Acessibilidade / Reportar erro

Diversity of entomopathogenic fungi from soils of eucalyptus and soybean crops and natural forest areas

Diversidade de fungos entomopatogênicos em solos de culturas de eucalipto e soja e área de mata nativa

Abstract

Soils present high fungal diversity, including entomopathogenic species. These fungi are used in pest control, providing easy production, multiplication, application, and dispersion in the field. The objective of the present study was to evaluate entomopathogenic fungal diversity in soils from eucalyptus and soybean crops and natural forest areas. These fungi were isolated using the “Bait Method” with Tenebrio molitor (Linnaeus, 1758) (Coleoptera: Tenebrionidae) larvae from 10 soil samples per area, collected at 10 cm deep in a zig-zag pattern. The isolated entomopathogenic fungi were cultivated in Petri dishes using PDA medium and their mycelia separated after seven days of incubation in a BOD-type chamber. Species of Aspergillus, Beauveria, Cordyceps, Fusarium, Metarhizium, Penicillium and Purpureocillium were identified. The “Bait Method” with T. molitor larvae is efficient to isolate entomopathogenic fungi with higher diversity from soils of the natural forest than the cultivated area.

Keywords:
Beauveria; biological control; Cordyceps; Fusarium; Metarhizium

Resumo

A diversidade de fungos, incluindo espécies entomopatogênicas, é alta nos solos. Esses fungos são utilizados no manejo de pragas com facilidade de produção, multiplicação, aplicação e dispersão no campo. O objetivo foi avaliar a diversidade de fungos entomopatogênicos em solos de culturas de eucalipto e soja e áreas de mata nativa. Fungos entomopatogênicos foram isolados pelo “Bait Method” com larvas de Tenebrio molitor (Linnaeus, 1758) (Coleoptera: Tenebrionidae) de 10 amostras de solo por área, coletadas a 10 cm de profundidade em zig-zag. Os fungos isolados foram cultivados em três placas de Petri em meio BDA e seus micélios separados após sete dias de incubação em câmara tipo BOD. Fungos dos gêneros Aspergillus, Beauveria, Cordyceps, Fusarium, Metarhizium, Penicillium e Purpureocillium foram identificados. O “Bait Method” com larvas de T. molitor é eficiente para isolar fungos entomopatogênicos com maior diversidade em solos de área de mata nativa que naqueles com culturas de eucalipto e soja.

Palavras-chave:
Beauveria; controle biológico; Cordyceps; Fusarium; Metarhizium

1. Introduction

Soils present significant fungal diversity, including entomopathogenic species (Sharma et al., 2018SHARMA, L., OLIVEIRA, I., TORRES, L. and MARQUES, G., 2018. Entomopathogenic fungi in Portuguese vineyards soils: suggesting a ‘Galleria-Tenebrio-bait method’ as bait-insects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana). MycoKeys, vol. 38, no. 38, pp. 1-23. http://dx.doi.org/10.3897/mycokeys.38.26790. PMid:30123027.
http://dx.doi.org/10.3897/mycokeys.38.26...
). The soil protects these fungi from UV radiation and biotic and abiotic factors (Mascarin and Jaronski, 2016MASCARIN, G.M. and JARONSKI, S.T., 2016. The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology & Biotechnology, vol. 32, no. 11, pp. 177. http://dx.doi.org/10.1007/s11274-016-2131-3. PMid:27628337.
http://dx.doi.org/10.1007/s11274-016-213...
). Fungi of the genera Aspergillus, Beauveria, Cordyceps, Fusarium, Metarhizium, Penicillium and Purpureocillium are opportunistic, nematophagous, phytopathogenic, endophytic, and entomopathogenic with species reported for Brazil (Rocha and Luz, 2011ROCHA, L.F.N. and LUZ, C., 2011. Activity of Metarhizium spp. and Isaria spp. from the Central Brazilian Cerrado against Triatoma infestans nymphs. Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 105, no. 7, pp. 417-419. http://dx.doi.org/10.1016/j.trstmh.2011.04.012. PMid:21621234.
http://dx.doi.org/10.1016/j.trstmh.2011....
; Corallo et al., 2019CORALLO, B., SIMETO, S., MARTÍNEZ, G., GÓMEZ, D., ABREO, E., ALTIER, N. and LUPO, S., 2019. Entomopathogenic fungi naturally infecting the eucalypt bronze bug, Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae), in Uruguay. Journal of Applied Entomology, vol. 143, no. 5, pp. 542-555. http://dx.doi.org/10.1111/jen.12624.
http://dx.doi.org/10.1111/jen.12624...
; Mussi-Dias et al., 2020MUSSI-DIAS, V., FREIRE, M.D.G.M., SANTOS, A.V., MOREIRA, D.D.O., CAROLINO, A.T. and SAMUELS, R.I., 2020. Screening of fungi isolated from the Brazilian Restinga for insecticidal activity. Microbiology Research Journal International, vol. 30, pp. 48-63. http://dx.doi.org/10.9734/mrji/2020/v30i330204.
http://dx.doi.org/10.9734/mrji/2020/v30i...
). The fungi Beauveria bassiana, Metarhizium anisopliae and Cordyceps spp. are used to manage insect pests in agricultural and forest crops (Soliman et al., 2019SOLIMAN, E.P., CASTRO, B.M.C., WILCKEN, C.F., FIRMINO, A.C., POGETTO, M.H.F.A.D., BARBOSA, L.R. and ZANUNCIO, J.C., 2019. Susceptibility of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae), a Eucalyptus pest, to entomopathogenic fungi. Scientia Agrícola, vol. 76, no. 3, pp. 255-260. http://dx.doi.org/10.1590/1678-992x-2017-0043.
http://dx.doi.org/10.1590/1678-992x-2017...
; Jordan et al., 2021JORDAN, C., DOS SANTOS, P.L., OLIVEIRA, L.R.D.S., DOMINGUES, M.M., GÊA, B.C.C., RIBEIRO, M.F., MASCARIN, G.M. and WILCKEN, C.F., 2021. Entomopathogenic fungi as the microbial frontline against the alien Eucalyptus pest Gonipterus platensis in Brazil. Scientific Reports, vol. 11, no. 1, pp. 7233. http://dx.doi.org/10.1038/s41598-021-86638-9. PMid:33790337.
http://dx.doi.org/10.1038/s41598-021-866...
; Khun et al., 2021KHUN, K.K., ASH, G.J., STEVENS, M.M., HUWER, R.K. and WILSON, B.A., 2021. Transmission of Metarhizium anisopliae and Beauveria bassiana to adults of Kuschelorhynchus macadamiae (Coleoptera: Curculionidae) from infected adults and conidiated cadavers. Scientific Reports, vol. 11, no. 1, pp. 2188. http://dx.doi.org/10.1038/s41598-021-81647-0. PMid:33500474.
http://dx.doi.org/10.1038/s41598-021-816...
). These microorganisms are easily produced, multiplied, applied, and dispersed in the field, and can be used, in combination or individually, with low impact on non-target organisms (Zimmermann, 2007aZIMMERMANN, G., 2007a. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, vol. 17, no. 6, pp. 553-596. http://dx.doi.org/10.1080/09583150701309006.
http://dx.doi.org/10.1080/09583150701309...
, bZIMMERMANN, G., 2007b. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, vol. 17, no. 9, pp. 879-920. http://dx.doi.org/10.1080/09583150701593963.
http://dx.doi.org/10.1080/09583150701593...
; Domingues et al., 2020DOMINGUES, M.M., BECCHI, L.K., VELOZO, S.G.M., SOUZA, A.R., BARBOSA, L.R., SOARES, M.A., SERRÃO, J.E., ZANUNCIO, J.C. and WILCKEN, C.F., 2020. Selectivity of mycoinsecticides and a pyrethroid to the egg parasitoid Cleruchoides noackae (Hymenoptera: mymaridae). Scientific Reports, vol. 10, no. 1, pp. 14617. http://dx.doi.org/10.1038/s41598-020-71151-2. PMid:32883966.
http://dx.doi.org/10.1038/s41598-020-711...
).

The prospection and identification of fungi, especially those effective against agricultural and forest pests can complement integrated pest management methods with low environmental impact. Many studies of fungal diversity in soils have been realized, but few commercial products based on entomopathogenic fungi are available on the market due to the difficulty in finding virulent strains with insecticidal potential. Therefore, more prospective studies are needed. The objective was to evaluate the diversity of entomopathogenic fungi in soil samples from eucalyptus and soybean crops and natural forest areas using the “Bait Method” with T. molitor larvae.

2. Material and Methods

Tenebrio molitor (Linnaeus, 1758) (Coleoptera: Tenebrionidae) was fed on previously sterilized wheat bran, filling up to 2/3 of the tray, being changed when it reached powder form. Chayote, sugarcane or potato slices were used as a food supplement and a liquid source was provided for T. molitor. The rearing temperature was 28 ± 1 °C in a room with low light and relative humidity, favoring the insect’s development (Ribeiro et al., 2018RIBEIRO, N., ABELHO, M. and COSTA, R., 2018. A review of the scientific literature for optimal conditions for mass rearing Tenebrio molitor (Coleoptera: tenebrionidae). Journal of Entomological Science, vol. 53, no. 4, pp. 434-454. http://dx.doi.org/10.18474/JES17-67.1.
http://dx.doi.org/10.18474/JES17-67.1...
).

Entomopathogenic fungi were isolated using the “Bait Method” with T. molitor larvae (Zimmermann, 1986ZIMMERMANN, G., 1986. The ‘Galleria bait method” for detection of entomopathogenic fungi in soil. Journal of Applied Entomology, vol. 102, no. 1-5, pp. 213-215. http://dx.doi.org/10.1111/j.1439-0418.1986.tb00912.x.
http://dx.doi.org/10.1111/j.1439-0418.19...
) in soil samples collected from eucalyptus (three areas) and soybean (one area) crops and in a natural forest (two areas) in the states of Paraná and São Paulo, Brazil (Table 1) (Safitri et al., 2018SAFITRI, A.Y.U., HERLINDA, S. and SETIAWAN, A., 2018. Entomopathogenic fungi of soils of freshwater swamps, tidal lowlands, peatlands, and highlands of South Sumatra, Indonesia. Biodiversitas, vol. 19, no. 6, pp. 2365-2372. http://dx.doi.org/10.13057/biodiv/d190647.
http://dx.doi.org/10.13057/biodiv/d19064...
).

Table 1
Eucalyptus (EU) and soybean (SO) crops and natural forest (NA) areas, municipalities (Mun.), latitude, longitude and altitude (meters) of soil sampling points in the states of São Paulo (SP) and Paraná (PR), Brazil in 2020 for the entomopathogenic fungi isolation.

Ten soil samples per area were collected at 10 cm deep in a zig-zag pattern and taken, separately in a thermal box under cold conditions, to the “Laboratório de Controle Biológico de Pragas Florestais” (LCBPF) of the “Universidade Estadual Paulista (UNESP)” in Botucatu, state of São Paulo, Brazil.

Soil samples were separated into 100 mL plastic pots with holes in the lid for aeration, and moistened when necessary, up to a field capacity (UCC) of 40%, calculated with the formula: UCC= [(Soil mass with 100% moisture - dry soil mass) *40/100], inside the laminar flow chamber with 10 replications (100 mL plastic pots) per sample (total of 100 replications per area).

Five T. molitor larvae were placed per pot (total of 500 insects per area), which were stored at 25 ± 1 °C, 70 ± 10% RH and 12 h photophase, inverted in the first five days, due to the positive phototropism of T. molitor to maintain direct contact with the soil.

The mortality of T. molitor larvae was evaluated for five days, observing those with signs or symptoms of fungal infection. The T. molitor larvae from the soil prospection were disinfected and kept in a humid chamber, until fungus sporulation, with mycelia being transferred to nutrient medium potato-dextrose-agar (PDA) for isolation.

The fungi were cultivated in Petri dishes with PDA medium autoclaved at 121 °C and 1 atm for 20 minutes. The mycelia of these fungi were separated seven days after incubation in a BOD-type chamber in three Petri dishes per dead T. molitor pupa. The fungi structures were transferred to microscopy slides and the characteristics of the mycelial colony and conidia observed under an optical microscope for morphological identification through keys (Domsch et al., 1980DOMSCH, K.H., GAMS, W. and ANDERSON, T.-H., 1980. Compendium of soil fungi. London: Academic Press, vol. 1, 1264 p.; Samson et al., 1988SAMSON, R.A., EVANS, H.C. and LATGÉ, J.P. 1988. Atlas of entomopathogenic fungi, Springer-Verlag, Berlin, Heidelberg, New York, 187 p.. http://dx.doi.org/10.1007/978-3-662-05890-9.
http://dx.doi.org/10.1007/978-3-662-0589...
).

Fungus identification was performed with the molecular analysis of one species for each genus. The fungal colonies on the PDA medium in Petri dishes with 100 uL of 10% Chelex and 10 uL of proteinase K (20 mg/mL) was scraped, incubated in a thermal block at 100 °C for five minutes, and the genomic DNA of the fungi extracted. The PCR was amplified with a reaction in the ITS1-5.8S-ITS2 region of the rDNA using a total volume of 50 μL with 1X Taq DNA polymerase buffer, 1.5 mM MgCl2; 0.4 μM of each primer ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'), 0.2 mM of dNTPs and 0.2 U of Taq DNA polymerase and 25ng of DNA. This amplification was carried out in a thermocycler, programmed for an initial denaturation of 95 °C for 5 min, followed by 30 cycles of denaturation at 95 °C for 30s; annealing at 62 °C for 1min; extension at 72 °C for 2 min and final extension at 72 °C for 5 min (Domingues et al., 2022DOMINGUES, M.M., SANTOS, P.L., GÊA, B.C.C., CARVALHO, V.R., OLIVEIRA, F.N., SOLIMAN, E.P., SILVA, W.M., ZANUNCIO, J.C., SANTOS-JUNIOR, V.C. and WILCKEN, C.F., 2022. Isolation and molecular characterization of Cordyceps sp. from Bemisia tabaci (Hemiptera: Aleyrodidae) and pathogenic to Glycaspis brimblecombei (Hemiptera: Aphalaridae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, pp. e253028. http://dx.doi.org/10.1590/1519-6984.253028. PMid:35507961.
http://dx.doi.org/10.1590/1519-6984.2530...
). The products from DNA extractions and PCR reactions (50 μL) were submitted to electrophoresis in 1% agarose gel and analyzed under UV light, with the amplified samples being purified using magnetic beads and sent to IBTEC at UNESP/Botucatu for Sanger sequencing.

3. Results

The fungi identified using morphological characteristics and confirmed by molecular analysis were species of the Aspergillus, Beauveria, Cordyceps, Fusarium, Metarhizium, Penicillium, and Purpureocillium genera (Figure 1, Table 2). Aspergillus, Fusarium, and Metarhizium were found at all collection points and were the only fungi in the soybean crop; Cordyceps and Penicillium were only found in the natural forest soil and Purpureocillium was only found in the eucalyptus soil. The diversity of entomopathogenic fungi was higher in the natural forest soil, with emphasis on the genus Beauveria, which was also found in the eucalyptus soils (Table 3).

Figure 1
Entomopathogenic fungi of the genera Aspergillus (A), Beauveria (B), Cordyceps (C), Fusarium (D), Metarhizium (E), Penicillium (F) and Purpureocillium (G) cultivated in Petri dishes with PDA medium.
Table 2
Coverage, identity, and closest GenBank access of entomopathogenic fungi of the genera Aspergillus, Beauveria, Cordyceps, Fusarium, Metarhizium, Penicillium, and Purpureocillium to confirm morphological identification.
Table 3
Frequency of occurrence of entomopathogenic fungi of the genera Aspergillus, Beauveria, Cordyceps, Fusarium, Metarhizium, Penicillium, and Purpureocillium isolated from 10 soils sample collected per eucalyptus and soybean crops and in natural forest areas sites using larvae of Tenebrio molitor (Coleoptera: Tenebrionidae).

4. Discussion

The identification of entomopathogenic fungi of the Aspergillus, Beauveria, Cordyceps, Fusarium, Metarhizium, Penicillium, and Purpureocillium genera corroborate reports of high diversity of these microorganisms in Brazil as observed for Cordyceps cateniannulata, Cordyceps sp., and Metarhizium isolates from soils collected in Brazil’s central region (Rocha and Luz, 2011ROCHA, L.F.N. and LUZ, C., 2011. Activity of Metarhizium spp. and Isaria spp. from the Central Brazilian Cerrado against Triatoma infestans nymphs. Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 105, no. 7, pp. 417-419. http://dx.doi.org/10.1016/j.trstmh.2011.04.012. PMid:21621234.
http://dx.doi.org/10.1016/j.trstmh.2011....
), Aspergillus, Cordyceps, Fusarium, and Penicillium in soil from citrus agroforestry systems (Prade et al., 2007PRADE, C.A., MATSUMURA, A.T., OTT, A.P. and PORTO, M.L., 2007 [viewed 9 April 2022]. Diversity of soil fungi in agroforestry citrus orchards with different management in Roca Sales, Rio Grande do Sul, Brasil. Biociencias [online], vol. 15, pp. 73-81. Available from: http://revistaseletronicas.pucrs.br/ojs/index.php/fabio/article/viewFile/256/1745
http://revistaseletronicas.pucrs.br/ojs/...
), and Beauveria, Cordyceps, Fusarium, and Purpureocillium from individuals of Thaumastocoris peregrinus (Carpintero & Dellapé, 2006) (Heteroptera: Thaumastocoridae) collected in Eucalyptus plantations in Uruguay (Corallo et al., 2019CORALLO, B., SIMETO, S., MARTÍNEZ, G., GÓMEZ, D., ABREO, E., ALTIER, N. and LUPO, S., 2019. Entomopathogenic fungi naturally infecting the eucalypt bronze bug, Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae), in Uruguay. Journal of Applied Entomology, vol. 143, no. 5, pp. 542-555. http://dx.doi.org/10.1111/jen.12624.
http://dx.doi.org/10.1111/jen.12624...
).

The collection of Aspergillus, Fusarium, and Metarhizium from all environments confirms the wide distribution of these fungi in most regions of the world in different habitats, soil types, plants, and plant residues, in both air and water (Edel-Hermann et al., 2015EDEL-HERMANN, V., GAUTHERON, N., MOUNIER, A. and STEINBERG, C., 2015. Fusarium diversity in soil using a specific molecular approach and a cultural approach. Journal of Microbiological Methods, vol. 111, pp. 64-71. http://dx.doi.org/10.1016/j.mimet.2015.01.026. PMid:25655778.
http://dx.doi.org/10.1016/j.mimet.2015.0...
; Heo et al., 2019HEO, I., HONG, K., YANG, H., LEE, H.B., CHOI, Y.J. and HONG, S.B., 2019. Diversity of Aspergillus, Penicillium, and Talaromyces species isolated from freshwater environments in Korea. Mycobiology, vol. 47, no. 1, pp. 12-19. http://dx.doi.org/10.1080/12298093.2019.1572262. PMid:30988987.
http://dx.doi.org/10.1080/12298093.2019....
; Glare et al., 2021GLARE, T.R., REIMER, Y.S.O., CUMMINGS, N., RIVAS-FRANCO, F., NELSON, T.L. and ZIMMERMANN, G., 2021. Diversity of the insect pathogenic fungi in the genus Metarhizium in New Zealand. New Zealand Journal of Botany, vol. 59, no. 4, pp. 440-456. http://dx.doi.org/10.1080/0028825X.2021.1890155.
http://dx.doi.org/10.1080/0028825X.2021....
). The presence of Metarhizium in all habitats, especially soybean, confirms reports of a strong association of species of this this fungus genus with soils in cultivated habitats, particularly field crops (Quesada-Moraga et al., 2007QUESADA-MORAGA, E., NAVAS-CORTÉS, J.A., MARANHAO, E.A., ORTIZ-URQUIZA, A. and SANTIAGO-ÁLVAREZ, C., 2007. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research, vol. 111, no. Pt 8, pp. 947-966. http://dx.doi.org/10.1016/j.mycres.2007.06.006. PMid:17766099.
http://dx.doi.org/10.1016/j.mycres.2007....
), and its relationship with different hosts, including forest and agricultural pests (Sullivan et al., 2022SULLIVAN, C.F., PARKER, B.L. and SKINNER, M., 2022. A review of commercial Metarhizium-and Beauveria-based biopesticides for the biological control of ticks in the USA. Insects, vol. 13, no. 3, pp. 260. http://dx.doi.org/10.3390/insects13030260. PMid:35323558.
http://dx.doi.org/10.3390/insects1303026...
). The lower diversity of entomopathogenic fungi in soybean, with the presence only of this genus is, probably, due to fungicide use to manage diseases in this crop (Alves and Juliatti, 2018ALVES, V.M. and JULIATTI, F.C., 2018. Fungicides in the management of soybean rust, physiological processes and crop productivity. Summa Phytopathologica, vol. 44, no. 3, pp. 245-251. http://dx.doi.org/10.1590/0100-5405/167203.
http://dx.doi.org/10.1590/0100-5405/1672...
).

Cordyceps and Penicillium, found only in the natural forest area, highlights the presence of these fungi in less impacted areas, as observed for Cordyceps in Citrus sinensis orchards with organic management (Prade et al., 2007PRADE, C.A., MATSUMURA, A.T., OTT, A.P. and PORTO, M.L., 2007 [viewed 9 April 2022]. Diversity of soil fungi in agroforestry citrus orchards with different management in Roca Sales, Rio Grande do Sul, Brasil. Biociencias [online], vol. 15, pp. 73-81. Available from: http://revistaseletronicas.pucrs.br/ojs/index.php/fabio/article/viewFile/256/1745
http://revistaseletronicas.pucrs.br/ojs/...
), Cordyceps in Cerrado soils (Rocha and Luz, 2011ROCHA, L.F.N. and LUZ, C., 2011. Activity of Metarhizium spp. and Isaria spp. from the Central Brazilian Cerrado against Triatoma infestans nymphs. Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 105, no. 7, pp. 417-419. http://dx.doi.org/10.1016/j.trstmh.2011.04.012. PMid:21621234.
http://dx.doi.org/10.1016/j.trstmh.2011....
) and Penicillium sp. in Caatinga and Atlantic Forest soils (Barbosa et al., 2016BARBOSA, R.N., BEZERRA, J.D.P., COSTA, P.M.O., LIMA-JÚNIOR, N.C.D., GALVÃO, I.R.G.A.S., SANTOS-JÚNIOR, A.A., FERNANDES, M.J., SOUZA-MOTTA, C.M. and OLIVEIRA, N.T., 2016. Aspergillus and Penicillium (Eurotiales: Trichocomaceae) in soils of the Brazilian tropical dry forest: diversity in an area of environmental preservation. Revista de Biología Tropical, vol. 64, no. 1, pp. 45-53. http://dx.doi.org/10.15517/rbt.v64i1.18223. PMid:28862401.
http://dx.doi.org/10.15517/rbt.v64i1.182...
). This may be related to texture, acidity, and organic matter content, which facilitate the presence of these entomopathogenic fungi (Quesada-Moraga et al., 2007QUESADA-MORAGA, E., NAVAS-CORTÉS, J.A., MARANHAO, E.A., ORTIZ-URQUIZA, A. and SANTIAGO-ÁLVAREZ, C., 2007. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research, vol. 111, no. Pt 8, pp. 947-966. http://dx.doi.org/10.1016/j.mycres.2007.06.006. PMid:17766099.
http://dx.doi.org/10.1016/j.mycres.2007....
).

The presence of Purpureocillium in soil from eucalyptus crops is due to its relationship with some insect species, including forest pests, as reported for T. peregrinus (Corallo et al., 2019CORALLO, B., SIMETO, S., MARTÍNEZ, G., GÓMEZ, D., ABREO, E., ALTIER, N. and LUPO, S., 2019. Entomopathogenic fungi naturally infecting the eucalypt bronze bug, Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae), in Uruguay. Journal of Applied Entomology, vol. 143, no. 5, pp. 542-555. http://dx.doi.org/10.1111/jen.12624.
http://dx.doi.org/10.1111/jen.12624...
).

The Beauveria, Cordyceps, and Metarhizium genera, with registered commercial products (Brasil, 2022BRASIL. Ministério da Agricultura. AGROFIT, 2022 [viewed 7 April 2022]. Sistema de agrotóxicos fitossanitários [online]. Available from: http://agrofit.agricultura.gov.br/agrofitcons/ principal_agrofit_cons
http://agrofit.agricultura.gov.br/agrofi...
), are the most suitable to formulate and produce mycoinsecticides, due to their greater safety for human health and entomopathogenic potential (Zimmermann, 2007aZIMMERMANN, G., 2007a. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, vol. 17, no. 6, pp. 553-596. http://dx.doi.org/10.1080/09583150701309006.
http://dx.doi.org/10.1080/09583150701309...
, bZIMMERMANN, G., 2007b. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, vol. 17, no. 9, pp. 879-920. http://dx.doi.org/10.1080/09583150701593963.
http://dx.doi.org/10.1080/09583150701593...
; Chen et al., 2020CHEN, B., SUN, Y., LUO, F. and WANG, C., 2020. Bioactive metabolites and potential mycotoxins produced by Cordyceps fungi: a review of safety. Toxins, vol. 12, no. 6, pp. 410. http://dx.doi.org/10.3390/toxins12060410. PMid:32575649.
http://dx.doi.org/10.3390/toxins12060410...
). The use of these entomopathogenic agents should be evaluated because the genera Aspergillus, Fusarium, Penicillium, and Purpureocillium include entomopathogenic species (Kataria et al., 2018KATARIA, S.K., SINGH, P., PANDOVE, G., KALIA, A. and CHANDI, R.S., 2018. Penicillum oxalicum spg1: A novel entomopathogenic fungus isolated from mummified Bemisia tabaci (Gennadius) of cotton. Journal of Applied and Natural Science, vol. 10, no. 1, pp. 138-143. http://dx.doi.org/10.31018/jans.v10i1.1593.
http://dx.doi.org/10.31018/jans.v10i1.15...
; Ahmad et al., 2019AHMAD, F., ANWAR, W., JAVED, M.A., BASIT, R., AKHTER, A., ALI, S., KHAN, H.A.A., AMIN, H. and HAIDER, M.S., 2019 [viewed 5 April 2022]. Infection mechanism of Aspergillus and Fusarium species against Bemisia tabaci. Mycopathologia [online], vol. 17, pp. 63-72. Available from: http://journals.pu.edu.pk/journals/ index.php/mycopath/article/view/ 3828/1855
http://journals.pu.edu.pk/journals/ ...
; Sun et al., 2021SUN, T., WU, J. and ALI, S., 2021. Morphological and molecular identification of four Purpureocillium isolates and evaluating their efficacy against the sweet potato whitefly, Bemisia tabaci (Genn.) (Hemiptera: aleyrodidae). Egyptian Journal of Biological Pest Control, vol. 31, no. 1, pp. 27. http://dx.doi.org/10.1186/s41938-021-00372-y.
http://dx.doi.org/10.1186/s41938-021-003...
), but also some with mycotoxins that can be pathogenic to humans (Antas et al., 2012ANTAS, P.R.Z., BRITO, M.M.S., PEIXOTO, E., PONTE, C.G.G. and BORBA, C.M., 2012. Neglected and emerging fungal infections: review of hyalohyphomycosis by Paecilomyces lilacinus focusing in disease burden, in vitro antifungal susceptibility and management. Microbes and Infection, vol. 14, no. 1, pp. 1-8. http://dx.doi.org/10.1016/j.micinf.2011.08.004. PMid:21907304.
http://dx.doi.org/10.1016/j.micinf.2011....
; Mendonça et al., 2009MENDONÇA, M.B., HIDALGO, A.F. and CHAVES, F.C.M., 2009 [viewed 9 April 2022]. Isolamento e identificação de fungos com potencial patogênico para a saúde humana em material vegetal de uso medicinal comercializado em Manaus. Horticultura Brasileira [online], vol. 27, pp. S1208-S1214. Available from: http://www.abhorticultura.com.br/EventosX/Trabalhos/ EV_3/A1950_T3043_Comp.pdf
http://www.abhorticultura.com.br/Eventos...
; Li et al., 2020LI, X.Q., XU, K., LIU, X.M. and ZHANG, P., 2020. A systematic review on secondary metabolites of Paecilomyces species: chemical diversity and biological activity. Planta Medica, vol. 86, no. 12, pp. 805-821. http://dx.doi.org/10.1055/a-1196-1906. PMid:32645741.
http://dx.doi.org/10.1055/a-1196-1906...
).

The diversity of fungal genera identified in soils of eucalypts and soybean crops and natural forest is similar to that reported in soil samples from agroforestry citrus orchards, with 28 genera identified, Brazilian Caatinga, with 42 species, including those of the genus Aspergillus and Penicillium, and Restinga, with 14 genera of fungi (Prade et al., 2007PRADE, C.A., MATSUMURA, A.T., OTT, A.P. and PORTO, M.L., 2007 [viewed 9 April 2022]. Diversity of soil fungi in agroforestry citrus orchards with different management in Roca Sales, Rio Grande do Sul, Brasil. Biociencias [online], vol. 15, pp. 73-81. Available from: http://revistaseletronicas.pucrs.br/ojs/index.php/fabio/article/viewFile/256/1745
http://revistaseletronicas.pucrs.br/ojs/...
; Barbosa et al., 2020BARBOSA, R.D.N., BEZERRA, J.D.P., SANTOS, A.C.D.S., MELO, R.F.R., HOUBRAKEN, J., OLIVEIRA, N.T. and SOUZA-MOTTA, C.M.D., 2020. Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of Aspergillus, Penicillium and Talaromyces (Eurotiales) and the description of P. vascosobrinhous sp. nov. Acta Botanica Brasílica, vol. 34, no. 2, pp. 409-429. http://dx.doi.org/10.1590/0102-33062019abb0411.
http://dx.doi.org/10.1590/0102-33062019a...
; Mussi-Dias et al., 2020MUSSI-DIAS, V., FREIRE, M.D.G.M., SANTOS, A.V., MOREIRA, D.D.O., CAROLINO, A.T. and SAMUELS, R.I., 2020. Screening of fungi isolated from the Brazilian Restinga for insecticidal activity. Microbiology Research Journal International, vol. 30, pp. 48-63. http://dx.doi.org/10.9734/mrji/2020/v30i330204.
http://dx.doi.org/10.9734/mrji/2020/v30i...
). The higher diversity of fungal isolates collected from natural forest soil reflects an absence of agricultural practices such as chemical use, including fungicides, and soil manipulation (Quesada-Moraga et al., 2007QUESADA-MORAGA, E., NAVAS-CORTÉS, J.A., MARANHAO, E.A., ORTIZ-URQUIZA, A. and SANTIAGO-ÁLVAREZ, C., 2007. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research, vol. 111, no. Pt 8, pp. 947-966. http://dx.doi.org/10.1016/j.mycres.2007.06.006. PMid:17766099.
http://dx.doi.org/10.1016/j.mycres.2007....
). The predominance of B. bassiana in agricultural and natural habitats, with greater diversity in the latter, may be related to soils with higher pH and clay content (Quesada-Moraga et al., 2007QUESADA-MORAGA, E., NAVAS-CORTÉS, J.A., MARANHAO, E.A., ORTIZ-URQUIZA, A. and SANTIAGO-ÁLVAREZ, C., 2007. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research, vol. 111, no. Pt 8, pp. 947-966. http://dx.doi.org/10.1016/j.mycres.2007.06.006. PMid:17766099.
http://dx.doi.org/10.1016/j.mycres.2007....
) and diversity of host insect species (Amobonye et al., 2020AMOBONYE, A., BHAGWAT, P., PANDEY, A., SINGH, S. and PILLAI, S., 2020. Biotechnological potential of Beauveria bassiana as a source of novel biocatalysts and metabolites. Critical Reviews in Biotechnology, vol. 40, no. 7, pp. 1019-1034. http://dx.doi.org/10.1080/07388551.2020.1805403. PMid:32772728.
http://dx.doi.org/10.1080/07388551.2020....
).

The diversity of entomopathogenic fungi was higher in soils from the natural forest area and indicated that they should be prospected in such areas to use in pest management programs.

Acknowledgements

To the Brazilian institutions “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”, “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - Finance Code 001), “Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)” and “Programa Cooperativo sobre Proteção Florestal (PROTEF) do Instituto de Pesquisas e Estudos Florestais (IPEF)” for financial support. Dr. Phillip John Villani (University of Melbourne, Australia), a professional editor and proofreader and native English speaking, has reviewed and edited this article for structure, grammar, punctuation, spelling, word choice, and readability.

References

  • AHMAD, F., ANWAR, W., JAVED, M.A., BASIT, R., AKHTER, A., ALI, S., KHAN, H.A.A., AMIN, H. and HAIDER, M.S., 2019 [viewed 5 April 2022]. Infection mechanism of Aspergillus and Fusarium species against Bemisia tabaci. Mycopathologia [online], vol. 17, pp. 63-72. Available from: http://journals.pu.edu.pk/journals/ index.php/mycopath/article/view/ 3828/1855
    » http://journals.pu.edu.pk/journals/
  • ALVES, V.M. and JULIATTI, F.C., 2018. Fungicides in the management of soybean rust, physiological processes and crop productivity. Summa Phytopathologica, vol. 44, no. 3, pp. 245-251. http://dx.doi.org/10.1590/0100-5405/167203
    » http://dx.doi.org/10.1590/0100-5405/167203
  • AMOBONYE, A., BHAGWAT, P., PANDEY, A., SINGH, S. and PILLAI, S., 2020. Biotechnological potential of Beauveria bassiana as a source of novel biocatalysts and metabolites. Critical Reviews in Biotechnology, vol. 40, no. 7, pp. 1019-1034. http://dx.doi.org/10.1080/07388551.2020.1805403 PMid:32772728.
    » http://dx.doi.org/10.1080/07388551.2020.1805403
  • ANTAS, P.R.Z., BRITO, M.M.S., PEIXOTO, E., PONTE, C.G.G. and BORBA, C.M., 2012. Neglected and emerging fungal infections: review of hyalohyphomycosis by Paecilomyces lilacinus focusing in disease burden, in vitro antifungal susceptibility and management. Microbes and Infection, vol. 14, no. 1, pp. 1-8. http://dx.doi.org/10.1016/j.micinf.2011.08.004 PMid:21907304.
    » http://dx.doi.org/10.1016/j.micinf.2011.08.004
  • BARBOSA, R.D.N., BEZERRA, J.D.P., SANTOS, A.C.D.S., MELO, R.F.R., HOUBRAKEN, J., OLIVEIRA, N.T. and SOUZA-MOTTA, C.M.D., 2020. Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of Aspergillus, Penicillium and Talaromyces (Eurotiales) and the description of P. vascosobrinhous sp. nov. Acta Botanica Brasílica, vol. 34, no. 2, pp. 409-429. http://dx.doi.org/10.1590/0102-33062019abb0411
    » http://dx.doi.org/10.1590/0102-33062019abb0411
  • BARBOSA, R.N., BEZERRA, J.D.P., COSTA, P.M.O., LIMA-JÚNIOR, N.C.D., GALVÃO, I.R.G.A.S., SANTOS-JÚNIOR, A.A., FERNANDES, M.J., SOUZA-MOTTA, C.M. and OLIVEIRA, N.T., 2016. Aspergillus and Penicillium (Eurotiales: Trichocomaceae) in soils of the Brazilian tropical dry forest: diversity in an area of environmental preservation. Revista de Biología Tropical, vol. 64, no. 1, pp. 45-53. http://dx.doi.org/10.15517/rbt.v64i1.18223 PMid:28862401.
    » http://dx.doi.org/10.15517/rbt.v64i1.18223
  • BRASIL. Ministério da Agricultura. AGROFIT, 2022 [viewed 7 April 2022]. Sistema de agrotóxicos fitossanitários [online]. Available from: http://agrofit.agricultura.gov.br/agrofitcons/ principal_agrofit_cons
    » http://agrofit.agricultura.gov.br/agrofitcons/
  • CHEN, B., SUN, Y., LUO, F. and WANG, C., 2020. Bioactive metabolites and potential mycotoxins produced by Cordyceps fungi: a review of safety. Toxins, vol. 12, no. 6, pp. 410. http://dx.doi.org/10.3390/toxins12060410 PMid:32575649.
    » http://dx.doi.org/10.3390/toxins12060410
  • CORALLO, B., SIMETO, S., MARTÍNEZ, G., GÓMEZ, D., ABREO, E., ALTIER, N. and LUPO, S., 2019. Entomopathogenic fungi naturally infecting the eucalypt bronze bug, Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae), in Uruguay. Journal of Applied Entomology, vol. 143, no. 5, pp. 542-555. http://dx.doi.org/10.1111/jen.12624
    » http://dx.doi.org/10.1111/jen.12624
  • DOMINGUES, M.M., BECCHI, L.K., VELOZO, S.G.M., SOUZA, A.R., BARBOSA, L.R., SOARES, M.A., SERRÃO, J.E., ZANUNCIO, J.C. and WILCKEN, C.F., 2020. Selectivity of mycoinsecticides and a pyrethroid to the egg parasitoid Cleruchoides noackae (Hymenoptera: mymaridae). Scientific Reports, vol. 10, no. 1, pp. 14617. http://dx.doi.org/10.1038/s41598-020-71151-2 PMid:32883966.
    » http://dx.doi.org/10.1038/s41598-020-71151-2
  • DOMINGUES, M.M., SANTOS, P.L., GÊA, B.C.C., CARVALHO, V.R., OLIVEIRA, F.N., SOLIMAN, E.P., SILVA, W.M., ZANUNCIO, J.C., SANTOS-JUNIOR, V.C. and WILCKEN, C.F., 2022. Isolation and molecular characterization of Cordyceps sp. from Bemisia tabaci (Hemiptera: Aleyrodidae) and pathogenic to Glycaspis brimblecombei (Hemiptera: Aphalaridae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, pp. e253028. http://dx.doi.org/10.1590/1519-6984.253028 PMid:35507961.
    » http://dx.doi.org/10.1590/1519-6984.253028
  • DOMSCH, K.H., GAMS, W. and ANDERSON, T.-H., 1980. Compendium of soil fungi. London: Academic Press, vol. 1, 1264 p.
  • EDEL-HERMANN, V., GAUTHERON, N., MOUNIER, A. and STEINBERG, C., 2015. Fusarium diversity in soil using a specific molecular approach and a cultural approach. Journal of Microbiological Methods, vol. 111, pp. 64-71. http://dx.doi.org/10.1016/j.mimet.2015.01.026 PMid:25655778.
    » http://dx.doi.org/10.1016/j.mimet.2015.01.026
  • GLARE, T.R., REIMER, Y.S.O., CUMMINGS, N., RIVAS-FRANCO, F., NELSON, T.L. and ZIMMERMANN, G., 2021. Diversity of the insect pathogenic fungi in the genus Metarhizium in New Zealand. New Zealand Journal of Botany, vol. 59, no. 4, pp. 440-456. http://dx.doi.org/10.1080/0028825X.2021.1890155
    » http://dx.doi.org/10.1080/0028825X.2021.1890155
  • HEO, I., HONG, K., YANG, H., LEE, H.B., CHOI, Y.J. and HONG, S.B., 2019. Diversity of Aspergillus, Penicillium, and Talaromyces species isolated from freshwater environments in Korea. Mycobiology, vol. 47, no. 1, pp. 12-19. http://dx.doi.org/10.1080/12298093.2019.1572262 PMid:30988987.
    » http://dx.doi.org/10.1080/12298093.2019.1572262
  • JORDAN, C., DOS SANTOS, P.L., OLIVEIRA, L.R.D.S., DOMINGUES, M.M., GÊA, B.C.C., RIBEIRO, M.F., MASCARIN, G.M. and WILCKEN, C.F., 2021. Entomopathogenic fungi as the microbial frontline against the alien Eucalyptus pest Gonipterus platensis in Brazil. Scientific Reports, vol. 11, no. 1, pp. 7233. http://dx.doi.org/10.1038/s41598-021-86638-9 PMid:33790337.
    » http://dx.doi.org/10.1038/s41598-021-86638-9
  • KATARIA, S.K., SINGH, P., PANDOVE, G., KALIA, A. and CHANDI, R.S., 2018. Penicillum oxalicum spg1: A novel entomopathogenic fungus isolated from mummified Bemisia tabaci (Gennadius) of cotton. Journal of Applied and Natural Science, vol. 10, no. 1, pp. 138-143. http://dx.doi.org/10.31018/jans.v10i1.1593
    » http://dx.doi.org/10.31018/jans.v10i1.1593
  • KHUN, K.K., ASH, G.J., STEVENS, M.M., HUWER, R.K. and WILSON, B.A., 2021. Transmission of Metarhizium anisopliae and Beauveria bassiana to adults of Kuschelorhynchus macadamiae (Coleoptera: Curculionidae) from infected adults and conidiated cadavers. Scientific Reports, vol. 11, no. 1, pp. 2188. http://dx.doi.org/10.1038/s41598-021-81647-0 PMid:33500474.
    » http://dx.doi.org/10.1038/s41598-021-81647-0
  • LI, X.Q., XU, K., LIU, X.M. and ZHANG, P., 2020. A systematic review on secondary metabolites of Paecilomyces species: chemical diversity and biological activity. Planta Medica, vol. 86, no. 12, pp. 805-821. http://dx.doi.org/10.1055/a-1196-1906 PMid:32645741.
    » http://dx.doi.org/10.1055/a-1196-1906
  • MASCARIN, G.M. and JARONSKI, S.T., 2016. The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology & Biotechnology, vol. 32, no. 11, pp. 177. http://dx.doi.org/10.1007/s11274-016-2131-3 PMid:27628337.
    » http://dx.doi.org/10.1007/s11274-016-2131-3
  • MENDONÇA, M.B., HIDALGO, A.F. and CHAVES, F.C.M., 2009 [viewed 9 April 2022]. Isolamento e identificação de fungos com potencial patogênico para a saúde humana em material vegetal de uso medicinal comercializado em Manaus. Horticultura Brasileira [online], vol. 27, pp. S1208-S1214. Available from: http://www.abhorticultura.com.br/EventosX/Trabalhos/ EV_3/A1950_T3043_Comp.pdf
    » http://www.abhorticultura.com.br/EventosX/Trabalhos/
  • MUSSI-DIAS, V., FREIRE, M.D.G.M., SANTOS, A.V., MOREIRA, D.D.O., CAROLINO, A.T. and SAMUELS, R.I., 2020. Screening of fungi isolated from the Brazilian Restinga for insecticidal activity. Microbiology Research Journal International, vol. 30, pp. 48-63. http://dx.doi.org/10.9734/mrji/2020/v30i330204
    » http://dx.doi.org/10.9734/mrji/2020/v30i330204
  • PRADE, C.A., MATSUMURA, A.T., OTT, A.P. and PORTO, M.L., 2007 [viewed 9 April 2022]. Diversity of soil fungi in agroforestry citrus orchards with different management in Roca Sales, Rio Grande do Sul, Brasil. Biociencias [online], vol. 15, pp. 73-81. Available from: http://revistaseletronicas.pucrs.br/ojs/index.php/fabio/article/viewFile/256/1745
    » http://revistaseletronicas.pucrs.br/ojs/index.php/fabio/article/viewFile/256/1745
  • QUESADA-MORAGA, E., NAVAS-CORTÉS, J.A., MARANHAO, E.A., ORTIZ-URQUIZA, A. and SANTIAGO-ÁLVAREZ, C., 2007. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research, vol. 111, no. Pt 8, pp. 947-966. http://dx.doi.org/10.1016/j.mycres.2007.06.006 PMid:17766099.
    » http://dx.doi.org/10.1016/j.mycres.2007.06.006
  • RIBEIRO, N., ABELHO, M. and COSTA, R., 2018. A review of the scientific literature for optimal conditions for mass rearing Tenebrio molitor (Coleoptera: tenebrionidae). Journal of Entomological Science, vol. 53, no. 4, pp. 434-454. http://dx.doi.org/10.18474/JES17-67.1
    » http://dx.doi.org/10.18474/JES17-67.1
  • ROCHA, L.F.N. and LUZ, C., 2011. Activity of Metarhizium spp. and Isaria spp. from the Central Brazilian Cerrado against Triatoma infestans nymphs. Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 105, no. 7, pp. 417-419. http://dx.doi.org/10.1016/j.trstmh.2011.04.012 PMid:21621234.
    » http://dx.doi.org/10.1016/j.trstmh.2011.04.012
  • SAFITRI, A.Y.U., HERLINDA, S. and SETIAWAN, A., 2018. Entomopathogenic fungi of soils of freshwater swamps, tidal lowlands, peatlands, and highlands of South Sumatra, Indonesia. Biodiversitas, vol. 19, no. 6, pp. 2365-2372. http://dx.doi.org/10.13057/biodiv/d190647
    » http://dx.doi.org/10.13057/biodiv/d190647
  • SAMSON, R.A., EVANS, H.C. and LATGÉ, J.P. 1988. Atlas of entomopathogenic fungi, Springer-Verlag, Berlin, Heidelberg, New York, 187 p.. http://dx.doi.org/10.1007/978-3-662-05890-9
    » http://dx.doi.org/10.1007/978-3-662-05890-9
  • SHARMA, L., OLIVEIRA, I., TORRES, L. and MARQUES, G., 2018. Entomopathogenic fungi in Portuguese vineyards soils: suggesting a ‘Galleria-Tenebrio-bait method’ as bait-insects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana). MycoKeys, vol. 38, no. 38, pp. 1-23. http://dx.doi.org/10.3897/mycokeys.38.26790 PMid:30123027.
    » http://dx.doi.org/10.3897/mycokeys.38.26790
  • SOLIMAN, E.P., CASTRO, B.M.C., WILCKEN, C.F., FIRMINO, A.C., POGETTO, M.H.F.A.D., BARBOSA, L.R. and ZANUNCIO, J.C., 2019. Susceptibility of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae), a Eucalyptus pest, to entomopathogenic fungi. Scientia Agrícola, vol. 76, no. 3, pp. 255-260. http://dx.doi.org/10.1590/1678-992x-2017-0043
    » http://dx.doi.org/10.1590/1678-992x-2017-0043
  • SULLIVAN, C.F., PARKER, B.L. and SKINNER, M., 2022. A review of commercial Metarhizium-and Beauveria-based biopesticides for the biological control of ticks in the USA. Insects, vol. 13, no. 3, pp. 260. http://dx.doi.org/10.3390/insects13030260 PMid:35323558.
    » http://dx.doi.org/10.3390/insects13030260
  • SUN, T., WU, J. and ALI, S., 2021. Morphological and molecular identification of four Purpureocillium isolates and evaluating their efficacy against the sweet potato whitefly, Bemisia tabaci (Genn.) (Hemiptera: aleyrodidae). Egyptian Journal of Biological Pest Control, vol. 31, no. 1, pp. 27. http://dx.doi.org/10.1186/s41938-021-00372-y
    » http://dx.doi.org/10.1186/s41938-021-00372-y
  • ZIMMERMANN, G., 1986. The ‘Galleria bait method” for detection of entomopathogenic fungi in soil. Journal of Applied Entomology, vol. 102, no. 1-5, pp. 213-215. http://dx.doi.org/10.1111/j.1439-0418.1986.tb00912.x
    » http://dx.doi.org/10.1111/j.1439-0418.1986.tb00912.x
  • ZIMMERMANN, G., 2007a. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, vol. 17, no. 6, pp. 553-596. http://dx.doi.org/10.1080/09583150701309006
    » http://dx.doi.org/10.1080/09583150701309006
  • ZIMMERMANN, G., 2007b. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, vol. 17, no. 9, pp. 879-920. http://dx.doi.org/10.1080/09583150701593963
    » http://dx.doi.org/10.1080/09583150701593963

Publication Dates

  • Publication in this collection
    06 Jan 2023
  • Date of issue
    2022

History

  • Received
    19 Apr 2022
  • Accepted
    29 Nov 2022
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br