throughout the experiment (as shown 
in Figure 2). Some supports were kept constantly in the 
aquatic environment as a control treatment, with no induced 
desiccation disturbance. The glass slides were randomly 
collected in each respective drawer at the same depth.

As described above, the control treatment (0D) did 
not experience any desiccation disturbance at any time; 
the treatment which experienced weak disturbance (1Dd) 
was subjected to desiccation (15 hours) at 20 days (d) 
of the community´s development; the treatment which 
experienced medium disturbance (2Dd) was subjected 
to desiccation at 15 days (1Dc) and 20 days (2Dd); the 
treatment which experienced high disturbance (3Dd) was 
subjected to desiccation at 10 days (1Db), 15 days (2Dc) 
and 20 days (3Dd); the treatment which experienced very 
high disturbance (4Dd) was subjected to desiccation at 5 
days (1Da), 10 days (2Db), 15 days (3Dc) and 20 days 
(4Dd). This procedure, illustrated in Figure 2, allowed us 
to compare communities that suffered all disturbances at 
the end of 20 days.

The glass slides were randomly collected in replicate 
(n = 2 glass slides) for the quantitative analyses and 

transported in a humid chamber. These were maintained 
on ice until scraping of the periphytic material, which was 
performed with the aid of a steel blade and distilled water 
jets. The samples were put into 150 mL glass containers, 
fixed and preserved in a solution of acetic Lugol (5%), 
according to Bicudo and Menezes (2006).

The taxa quantification were carried out with an 
inverted microscope (Olympus® CK2), using sedimentation 
chambers according to the method of Utermöhl (1958), and 
through random fields as recommended by Bicudo (1990). 
Counting was performed until at least 100 individuals 
of the predominant taxa had been identified, as well as 
stabilisation of the cumulative species curve. The equation for 
calculating the density followed Ros (1979), adapted to the 
substrate area, and the results were expressed per unit area 
(individuals × cm–2). The qualitative analysis was based 
on quantitative data of periphytic algae.

The analysis of the structure of epiphytic algal community 
was performed using the following descriptors: richness 
expressed as the number of taxa, and density following 
the taxa quantification method. The differences among 
the mean values of these attributes between the treatments 
were analysed using an analysis of variance (ANOVA-one 
way analysis).

The community structure over time for the different 
disturbance levels was represented by means of a non-
metric multidimensional scaling (NMDS), employing the 
Bray–Curtis dissimilarity (Clarke and Warwick, 2001). 
Distortion of the two-dimensional data resolution was 
expressed by the value of S (stress). The closer to zero is 
the stress value, the better the fitness between the original 

Figure 2. Representation of the treatments (drawers) subjected to the disturbances. (Grey line: no disturbances experienced. 
Black line: disturbances experienced. A = 5 days, b = 10 days, c = 15 days and d = 20 days, D = Induced disturbance).
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distance of the sampling data and the configuration obtained 
by analysis (Legendre and Legendre, 1998). For this, we 
used the program PAST version 2.08 (Hammer et al., 2001).

3. Results

Based on quantitative data, 168 taxa were identified 
and distributed into the classes: Zygnemaphyceae (49 taxa), 
Bacillariophyceae (46), Chlorophyceae (29), Cyanophyceae 
(20), Euglenophyceae (13), Oedogoniophyceae (6), 
Xanthophyceae (4) and Rhodophyceae (1). The total species 
richness for the final colonisation period (d=21 days) was 
not significantly different (F(4,7) = 1.7178, p = 0.2496), but 
a drop in species numbers was observed as disturbances 
accumulated (see Figure 3).

Unlike species richness, species density significantly 
decreased as disturbances accumulated (see Figure 4), 
highlighting the three disturbances (3Dd) and four 
disturbances (4Dd) treatments.

The most abundant class was Bacillariophyceae, followed 
by Zygnemaphyceae, Chlorophyceae, Cyanophyceae 
and Oedogoniophyceae. The classes Euglenophyceae, 

Xanthophyceae and Rhodophyceae presented lower 
abundances.

Non-metric multidimensional scaling (NMDS) provided 
evidence of a separation between communities of the 
control treatment (0Da, 0Db, 0Dc and 0Dd) and those 
subjected to a greater amount of disturbance (4Dd) (see 
Figure 5). The periphytic community subjected to only one 
disturbance at the beginning of the colonisation process 
(1Da and 1Db) was more similar to the control. There was 
a lower structural variation as the disturbances occurred 
on the more mature community in an advanced stage of 
development (Dc and Dd). At the end of the experiment, a 
greater dissimilarity was detected between the community 
subjected to no disturbance (0Dd) and that subjected to 
four disturbances (4Dd) (see Figure 5).

4. Discussion

The sequential effect of desiccation significantly 
reduced the density of the periphytic algal community. 
Such type of physical disturbance can affect the structure 
and productivity of the algal community (Gottlieb et al., 
2005). This demonstrates that recurrent events since the 
start of colonisation promoted the removal of algae near the 
surface of the biofilm which had not yet been embedded 
in the matrix.

Pickett and White (1985) recognise that disturbance 
frequency, defined by the number of events over time, 
affects the ecosystem response. The more frequent the 
disturbance, the lower the potential for recovery of 
intolerant organisms (Collins et al., 2001). This, in turn, 
may destabilise the community dynamics and increase 
system variability (Collins et al., 2001). Furthermore, 
Robinson et al. (2004) discusses in his experimental study 
the cumulative effects of floods.

Figure  3. Richness of periphytic algae in face of the 
accumulation of disturbances at the final colonisation period 
in the treatments studied in Pau Veio Backwater, Upper 
Paraná River floodplain.

Figure  4. Density of periphytic algae in face of the 
accumulation of disturbances at the 20th day in Pau Veio 
Backwater, Upper Paraná River floodplain (F(4;7) = 4.9794; 
p = 0.0322).

Figure 5. Non-metric multidimensional scaling used for the 
analysis of the structure of periphytic algae found in Pau 
Veio Backwater, Upper Paraná River floodplain (S = 0.1911, 
0D: control treatment; 1D: treatment subjected to only one 
disturbance; 2D: treatment subjected to two disturbances; 
3D: treatment subjected to three disturbances; 4D: treatment 
subjected to four disturbances. a  =  5 days, b  =  10 days, 
c = 15 days and d = 20 days).
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Disturbances also play an important role on species 
diversity and composition by changing environmental 
resources, creating opportunities for some species and 
eliminating others. The “intermediate disturbance hypothesis” 
suggests that species diversity should be higher at moderate 
levels of disturbance (Connell, 1978). Under conditions of 
recurrent disturbance, biological diversity can adapt, with 
the result that it becomes dependent on these disturbances 
for the organisation and behaviour of species in the 
community (Hobbs and Huenneke, 1992).

In advanced stages of succession, species composition 
of the periphyton subjected to low and medium disturbance 
was very similar, having little change in the control treatment, 
with the most similar being 2Dd, 1Dc and 1Dd. In this 
case, the mucilage of a biofilm at mature state may have 
favoured the permanence of a greater number of species, as 
the extracellular polysaccharides produced by the algae in 
the form of mucilage have multiple functions, one of which 
is to increase resistance to desiccation (Hoagland et al., 
1993). Furthermore, Peterson (1987) suggests that the 
production of mucilage provides an increased resistance to 
repeated desiccation, mainly in Cyanobacteria (Potts, 1999).

Periphytic algae had no significant reduction in species 
richness (F = 1.7178, p = 0.2496), conferring to the 
community a stability in the face of the applied disturbances. 
According to McCormick (1996) disturbances typically 
result in disproportionate losses in populations of those 
species that are competitively dominant within the mat. 
Selective removal of competitive dominants enhances the 
potential for species coexistence and, consequently, habitats 
exposed to disturbance tend to exhibit higher species 
richness than comparable habitats that are undisturbed. 
This relation between species richness and disturbance 
could explain the non-significance of species richness 
loss. Moreover, according to Peterson (1996) physical 
disturbance can favour periphyton, since the surface is 
removed, permitting the entry of nutrients and the renewal 
of the community.

The cumulative desiccation events worked as disturbances 
for the periphytic algal community, changing its structure 
and dynamics. These events may limit the community 
to remaining in its initial development stage condition. 
It is believed that the effects of the variations in water 
level caused by upstream impoundments over time have 
similarly caused changes in the structure of periphytic 
algae over time.
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