Acessibilidade / Reportar erro

Putting the Pacific fat sleeper Dormitator latifrons (Pisces: Eleotridae) to sleep: effects of clove oil and lidocaine anesthetic

Colocando o dorminhoco-gordo-do-pacífico Dormitator latifrons (Pisces: Eleotridae) para dormir: efeitos do óleo de cravo e do anestésico lidocaína

Abstract

Among the different handling techniques in aquaculture, the use of anesthetics has had a growing interest focused on guaranteeing animal welfare, and reducing possible stress situations during general handling. The aim of this study was to present the use of eugenol and lidocaine with non-invasive anesthesia procedures in Dormitator latifrons, in which the different stages of anesthesia (induction and recovery) were determined. One hundred and twenty healthy fish of average weight of 73.59 ± 13.53 g and standard length of 17 ± 1.36 cm were used. The experimental fish were subjected to fasting for 24 h prior to the tests. Five fish were subjected to eugenol (25, 50, 100, and 200 µL/L), and lidocaine (100, 200, 300, and 400 mg/L), in triplicate. The time to reach deep and recovery anesthesia were recorded and the data analyzed using ANOVA (α= 0.05). Organisms exposed to anesthetics evidenced early episodes of fast, short-distance swimming (initial hyperactivity) for short periods of time. Survival was 100% with both compounds and concentrations. Fish exposed to a eugenol concentration of 200 µL/L had longer anesthesia times and took longer time to recover (P<0.05). The most effective concentrations for eugenol and lidocaine were of 200 µL/L and 400 µL/L in juvenile fish, promoting rapid inductions, without compromising the conditions for the recovery of the fish. This work provides practical information for handling and transportation D. latiforns with the least possible stress and ensuring animal welfare.

Keywords:
fish; eugenol; stress; handling; sedation

Resumo

Dentre as diferentes técnicas de manejo na aquicultura, o uso de anestésicos tem despertado interesse crescente voltado para a garantia do bem-estar animal, reduzindo possíveis situações de estresse durante o manejo geral. O objetivo deste estudo foi apresentar o uso de eugenol e lidocaína com procedimentos anestésicos não invasivos em Dormitator latifrons, nos quais foram determinadas as diferentes etapas da anestesia (indução e recuperação). Foram utilizados 120 peixes saudáveis, com peso médio de 73,59 ± 13,53 g e 17 ± 1,36 cm de comprimento, em jejum de 24 horas antes dos testes. Cinco peixes foram submetidos a eugenol (25, 50, 100 e 200 µL/L) e lidocaína (100, 200, 300 e 400 mg/L), em triplicata. O tempo para atingir a anestesia profunda e de recuperação foi registrado, os dados foram analisados com ANOVA (α= 0,05). Organismos expostos a anestésicos evidenciaram episódios precoces de nado rápido de curta distância (hiperatividade inicial) por curtos períodos de tempo. A sobrevivência atinge 100% com ambos compostos e concentrações. Peixes expostos a uma concentração de eugenol de 200 µL/L tiveram tempos de anestesia mais longos e demoraram mais para se recuperar (P<0,05). As concentrações mais efetivas para eugenol e lidocaína foram de 200 µL/L e 400 µL/L em peixes juvenis, promovendo induções rápidas, sem comprometer as condições de recuperação dos peixes. Este trabalho fornece informações práticas para o manejo e transporte de D. latifrons com o mínimo de estresse possível e garantindo o bem-estar animal.

Palavras-chave:
peixe; eugenol; estresse; manipulação; sedação

1. Introduction

Dormitator latifrons (Richardson, 1844), also called Pacific fat sleeper, chococo, chalaco, chame, puyeque or popoyote, is a fish that has attracted biological interest for more than a hundred years (Vega-Villasante et al., 2021VEGA-VILLASANTE, F., RUIZ-GONZÁLEZ, L.E., CHONG-CARRILLO, O., BASTO-ROSALES, M.E.R., PALMA-CANCINO, D.J., TINTOS-GÓMEZ, A., MONTOYA-MARTÍNEZ, C.E., KELLY-GUTIÉRREZ, L.D., GUERRERO-GALVÁN, S.R., PONCE-PALAFOX, J.T., ZAPATA, A., MUSIN, G.E. and BADILLO-ZAPATA, D., 2021. Biology and use of the Pacific fat sleeper Dormitator latifrons (Richardson, 1844): state of the art review. Latin American Journal of Aquatic Research, vol. 49, no. 3, pp. 391-403. http://dx.doi.org/10.3856/vol49-issue3-fulltext-2637.
http://dx.doi.org/10.3856/vol49-issue3-f...
). Its distribution ranges from California (USA) to Peru, occupying rivers, streams and coastal lagoons and estuaries (Yáñez-Arancibia and Díaz-González, 1977YÁÑEZ-ARANCIBIA, A. and DÍAZ-GONZÁLEZ, G., 1977. Trophicdynamic ecology of Dormitator latifrons (Richardson) in nine coastal lagoons on the Pacific coast of Mexico. (Pisces: electridae). Instituto de Ciencia del Mar y Limnología, vol. 19, pp. 140.). In Central America, it has great commercial potential, and its fishing represents an alternative source of employment (López-López et al., 2015LÓPEZ-LÓPEZ, V.V., RODRÍGUEZ-MONTES DE OCA, G.A., GALAVÍZ, M.A., ROMÁN-REYES, C., MEDINA-HERNÁNDEZ, E.A., DABROWSKI, K. and HAWS, M.C., 2015. Descripción histológica comparativa del desarrollo del sistema digestivo y visual de larvas de chame Dormitator latifrons (Pisces: eleotridae). Latin American Journal of Aquatic Research, vol. 43, no. 3, pp. 484-494. http://dx.doi.org/10.3856/vol43-issue3-fulltext-10.
http://dx.doi.org/10.3856/vol43-issue3-f...
). Although there are no official data on its fisheries and aquaculture production, this species has a commercial interest since it is part of the gastronomy in several coastal communities in Ecuador and southern Mexico mainly in the states of Guerrero and Oaxaca (Aréchiga-Palomera et al., 2022ARÉCHIGA-PALOMERA, M.A., NIEVES-RODRÍGUEZ, K.N., CHONG-CARRILLO, O., NOLASCO-SORIA, H., PEÑA-MARÍN, E.S., ÁLVAREZ-GONZÁLEZ, C.A., PALMA-CANCINO, D.J., MARTÍNEZ-GARCÍA, R., BADILLO-ZAPATA, D. and VEGA-VILLASANTE, F., 2022. Dormitator latifrons (Richardson, 1844) a Pacific fat sleeper, but skinny in research: a scientometric study. Latin American Journal of Aquatic Research, vol. 50, no. 3, pp. 451-460. http://dx.doi.org/10.3856/vol50-issue3-fulltext-2784.
http://dx.doi.org/10.3856/vol50-issue3-f...
). In recent years, interest in its study in Mexico has increased, especially because it is considered a species with high potential to be cultivated as an alternative to exotic species such as tilapia (Basto-Rosales et al., 2019BASTO-ROSALES, M.E.R., RODRÍGUEZ-MONTES DE OCA, G.A., CARRILLO-FARNÉS, O., ÁLVAREZ-GONZÁLEZ, C.A., BADILLO-ZAPATA, D. and VEGA-VILLASANTE, F., 2019. Growth of Dormitator latifrons under different densities in concrete tanks. Tropical and Subtropical Agroecosystems, vol. 22, no. 2, pp. 489-493.). The transport and handling of this fish, from the natural environment to the laboratory, is of essential importance since it is prone to suffer stress, which favors the appearance of diseases (Vega-Villasante et al., 2017VEGA-VILLASANTE, F., CUETO-CORTÉS, L., BASTO-ROSALES, M.E.R., BADILLO-ZAPATA, D., CHONG-CARRILLO, O., RUIZ-GONZÁLEZ, L.E. and MONTOYA-MARTÍNEZ, C.E., 2017. Presencia de Argulus sp. en un cultivo de Dormitator latifrons: prevalencia, mortalidad y tratamiento. Revista BioCiencias, vol. 4, no. 6, pp. 1-14. http://dx.doi.org/10.15741/revbio.04.06.05.
http://dx.doi.org/10.15741/revbio.04.06....
). To date, there are no protocols to guarantee the adequate conditions for its correct handling.

In the aquaculture industry, capture, handling, confinements, and transport are some of the activities that cause stress and cause physiological alterations in organisms (Aréchiga-Palomera et al., 2016ARECHIGA-PALOMERA, M.A., ZARAGOZA, O.M., GUERRERO-GALVAN, S.R. and VEGA-VILLASANTE, F., 2016. Evaluation of natural extracts with anesthetic properties in juveniles Macrobrachium tenellum. Pan-American Journal of Aquatic Sciences, vol. 11, no. 3, pp. 251-257.). Stress has a negative impact on animals with effects including reduced immunocompetence, increased susceptibility to disease, reduced egg quality, growth (Pickering, 1981PICKERING, A.D., 1981.Stress and fish. New York: Academic Press, 367 p.), and loss of market value (Vander Salm et al., 2004VANDER SALM, A.L., MARTÍNEZ, M., FLIK, G. and WENDELAAR, B.S.E., 2004. Effects of husbandry conditions on the skin colour and stress response of red porgy, Pagrus pagrus. Aquaculture (Amsterdam, Netherlands), vol. 241, no. 1-4, pp. 371-386. http://dx.doi.org/10.1016/j.aquaculture.2004.08.038.
http://dx.doi.org/10.1016/j.aquaculture....
). Recently, attention has been focused on minimizing stress, and the use of anesthetics is among the techniques toward this purpose during general handling that can range from transportation, clinical procedures, and obtaining tissue samples and body fluids to surgeries (Cho and Heath, 2000CHO, G.K. and HEATH, D.D., 2000. Comparison of tricaine methanesulphonate (MS22) and clove oil anaesthesia effects on the physiology of juvenile chinook salmon Oncorhinchus tshawytscha (Walbaum). Aquaculture Research, vol. 31, no. 6, pp. 537-546. http://dx.doi.org/10.1046/j.1365-2109.2000.00478.x.
http://dx.doi.org/10.1046/j.1365-2109.20...
; Velasco-Santamaría et al., 2008VELASCO-SANTAMARÍA, Y., PALACIOS-RUIZ, C. and CRUZ-CASALLAS, P., 2008. Eficiencia anestésica de 2-fenoxietanol, benzocaína, quinaldina y metasulfonato de tricaína en alevinos y juveniles de cachama blanca (Piaractus brachypomus). Revista Mvz Cordoba, vol. 13, no. 3, pp. 1435-1445.; Scott et al., 2009SCOTT, E.P., WEISS, C.H., SCHWARZ, T. and AND INNIS, C.H., 2009. Anesthesia, diagnostic imaging and surgery of fish. Compendium. Continuing Education for Veterinarians, vl. 31, no. 2, pp. E11.).

Currently, anesthetics approved by the U.S. Food and Drug Administration (FDA) for use in aquaculture-derived feeds in the United States, are tricaine methanesulfonate (MS-222) and carbon dioxide (CO2) (Schnick et al., 1986SCHNICK, R.A., MEYER, F.P. and WALSH, D.F., 1986. Status of fisheries chemicals in 1985. Progressive Fish-Culturist, vol. 48, no. 1, pp. 1-17. http://dx.doi.org/10.1577/1548-8640(1986)48<1:SOFCI>2.0.CO;2.
http://dx.doi.org/10.1577/1548-8640(1986...
). However, it has been reported that the use of MS-222 can cause occupational hazards (retinopathy) to users and has a waiting period of 21 days before the product can be consumed (Smith et al., 1999SMITH, D.A., SMITH, S.A. and HOLLADAY, M., 1999. Effects of previous exposure to tricane methane sulfonate one time anesthesia to hybrid tilapias. Journal of Aquatic Animal Health, vol. 11, no. 2, pp. 183-186. http://dx.doi.org/10.1577/1548-8667(1999)011<0183:EOPETT>2.0.CO;2.
http://dx.doi.org/10.1577/1548-8667(1999...
).

Lidocaine is an amide-type local anesthetic that acts by blocking voltage-gated sodium channels in neuronal tissues, interrupting nerve transmission, and reducing the neurogenic response (Soto et al., 2018SOTO, G., NARANJO GONZÁLEZ, M. and CALERO, F., 2018. Perfusión de lidocaína intravenosa. Revista Española de Anestesiología y Reanimación, vol. 65, no. 5, pp. 269-274. http://dx.doi.org/10.1016/j.redare.2018.01.015. PMid:29496229.
http://dx.doi.org/10.1016/j.redare.2018....
). The use of lidocaine as an anesthetic in fish has been documented and the doses used can vary depending on the species and the size of the fish (Avdesh et al., 2012AVDESH, A., CHEN, M., MARTIN-IVERSON, M.T., MONDAL, A., ONG, D., RAINEY-SMITH, S., TADDEI, K., LARDELLI, M., GROTH, D.M., VERDILE, G. and MARTINS, R.N., 2012. Regular care and maintenance of a Zebrafish (Danio rerio) Laboratory: an Introduction. Journal of Visualized Experiments, no. 69, pp. e4196. http://dx.doi.org/10.3791/4196. PMid:23183629.
http://dx.doi.org/10.3791/4196...
; Vargas-Vargas, 2017VARGAS-VARGAS, R.F., 2017. Pez cebra (Danio rerio) y anestesia. Un modelo animal alternativo para realizar investigación biomédica básica. Anestesia en México, vol. 2, pp. 86-96.).

On the other hand, there has been a growing interest in the use of natural compounds with an anesthetic effect in aquaculture, such as eugenol from clove oil (Anderson et al., 1997ANDERSON, W.G., MCKINLEY, R.S. and COLAVECCHIA, M., 1997. The use of clove oil as an anesthetic for rainbow troutand its effects on swimming performance. North American Journal of Fisheries Management, vol. 17, no. 2, pp. 301-307. http://dx.doi.org/10.1577/1548-8675(1997)017<0301:TUOCOA>2.3.CO;2.
http://dx.doi.org/10.1577/1548-8675(1997...
). Clove oil is a plant product, easy to acquire, cheap, environmentally friendly, and safe for operators and fish (Iversen et al., 2003IVERSEN, M., FINSTAND, B., MACKINLEY, R. and ELIASSEN, R., 2003. The efficacy of metomidate, clove oil, Aqui-S and Benzoak® as anaesthetics in Atlantic salmon (Salmo salar) smolts, and their potential stress-reducing capacity. Aquaculture (Amsterdam, Netherlands), vol. 221, no. 1-4, pp. 549-566. http://dx.doi.org/10.1016/S0044-8486(03)00111-X.
http://dx.doi.org/10.1016/S0044-8486(03)...
). Some investigations have reported the effectiveness of clove oil as an anesthetic for fish species such as matrincha, Brycon cephalus (Inoue et al., 2003INOUE, L.A.K.A., SANTOS NETO, C. and MORAES, G., 2003. Clove oil as anaesthetic for juveniles of matrinxã Brycon cephalus (Gunther, 1869). Ciência Rural, vol. 33, no. 5, pp. 943-947. http://dx.doi.org/10.1590/S0103-84782003000500023.
http://dx.doi.org/10.1590/S0103-84782003...
); tambaqui, Colossoma macropomum (Roubach et al., 2005ROUBACH, R., GOMES, L.C., FONSECA, F.A.L. and VAL, A.L., 2005. Eugenol as an efficacious anaesthetic for tambaqui, Colossoma macropomum (Cuvier). Aquaculture Research, vol. 36, no. 11, pp. 1056-1061. http://dx.doi.org/10.1111/j.1365-2109.2005.01319.x.
http://dx.doi.org/10.1111/j.1365-2109.20...
); spotted, Pseudoplatystoma corruscans (Vidal et al., 2006VIDAL, L.V.O., ALBINATI, R.C.B., ALBINATI, A.C.L. and MACÊDO, G.R., 2006. Utilização do Eugenol como Anestésico para o Manejo de Juvenis de Pintado (Pseudoplatystoma corruscans). Acta Scientiarum. Biological Sciences, vol. 28, no. 3, pp. 275-279. http://dx.doi.org/10.4025/actascibiolsci.v28i3.400.
http://dx.doi.org/10.4025/actascibiolsci...
); catfish, Rhamdia quelen (Cunha et al., 2006CUNHA, M.A., COPATTI, C.E., GARCIA, L.O., FONSECA, M.B., FERREIRA, F.W., MALDANER, G., MOREL, A.F., LORO, V.L. and BALDISSEROTTO, B., 2006. Níveis de cortisol em jundiás (Rhamdia Quelen) expostos ao óleo de cravo (Eugenol) e extrato de Condalia Buxifolia. In: Resúmenes Aqua-Ciencia, 2006, Bento Gonçalves. São José: Sociedade Brasileira de Aqüicultura e Biologia Aquática. CD-ROM.) and snook Centropomus undecimalis (Souza-Junior and Alves-Junior, 2006SOUZA JUNIOR, V.B. and ALVES JUNIOR, T.T., 2006. A eficácia do óleo de cravo (eugenol) como anestésico no manejo de juvenis de robalo-flecha Centropomus undecimalis, mantidos em cativeiro. In: Resúmenes Aqua-Ciencia, 2006, Bento Gonçalves. São José: Sociedade Brasileira de Aqüicultura e Biologia Aquática. CD-ROM.); Its ability to reduce pressure on transport and handling has also been demonstrated (Cunha et al., 2006CUNHA, M.A., COPATTI, C.E., GARCIA, L.O., FONSECA, M.B., FERREIRA, F.W., MALDANER, G., MOREL, A.F., LORO, V.L. and BALDISSEROTTO, B., 2006. Níveis de cortisol em jundiás (Rhamdia Quelen) expostos ao óleo de cravo (Eugenol) e extrato de Condalia Buxifolia. In: Resúmenes Aqua-Ciencia, 2006, Bento Gonçalves. São José: Sociedade Brasileira de Aqüicultura e Biologia Aquática. CD-ROM.). Some of these studies have reported sedation, moderate anesthesia, and deep anesthesia (Adel et al., 2016ADEL, M., SADEGH, A.B., YEGANEH, S., MOVAFAGH, A.N. and SAOUD, I.P., 2016. Anesthetic Efficacy of Clove Oil, Propofol, 2-Phenoxyethanol, and Ketamine Hydrochloride on Persian Sturgeon, Acipenser persicus, Juveniles. Journal of the World Aquaculture Society, vol. 47, no. 6, pp. 812-819. http://dx.doi.org/10.1111/jwas.12286.
http://dx.doi.org/10.1111/jwas.12286...
).

It is extremely important to study and search for anesthetics that help reduce stress and mortality and ensure animal welfare during the handling of aquatic organisms, including D. latifrons, which is a species of inland waters, and which at the date, represents an important alternative for sustainable aquaculture of native fish on the Pacific coast (Aréchiga Palomera et al., 2022; Vega-Villasante et al., 2021VEGA-VILLASANTE, F., RUIZ-GONZÁLEZ, L.E., CHONG-CARRILLO, O., BASTO-ROSALES, M.E.R., PALMA-CANCINO, D.J., TINTOS-GÓMEZ, A., MONTOYA-MARTÍNEZ, C.E., KELLY-GUTIÉRREZ, L.D., GUERRERO-GALVÁN, S.R., PONCE-PALAFOX, J.T., ZAPATA, A., MUSIN, G.E. and BADILLO-ZAPATA, D., 2021. Biology and use of the Pacific fat sleeper Dormitator latifrons (Richardson, 1844): state of the art review. Latin American Journal of Aquatic Research, vol. 49, no. 3, pp. 391-403. http://dx.doi.org/10.3856/vol49-issue3-fulltext-2637.
http://dx.doi.org/10.3856/vol49-issue3-f...
). This work intends to provide information on the standardization of anesthesia protocols in D. latifrons regarding dose, anesthesia stage level, time, and body weight, comparing the effectiveness of a conventional anesthetic versus a natural compound.

2. Materials and Methods

The studies were carried out in the Laboratorio de Calidad de Agua y Acuicultura Experimental (LACUIC) of the Department of Biological Sciences of the Centro Universitario de la Costa, Puerto Vallarta, Jalisco.

One hundred twenty relatively healthy organisms (D. latifrons) selected from stock of mixed-sex juvenile organisms collected in the Estero El Quelele located in the State of Nayarit, Mexico (between 105° 17' W and 20° 43' N) and subjected to 60-day quarantine, with an average weight and standard length of 73.59 ± 13.53 g and 17 ± 1.36 cm respectively were selected from stock. The fish were kept in a cistern, and starved for 24 hours prior to anesthesia tests. The anesthesia procedures were non-invasive, being the case for this study by immersion and approved by the Animal Welfare Committee of the Centro Universitario de la Costa (approval code: CUCPV/SA/CBA/2/2022). For the study of both anesthetics, the organisms were subjected to different concentrations in tubs with a capacity of 50 L with constant aeration with a filter. The temperature and oxygen conditions were the same for all treatments.

The final time when the organisms reached the degree of deep anesthesia (phase 5) was recorded according to the criteria of Cooke et al. (2004)COOKE, S.J., SUSKI, C.D., OSTRAND, K.G., TUFTS, B.L. and WAHL, D.H., 2004. Behavioral and physiological assessment of low concentrations of clove oil anaesthetic for handling and transporting largemouth bass (Micropterus salmoides). Aquaculture (Amsterdam, Netherlands), vol. 239, no. 1-4, pp. 509-529. http://dx.doi.org/10.1016/j.aquaculture.2004.06.028.
http://dx.doi.org/10.1016/j.aquaculture....
(Table 1). Once the maximum state of anesthesia was reached, the organisms were removed from induction and transferred to individual reservoirs free of the anesthetic with constant aeration to record and evaluate the recovery time (phase 0). The individual evaluation facilitated the observation of the different planes of anesthesia described in Cooke et al., (2004)COOKE, S.J., SUSKI, C.D., OSTRAND, K.G., TUFTS, B.L. and WAHL, D.H., 2004. Behavioral and physiological assessment of low concentrations of clove oil anaesthetic for handling and transporting largemouth bass (Micropterus salmoides). Aquaculture (Amsterdam, Netherlands), vol. 239, no. 1-4, pp. 509-529. http://dx.doi.org/10.1016/j.aquaculture.2004.06.028.
http://dx.doi.org/10.1016/j.aquaculture....
. The time was measured using a chronometer. Finally, survival at the following hours (1, 2, 24, 48, and 72 h) was recorded.

Table 1
Criteria for the evaluation of states of induction of anesthesia. Criteria described in Cooke et al. (2004)COOKE, S.J., SUSKI, C.D., OSTRAND, K.G., TUFTS, B.L. and WAHL, D.H., 2004. Behavioral and physiological assessment of low concentrations of clove oil anaesthetic for handling and transporting largemouth bass (Micropterus salmoides). Aquaculture (Amsterdam, Netherlands), vol. 239, no. 1-4, pp. 509-529. http://dx.doi.org/10.1016/j.aquaculture.2004.06.028.
http://dx.doi.org/10.1016/j.aquaculture....
.

3. Anesthetics

Two anesthetic compounds used were clove oil eugenol (Viarden®) and lidocaine (Pisa®). All the anesthetics were used in water immersion directly on the experimental aquariums. These were handled with adequate protective equipment: gloves, face mask, gown, and safety glasses; and ensuring proper animal welfare practices.

D. latifrons juveniles were selected to evaluate the effect of eugenol (25, 50, 100 and 200 µL/L) and lidocaine (100, 200, 300, and 400 mg/mL). Five juvenile fish were exposed to anesthetics, placed in different aquariums with dechlorinated water and constant aeration, in triplicate.

3.1. Statistic analysis

With Sigma 11® software, the data were subjected to prior normality and homoscedasticity tests (α= 0.05), After which a Kruskall-Wallis test was applied. Significant differences between treatments were determined from each other by multiple comparisons by Tukey test (α= 0.05).

4. Results

The results show a high survival in the organisms induced with anesthesia eugenol and lidocaine, even organisms exposed to the highest concentrations. With both compounds, survival was 100% for all concentrations. At all concentrations prior to phase 2 induction of anesthesia, organisms exhibited short-distance, fast swimming episodes (initial hyperactivity) for short periods. This hyperactive swimming behavior did not appear in the recovery phases (except for some individuals when they were handled and transferred to their respective aquariums).

At the lowest concentrations for eugenol (clove) that is, 25 µL/L, organisms exhibited phase 3 stages of anesthesia with a tendency to phase 4 (Table 1) without any being fully defined, and the trial had to be discontinued after 30 minutes of exposure to the anesthetic. In the stage of induction and recovery time, significant differences were observed between treatments (P<0.05) (Table 1 and Table 2).

Table 2
Evaluation of anesthesia with eugenol and lidocaine for D. latifrons juveniles in four different concentrations.

When analyzing the total anesthesia induction time in eugenol (Table 2), the 200 µL treatment presented the lowest times with 2.77 minutes (P<0.05), and the 25 µL treatment, the highest to reach induction (22.97 min). The 25 µL, 50 µL, and 100 µL treatments were not sigficantly different among themselves, but they did with respect to 200 µL (P<0.05). In the induction time with lidocaine (Table 2), the concentration of 300 µL/L was a rapid induction (P<0.05, 1.7 min), in relation to 100 µL/L (P<0.05, 10.2 min), however, the concentrations of 200, 300 and 400 µL/L were not significant differences among themselves (P>0.05), but they were with respect to 100 µL/L (P<0.05), which displayed the highest induction times with six minutes (P<0.05).

For the recovery times with eugenol (Table 3), the 200 µL treatment had the highest time (11.48 min), followed by 100 µL (10.20 min), 50 µL (6.51 min), and 25 µL (6.4 min), although there were no significant differences between them (P>0.05). Anesthesia recovery times for lidocaine treatments were higher for 400 µL/L (16.34 min) compared to all treatments (P<0.05). The 200 µL (8.9 min) and 300 µL/L (9.81 min) treatments were similar to each other (P>0.05), while the 100 µL/L treatment recorded the fastest recovery time of all treatments (P<0.05).

Table 3
Evaluation with eugenol and lidocaine for D. latifrons juveniles in four different concentrations.

5. Discussion

The use of anesthetics in activities related to aquaculture have been of great importance in many countries, especially due to the requirements of good practices in which animal welfare is guaranteed, as a requirement for the commercialization of the products (Jerez-Cepa et al., 2019JEREZ-CEPA, I., RUIZ-JARABO, I. and MANCERA, J.M., 2019. Bienestar animal en la acuicultura de peces: atenuación del estrés a través de la dieta y mediante el empleo de anestésicos durante el transporte. dA Derecho Animal: Forum of Animal Law Studies, vol. 104, pp. 85-92. http://dx.doi.org/10.5565/rev/da.463.
http://dx.doi.org/10.5565/rev/da.463...
). Proof of this are the various methods that have been developed for its application. A fairly common method is by immersion in anesthetic solution, since a large number of fish can be applied simultaneously, since the gills in fish are the main route of entry and excretion of anesthetic agents (Sneddon, 2012SNEDDON, L.U., 2012. Clinical anesthesia and analgesia in fish. Journal of Exotic Pet Medicine, vol. 21, no. 1, pp. 32-43. http://dx.doi.org/10.1053/j.jepm.2011.11.009.
http://dx.doi.org/10.1053/j.jepm.2011.11...
).

This is the first study on the use of eugenol and lidocaine by immersion in D. latifrons, in which the different stages of anesthesia (induction and recovery), behavior and apparent post-anesthesia health status were determined.

An ideal anesthetic should be easily administered, keep the animal in the desired stage, and act quickly with low doses; it must be rapidly cleared to achieve recovery once the anesthetic is removed from the animal (Coyle et al., 2004COYLE, S.D., DURBOROW, R.M. and TIDWELL, J.H., 2004. Anesthetics in aquaculture. Texas: Southern Regional Aquaculture Center Publication, vol. 3900.); sedation should be achieved in a period not exceeding 10 minutes (preferably less than 5 min), and recovery from normal swimming in a period of less than 15 minutes, not more than 10 minutes (Oliveira Vidal et al., 2006OLIVEIRA VIDAL, L.V., BRANCO ALBINATI, R.C., LUSCHER ALBINATI, A.C. and RODAMILANS DE MECÊDO, G., 2006. Utilização do eugenol como anestésico para o manejo de juvenis de Pintado (Pseudoplatystoma corruscans). Acta Scientiarum. Biological Sciences, vol. 28, no. 3, pp. 275-279.).

The results obtained suggest that eugenol is an alternative for anesthesia given its low cost, low toxicity and low bioaccumulation in tissues (Cooke et al., 2004COOKE, S.J., SUSKI, C.D., OSTRAND, K.G., TUFTS, B.L. and WAHL, D.H., 2004. Behavioral and physiological assessment of low concentrations of clove oil anaesthetic for handling and transporting largemouth bass (Micropterus salmoides). Aquaculture (Amsterdam, Netherlands), vol. 239, no. 1-4, pp. 509-529. http://dx.doi.org/10.1016/j.aquaculture.2004.06.028.
http://dx.doi.org/10.1016/j.aquaculture....
), and it is easily metabolized and is rapidly excreted (Wagner et al., 2002WAGNER, E., ARNDT, R. and HILTON, B., 2002. Physiological stress responses, egg survival and sperm motility of rainbow trout broodstock anesthetized with clove oil, tricaine methanesulfonate or carbon dioxide. Aquaculture, vol. 211, no. 1-14, pp. 353-366. http://dx.doi.org/10.1016/S0044-8486(01)00878-X.
http://dx.doi.org/10.1016/S0044-8486(01)...
). Its use reduces hypermobility or stress caused by animal handling, reducing the risk of damage to fish (Inoue et al., 2003INOUE, L.A.K.A., SANTOS NETO, C. and MORAES, G., 2003. Clove oil as anaesthetic for juveniles of matrinxã Brycon cephalus (Gunther, 1869). Ciência Rural, vol. 33, no. 5, pp. 943-947. http://dx.doi.org/10.1590/S0103-84782003000500023.
http://dx.doi.org/10.1590/S0103-84782003...
). While, for lidocaine, its use as an anesthetic is widely used in humans and animals due to its low cost and easy access (Muir et al., 2008MUIR, W.W., HUBBELL, J.A.E., BEDNARSKI, R.M. and SKARDA, R.T., 2008. Manual de anestesia veterinaria. 4. ed. Madrid, España: Acribia.), and its metabolism takes place in the liver before being excreted (Lauretti, 2008LAURETTI, G.R., 2008. Mechanisms of analgesia of intravenous lidocaine. Revista Brasileira de Anestesiologia, vol. 58, no. 3, pp. 280-286. http://dx.doi.org/10.1590/S0034-70942008000300011. PMid:19378524.
http://dx.doi.org/10.1590/S0034-70942008...
).

The effectiveness of clove oil as an anesthetic has been reported for other fish species such as matrincha, Brycon cephalus (Inoue et al., 2003INOUE, L.A.K.A., SANTOS NETO, C. and MORAES, G., 2003. Clove oil as anaesthetic for juveniles of matrinxã Brycon cephalus (Gunther, 1869). Ciência Rural, vol. 33, no. 5, pp. 943-947. http://dx.doi.org/10.1590/S0103-84782003000500023.
http://dx.doi.org/10.1590/S0103-84782003...
); tambaqui, Colossoma macropomum (Roubach et al., 2005ROUBACH, R., GOMES, L.C., FONSECA, F.A.L. and VAL, A.L., 2005. Eugenol as an efficacious anaesthetic for tambaqui, Colossoma macropomum (Cuvier). Aquaculture Research, vol. 36, no. 11, pp. 1056-1061. http://dx.doi.org/10.1111/j.1365-2109.2005.01319.x.
http://dx.doi.org/10.1111/j.1365-2109.20...
); spotted, Pseudoplatystoma corruscans (Vidal et al., 2006VIDAL, L.V.O., ALBINATI, R.C.B., ALBINATI, A.C.L. and MACÊDO, G.R., 2006. Utilização do Eugenol como Anestésico para o Manejo de Juvenis de Pintado (Pseudoplatystoma corruscans). Acta Scientiarum. Biological Sciences, vol. 28, no. 3, pp. 275-279. http://dx.doi.org/10.4025/actascibiolsci.v28i3.400.
http://dx.doi.org/10.4025/actascibiolsci...
); catfish, Rhamdia quelen (Cunha et al., 2006CUNHA, M.A., COPATTI, C.E., GARCIA, L.O., FONSECA, M.B., FERREIRA, F.W., MALDANER, G., MOREL, A.F., LORO, V.L. and BALDISSEROTTO, B., 2006. Níveis de cortisol em jundiás (Rhamdia Quelen) expostos ao óleo de cravo (Eugenol) e extrato de Condalia Buxifolia. In: Resúmenes Aqua-Ciencia, 2006, Bento Gonçalves. São José: Sociedade Brasileira de Aqüicultura e Biologia Aquática. CD-ROM.). In cyprinids, its effectiveness as an anesthetic with sedation, moderate anesthesia and deep anesthesia has been reported, with concentrations from 25-100 mg/L, in golden perch 15-50 mg/L or in catfish 100-150 mg/L, to mention a few (Neiffer and Stamper, 2009NEIFFER, D.L. and STAMPER, M.A., 2009. Fish sedation, anesthesia, analgesia, and euthanasia: considerations, methods, and types of drugs. ILAR Journal, vol. 50, no. 4, pp. 343-360. http://dx.doi.org/10.1093/ilar.50.4.343. PMid:19949251.
http://dx.doi.org/10.1093/ilar.50.4.343...
). On the other hand, the effectiveness of lidocaine in fish has been documented, where the doses used can vary depending on the size of the fish; for zebrafish <2mg/kg (Avdesh et al., 2012AVDESH, A., CHEN, M., MARTIN-IVERSON, M.T., MONDAL, A., ONG, D., RAINEY-SMITH, S., TADDEI, K., LARDELLI, M., GROTH, D.M., VERDILE, G. and MARTINS, R.N., 2012. Regular care and maintenance of a Zebrafish (Danio rerio) Laboratory: an Introduction. Journal of Visualized Experiments, no. 69, pp. e4196. http://dx.doi.org/10.3791/4196. PMid:23183629.
http://dx.doi.org/10.3791/4196...
), for trout between 100-350 mg/L (Vargas-Vargas, 2017VARGAS-VARGAS, R.F., 2017. Pez cebra (Danio rerio) y anestesia. Un modelo animal alternativo para realizar investigación biomédica básica. Anestesia en México, vol. 2, pp. 86-96.), and for crappie 300 mg/L (Urzúa Pizarro et al., 2022URZÚA PIZARRO, N., MANCINI, M., MESSINA, M.J., ERRECALDE, C., SALINAS, V., LÜDERS, C. and PRIETO, G., 2022. Evaluación de cuatro anestésicos en peces cebo de agua dulce (Cheirodon interruptus) (Ostariophysi: characidae). Revista de Investigaciones Veterinarias del Perú, vol. 33, no. 4, pp. e21486-e21486. http://dx.doi.org/10.15381/rivep.v33i4.21486.
http://dx.doi.org/10.15381/rivep.v33i4.2...
). The concentrations of clove oil (eugenol) used for Piaractus mesopotamicus in concentrations of 120 and 150 mg/L, determine even faster inductions, without damaging the recovery of the animals (Solís-Murgas et al., 2010SOLÍS-MURGAS, L. D., PÉREZ RIBEIRO, P. A., SANTOS COSTA, L., AUGUSTO ELOY, Á., and VIEIRA E ROSA, P., 2010. Aceite de clavo como anestésico para el pez pacu (Piaractus mesopotamicus). Anales de Veterinaria de Murcia, vol. 26, pp. 69-76.). Similar case for this study with D. latifrons, in which concentrations of 100-200 µI/L induced deep anesthesia (2-5 minutes), and recovery was within the ideal range (10 minutes) with successful survival. With Cheirodon interruptus, Urzúa et al. (2022), report that a concentration of 300 mg/L of lidocaine, produces deep anesthesia in a few minutes (1-3 minutes), with recovery time of 8 minutes, which agrees with what was recorded for D. latifrons, in induction with lidocaine at concentrations of 300-400 µL/L, but with a prolonged recovery time (8-20 minutes).

It has been reported that low concentrations of clove oil can induce light anesthesia, as in the case of Pterophyllum scalare, which at concentrations of 20 mg/L allow procedures such as morphometry, weighing, marking, transportation, and classification (Millán-Ocampo et al., 2012MILLÁN-OCAMPO, L., TORRES-CORTÉS, A., MARÍN-MÉNDEZ, G.A., RAMÍREZ-DUART, W., VÁSQUEZ-PIÑEROS, M.A. and RONDÓN-BARRAGÁN, I.S., 2012. Concentración anestésica del eugenol en peces escalares (Pterophyllum scalare). Revista de Investigaciones Veterinarias del Perú, vol. 23, no. 2, pp. 171-181. http://dx.doi.org/10.15381/rivep.v23i2.897.
http://dx.doi.org/10.15381/rivep.v23i2.8...
). However, in D. latifrons the lowest concentrations are not effective in terms of induction, due to the long time it takes to take effect, which is detrimental to animal welfare.

The concentrations used in the results shown for D. latifrons suggest the use of 200 µI/L clove oil (eugenol) to induce deep anesthesia in less than two minutes, whereas for lidocaine, deep anesthesia is achieved in one to three minutes with a concentration of 400 µI/L. Both eugenol (clove oil) and lidocaine turned out to be anesthetic compounds with possibilities of application in the handling and transport of D. latifrons. In the case of clove oil, it is also a compound of natural origin that is easy to excrete and has good performance at the time of dosing. It is easy to obtain and low cost. Therefore, it is presented as the best choice for use with the species of interest in this study.

Acknowledgements

AGFS wishes to thanks the Laboratorio de Calidad de Agua y Acuicultura Experimental (LACUIC) crew and the Department of Biological Sciences of the Centro Universitario de la Costa for supporting this research. MAAP appreciates to Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT) for the scholarship for doctoral research (CVU: 779399).

References

  • ADEL, M., SADEGH, A.B., YEGANEH, S., MOVAFAGH, A.N. and SAOUD, I.P., 2016. Anesthetic Efficacy of Clove Oil, Propofol, 2-Phenoxyethanol, and Ketamine Hydrochloride on Persian Sturgeon, Acipenser persicus, Juveniles. Journal of the World Aquaculture Society, vol. 47, no. 6, pp. 812-819. http://dx.doi.org/10.1111/jwas.12286
    » http://dx.doi.org/10.1111/jwas.12286
  • ANDERSON, W.G., MCKINLEY, R.S. and COLAVECCHIA, M., 1997. The use of clove oil as an anesthetic for rainbow troutand its effects on swimming performance. North American Journal of Fisheries Management, vol. 17, no. 2, pp. 301-307. http://dx.doi.org/10.1577/1548-8675(1997)017<0301:TUOCOA>2.3.CO;2
    » http://dx.doi.org/10.1577/1548-8675(1997)017<0301:TUOCOA>2.3.CO;2
  • ARÉCHIGA-PALOMERA, M.A., NIEVES-RODRÍGUEZ, K.N., CHONG-CARRILLO, O., NOLASCO-SORIA, H., PEÑA-MARÍN, E.S., ÁLVAREZ-GONZÁLEZ, C.A., PALMA-CANCINO, D.J., MARTÍNEZ-GARCÍA, R., BADILLO-ZAPATA, D. and VEGA-VILLASANTE, F., 2022. Dormitator latifrons (Richardson, 1844) a Pacific fat sleeper, but skinny in research: a scientometric study. Latin American Journal of Aquatic Research, vol. 50, no. 3, pp. 451-460. http://dx.doi.org/10.3856/vol50-issue3-fulltext-2784
    » http://dx.doi.org/10.3856/vol50-issue3-fulltext-2784
  • ARECHIGA-PALOMERA, M.A., ZARAGOZA, O.M., GUERRERO-GALVAN, S.R. and VEGA-VILLASANTE, F., 2016. Evaluation of natural extracts with anesthetic properties in juveniles Macrobrachium tenellum. Pan-American Journal of Aquatic Sciences, vol. 11, no. 3, pp. 251-257.
  • AVDESH, A., CHEN, M., MARTIN-IVERSON, M.T., MONDAL, A., ONG, D., RAINEY-SMITH, S., TADDEI, K., LARDELLI, M., GROTH, D.M., VERDILE, G. and MARTINS, R.N., 2012. Regular care and maintenance of a Zebrafish (Danio rerio) Laboratory: an Introduction. Journal of Visualized Experiments, no. 69, pp. e4196. http://dx.doi.org/10.3791/4196 PMid:23183629.
    » http://dx.doi.org/10.3791/4196
  • BASTO-ROSALES, M.E.R., RODRÍGUEZ-MONTES DE OCA, G.A., CARRILLO-FARNÉS, O., ÁLVAREZ-GONZÁLEZ, C.A., BADILLO-ZAPATA, D. and VEGA-VILLASANTE, F., 2019. Growth of Dormitator latifrons under different densities in concrete tanks. Tropical and Subtropical Agroecosystems, vol. 22, no. 2, pp. 489-493.
  • CHO, G.K. and HEATH, D.D., 2000. Comparison of tricaine methanesulphonate (MS22) and clove oil anaesthesia effects on the physiology of juvenile chinook salmon Oncorhinchus tshawytscha (Walbaum). Aquaculture Research, vol. 31, no. 6, pp. 537-546. http://dx.doi.org/10.1046/j.1365-2109.2000.00478.x
    » http://dx.doi.org/10.1046/j.1365-2109.2000.00478.x
  • COOKE, S.J., SUSKI, C.D., OSTRAND, K.G., TUFTS, B.L. and WAHL, D.H., 2004. Behavioral and physiological assessment of low concentrations of clove oil anaesthetic for handling and transporting largemouth bass (Micropterus salmoides). Aquaculture (Amsterdam, Netherlands), vol. 239, no. 1-4, pp. 509-529. http://dx.doi.org/10.1016/j.aquaculture.2004.06.028
    » http://dx.doi.org/10.1016/j.aquaculture.2004.06.028
  • COYLE, S.D., DURBOROW, R.M. and TIDWELL, J.H., 2004. Anesthetics in aquaculture Texas: Southern Regional Aquaculture Center Publication, vol. 3900.
  • CUNHA, M.A., COPATTI, C.E., GARCIA, L.O., FONSECA, M.B., FERREIRA, F.W., MALDANER, G., MOREL, A.F., LORO, V.L. and BALDISSEROTTO, B., 2006. Níveis de cortisol em jundiás (Rhamdia Quelen) expostos ao óleo de cravo (Eugenol) e extrato de Condalia Buxifolia In: Resúmenes Aqua-Ciencia, 2006, Bento Gonçalves. São José: Sociedade Brasileira de Aqüicultura e Biologia Aquática. CD-ROM.
  • INOUE, L.A.K.A., SANTOS NETO, C. and MORAES, G., 2003. Clove oil as anaesthetic for juveniles of matrinxã Brycon cephalus (Gunther, 1869). Ciência Rural, vol. 33, no. 5, pp. 943-947. http://dx.doi.org/10.1590/S0103-84782003000500023
    » http://dx.doi.org/10.1590/S0103-84782003000500023
  • IVERSEN, M., FINSTAND, B., MACKINLEY, R. and ELIASSEN, R., 2003. The efficacy of metomidate, clove oil, Aqui-S and Benzoak® as anaesthetics in Atlantic salmon (Salmo salar) smolts, and their potential stress-reducing capacity. Aquaculture (Amsterdam, Netherlands), vol. 221, no. 1-4, pp. 549-566. http://dx.doi.org/10.1016/S0044-8486(03)00111-X
    » http://dx.doi.org/10.1016/S0044-8486(03)00111-X
  • JEREZ-CEPA, I., RUIZ-JARABO, I. and MANCERA, J.M., 2019. Bienestar animal en la acuicultura de peces: atenuación del estrés a través de la dieta y mediante el empleo de anestésicos durante el transporte. dA Derecho Animal: Forum of Animal Law Studies, vol. 104, pp. 85-92. http://dx.doi.org/10.5565/rev/da.463
    » http://dx.doi.org/10.5565/rev/da.463
  • LAURETTI, G.R., 2008. Mechanisms of analgesia of intravenous lidocaine. Revista Brasileira de Anestesiologia, vol. 58, no. 3, pp. 280-286. http://dx.doi.org/10.1590/S0034-70942008000300011 PMid:19378524.
    » http://dx.doi.org/10.1590/S0034-70942008000300011
  • LÓPEZ-LÓPEZ, V.V., RODRÍGUEZ-MONTES DE OCA, G.A., GALAVÍZ, M.A., ROMÁN-REYES, C., MEDINA-HERNÁNDEZ, E.A., DABROWSKI, K. and HAWS, M.C., 2015. Descripción histológica comparativa del desarrollo del sistema digestivo y visual de larvas de chame Dormitator latifrons (Pisces: eleotridae). Latin American Journal of Aquatic Research, vol. 43, no. 3, pp. 484-494. http://dx.doi.org/10.3856/vol43-issue3-fulltext-10
    » http://dx.doi.org/10.3856/vol43-issue3-fulltext-10
  • MILLÁN-OCAMPO, L., TORRES-CORTÉS, A., MARÍN-MÉNDEZ, G.A., RAMÍREZ-DUART, W., VÁSQUEZ-PIÑEROS, M.A. and RONDÓN-BARRAGÁN, I.S., 2012. Concentración anestésica del eugenol en peces escalares (Pterophyllum scalare). Revista de Investigaciones Veterinarias del Perú, vol. 23, no. 2, pp. 171-181. http://dx.doi.org/10.15381/rivep.v23i2.897
    » http://dx.doi.org/10.15381/rivep.v23i2.897
  • MUIR, W.W., HUBBELL, J.A.E., BEDNARSKI, R.M. and SKARDA, R.T., 2008. Manual de anestesia veterinaria 4. ed. Madrid, España: Acribia.
  • NEIFFER, D.L. and STAMPER, M.A., 2009. Fish sedation, anesthesia, analgesia, and euthanasia: considerations, methods, and types of drugs. ILAR Journal, vol. 50, no. 4, pp. 343-360. http://dx.doi.org/10.1093/ilar.50.4.343 PMid:19949251.
    » http://dx.doi.org/10.1093/ilar.50.4.343
  • OLIVEIRA VIDAL, L.V., BRANCO ALBINATI, R.C., LUSCHER ALBINATI, A.C. and RODAMILANS DE MECÊDO, G., 2006. Utilização do eugenol como anestésico para o manejo de juvenis de Pintado (Pseudoplatystoma corruscans). Acta Scientiarum. Biological Sciences, vol. 28, no. 3, pp. 275-279.
  • PICKERING, A.D., 1981.Stress and fish New York: Academic Press, 367 p.
  • ROUBACH, R., GOMES, L.C., FONSECA, F.A.L. and VAL, A.L., 2005. Eugenol as an efficacious anaesthetic for tambaqui, Colossoma macropomum (Cuvier). Aquaculture Research, vol. 36, no. 11, pp. 1056-1061. http://dx.doi.org/10.1111/j.1365-2109.2005.01319.x
    » http://dx.doi.org/10.1111/j.1365-2109.2005.01319.x
  • SCHNICK, R.A., MEYER, F.P. and WALSH, D.F., 1986. Status of fisheries chemicals in 1985. Progressive Fish-Culturist, vol. 48, no. 1, pp. 1-17. http://dx.doi.org/10.1577/1548-8640(1986)48<1:SOFCI>2.0.CO;2
    » http://dx.doi.org/10.1577/1548-8640(1986)48<1:SOFCI>2.0.CO;2
  • SCOTT, E.P., WEISS, C.H., SCHWARZ, T. and AND INNIS, C.H., 2009. Anesthesia, diagnostic imaging and surgery of fish Compendium. Continuing Education for Veterinarians, vl. 31, no. 2, pp. E11.
  • SMITH, D.A., SMITH, S.A. and HOLLADAY, M., 1999. Effects of previous exposure to tricane methane sulfonate one time anesthesia to hybrid tilapias. Journal of Aquatic Animal Health, vol. 11, no. 2, pp. 183-186. http://dx.doi.org/10.1577/1548-8667(1999)011<0183:EOPETT>2.0.CO;2
    » http://dx.doi.org/10.1577/1548-8667(1999)011<0183:EOPETT>2.0.CO;2
  • SNEDDON, L.U., 2012. Clinical anesthesia and analgesia in fish. Journal of Exotic Pet Medicine, vol. 21, no. 1, pp. 32-43. http://dx.doi.org/10.1053/j.jepm.2011.11.009
    » http://dx.doi.org/10.1053/j.jepm.2011.11.009
  • SOLÍS-MURGAS, L. D., PÉREZ RIBEIRO, P. A., SANTOS COSTA, L., AUGUSTO ELOY, Á., and VIEIRA E ROSA, P., 2010. Aceite de clavo como anestésico para el pez pacu (Piaractus mesopotamicus). Anales de Veterinaria de Murcia, vol. 26, pp. 69-76.
  • SOTO, G., NARANJO GONZÁLEZ, M. and CALERO, F., 2018. Perfusión de lidocaína intravenosa. Revista Española de Anestesiología y Reanimación, vol. 65, no. 5, pp. 269-274. http://dx.doi.org/10.1016/j.redare.2018.01.015 PMid:29496229.
    » http://dx.doi.org/10.1016/j.redare.2018.01.015
  • SOUZA JUNIOR, V.B. and ALVES JUNIOR, T.T., 2006. A eficácia do óleo de cravo (eugenol) como anestésico no manejo de juvenis de robalo-flecha Centropomus undecimalis, mantidos em cativeiro. In: Resúmenes Aqua-Ciencia, 2006, Bento Gonçalves. São José: Sociedade Brasileira de Aqüicultura e Biologia Aquática. CD-ROM.
  • URZÚA PIZARRO, N., MANCINI, M., MESSINA, M.J., ERRECALDE, C., SALINAS, V., LÜDERS, C. and PRIETO, G., 2022. Evaluación de cuatro anestésicos en peces cebo de agua dulce (Cheirodon interruptus) (Ostariophysi: characidae). Revista de Investigaciones Veterinarias del Perú, vol. 33, no. 4, pp. e21486-e21486. http://dx.doi.org/10.15381/rivep.v33i4.21486
    » http://dx.doi.org/10.15381/rivep.v33i4.21486
  • VANDER SALM, A.L., MARTÍNEZ, M., FLIK, G. and WENDELAAR, B.S.E., 2004. Effects of husbandry conditions on the skin colour and stress response of red porgy, Pagrus pagrus. Aquaculture (Amsterdam, Netherlands), vol. 241, no. 1-4, pp. 371-386. http://dx.doi.org/10.1016/j.aquaculture.2004.08.038
    » http://dx.doi.org/10.1016/j.aquaculture.2004.08.038
  • VARGAS-VARGAS, R.F., 2017. Pez cebra (Danio rerio) y anestesia. Un modelo animal alternativo para realizar investigación biomédica básica. Anestesia en México, vol. 2, pp. 86-96.
  • VEGA-VILLASANTE, F., CUETO-CORTÉS, L., BASTO-ROSALES, M.E.R., BADILLO-ZAPATA, D., CHONG-CARRILLO, O., RUIZ-GONZÁLEZ, L.E. and MONTOYA-MARTÍNEZ, C.E., 2017. Presencia de Argulus sp. en un cultivo de Dormitator latifrons: prevalencia, mortalidad y tratamiento. Revista BioCiencias, vol. 4, no. 6, pp. 1-14. http://dx.doi.org/10.15741/revbio.04.06.05
    » http://dx.doi.org/10.15741/revbio.04.06.05
  • VEGA-VILLASANTE, F., RUIZ-GONZÁLEZ, L.E., CHONG-CARRILLO, O., BASTO-ROSALES, M.E.R., PALMA-CANCINO, D.J., TINTOS-GÓMEZ, A., MONTOYA-MARTÍNEZ, C.E., KELLY-GUTIÉRREZ, L.D., GUERRERO-GALVÁN, S.R., PONCE-PALAFOX, J.T., ZAPATA, A., MUSIN, G.E. and BADILLO-ZAPATA, D., 2021. Biology and use of the Pacific fat sleeper Dormitator latifrons (Richardson, 1844): state of the art review. Latin American Journal of Aquatic Research, vol. 49, no. 3, pp. 391-403. http://dx.doi.org/10.3856/vol49-issue3-fulltext-2637
    » http://dx.doi.org/10.3856/vol49-issue3-fulltext-2637
  • VELASCO-SANTAMARÍA, Y., PALACIOS-RUIZ, C. and CRUZ-CASALLAS, P., 2008. Eficiencia anestésica de 2-fenoxietanol, benzocaína, quinaldina y metasulfonato de tricaína en alevinos y juveniles de cachama blanca (Piaractus brachypomus). Revista Mvz Cordoba, vol. 13, no. 3, pp. 1435-1445.
  • VIDAL, L.V.O., ALBINATI, R.C.B., ALBINATI, A.C.L. and MACÊDO, G.R., 2006. Utilização do Eugenol como Anestésico para o Manejo de Juvenis de Pintado (Pseudoplatystoma corruscans). Acta Scientiarum. Biological Sciences, vol. 28, no. 3, pp. 275-279. http://dx.doi.org/10.4025/actascibiolsci.v28i3.400
    » http://dx.doi.org/10.4025/actascibiolsci.v28i3.400
  • WAGNER, E., ARNDT, R. and HILTON, B., 2002. Physiological stress responses, egg survival and sperm motility of rainbow trout broodstock anesthetized with clove oil, tricaine methanesulfonate or carbon dioxide. Aquaculture, vol. 211, no. 1-14, pp. 353-366. http://dx.doi.org/10.1016/S0044-8486(01)00878-X
    » http://dx.doi.org/10.1016/S0044-8486(01)00878-X
  • YÁÑEZ-ARANCIBIA, A. and DÍAZ-GONZÁLEZ, G., 1977. Trophicdynamic ecology of Dormitator latifrons (Richardson) in nine coastal lagoons on the Pacific coast of Mexico. (Pisces: electridae). Instituto de Ciencia del Mar y Limnología, vol. 19, pp. 140.

Publication Dates

  • Publication in this collection
    09 June 2023
  • Date of issue
    2024

History

  • Received
    31 Jan 2023
  • Accepted
    21 Apr 2023
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br