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1. Introduction

When a ligand couples with a receptor in a biochemical 
system, a signal is understood to travel through the 
receptor, inducing a conformational change that triggers a 
response cascade (Wu, 2013). Two types of receptor exist. 
The first, found anchored to cell membranes, features three 
domains (intracellular, transmembrane and extracellular). 
The  second type, of which an example would be the 
carrier molecule haemoglobin, is not anchored, enjoying 

freedom of movement and possessing only a single domain 
(Hall, 2015). In anchored receptors, coupling of the ligand 
with the external domain induces a conformational change 
throughout the interior of the receptor. An identical action 
occurs in non-anchored receptors. These conformational 
changes have not been clearly explained.

We analyzed more than twenty receptor-ligand systems 
known to feature conformational changes. We selected four 
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systems with widely differing biochemical functions: T cell 
receptor (TCR) with peptide, cell membrane calcium pump-
ADP (SERCA), the haemoglobin-oxygen carrier system, and 
the gp120-CD4 viral coupling. In the latter three systems, 
the calcium pump, haemoglobin, and gp120 molecules are 
considered to act as receptors. The transduction processes 
in these systems are understood as follows (in each case, 
the required transmission of the signal cannot be fully 
explained using only mechanical criteria (Bischof and 
Del Giudice, 2013)):

Calcium pump-ADP. Ion pumps located in cell membranes 
use ATP as an energy source to move calcium ions out of the 
cell against a concentration gradient. The mechanism put 
forward to explain this proposes conformational changes 
in the different domains of the protein. When the ATP 
molecule couples to the calcium pump, the pump closes, 
trapping ions in the transmembrane domain. Subsequently, 
the ATP is hydrolyzed to ADP, which becomes dissociated, 
thereby inducing an opening in the extracellular domain 
of the pump and allowing the trapped calcium ions to be 
released on the other side of the membrane, i.e. against 
the electrochemical gradient (Toyoshima  et  al.,  2007; 
Toyoshima et al., 2004).

Haemoglobin-oxygen. Haemoglobin is some 2,000 
times heavier than the molecules of oxygen it is designed 
to transport (Torsoni et al., 2002). Coupling nevertheless 
is able to induce a conformational change in the entire 
protein. The coupling of the first oxygen molecule to one 
of the four available sites allows an identical, consequential 
coupling of a second, third and fourth oxygen molecule. 
The spatial forms adopted by the haemoglobin to hold 
on to the four molecules are highly stable. It is this that 
enables it to carry the oxygen successfully all the way 
from the lungs to the muscles (Biswal and Vijayan, 2002).

Gp120-CD4. The HIV virus also makes potent use 
of a conformational change within its gp120 protein. 
This  change, on the coupling of two opposite charges, 
aspartate 368 in gp120 and arginine 59 in CD4, causes 
the V1/V2 arm or loop to spring open, leaving exposed 
the domain responsible for the determinant fusion with 
the CCR5 co-receptor (Liu et al., 2008; Huang et al., 2007).

The mechanisms of molecular transduction that 
induce activation of the T-cell receptor (TCR), another 
receptor-ligand system, are not clearly understood 
(Adams et al., 2011). Different approaches have been taken 
in the past to account for molecular transduction. A number 
of authors refer to cell receptors as “mechanosensors” that 
convert the mechanical energy of ligand-receptor coupling 
into biochemical signals, inducing transduction of the 
signal (Kim et al., 2009; Kim et al., 2012). (An example is 
induced adjustment, a hypothetical mechanism by which 
receptors scan the ligand searching for complementarity. 
This structural reordering may be transmitted along the 
entire length of the receptor, inducing a conformational 
change to trigger the signaling (Bridgeman et al., 2012)).

In earlier work, we observed that planar molecular 
patterns were present in Major Complex Histocompatibility 
Class II (MHC-II) molecules. The patterns, known as Planar 
Electromagnetic fields of Cortés-Coral (or PECC), enabled 
us to present a coherent explanation of the process of 
MHC-II coupling with foreign peptides (Cortés et al., 2017b; 

Cortés et al., 2017a). PECC are also found in other proteins. 
Most significantly, they are present in all of the receptor 
molecules studied in the present article, in which we 
propose an evidence-based, molecular mechanism for 
transduction and subsequent activation, especially in TCR.

PECC are formed by fully conserved residues of a single 
chemical species (e.g. Gly) arranged on the same plane 
within the protein, extending across the macromolecule. 
The result is the organized presence, in the internal protein 
structure, of specific PECC-Gly planes, PECC-Pro planes, 
PECC-Leu planes, and so on (Cortés et al., 2013; Cortes 
and Coral, 2015; Cortés et al., 2017b). Importantly, from 
crystal structure analysis of the planes, using Molecular 
Viewer software, and studying the behavior of the fully 
conserved residues it is possible to infer that all the 
component residues are mutually interlinked by a single 
electromagnetic field, which shows the same planar 
geometric form in all of the molecules studied. This field 
is generated by an aromatic residue (i.e. Tyr, Phe, Trp) that 
is always found at the point of origin of all of the PECC 
(see the Figures in this article).

As a precondition for generating any electromagnetic 
field, the movement of electrical charge is required 
(Anselmo et al., 2008; Anselmo et al., 2009). Aromatic 
residues possess electrons in movement, able to instigate 
such a field. This field may therefore be generated by 
movement of electrons in the aromatic residue present in 
all PECC and always located so as to be in electromagnetic 
communication with all residues of the plane. The effect of 
the field is to cause these component residues to behave in 
a synchronized manner. As a result, an action applied at one 
point (amino acid) of the PECC is replicated at all the other 
points of the PECC. The coupling signal is thereby replicated 
deep in the interior of the receptor (Cortés et al., 2017a). 
The existence of PECC in biomolecules would explain 
two experimental findings. The first is the detection of 
electromagnetic fields generated by proteins, identified 
by Ćosić et al., 2006 (Ćosić et al., 2006), from the Royal 
Melbourne Institute of Technology; the second finding is 
that of highly ordered electromagnetic fields generated 
by DNA molecules, in a study directed by Nobel laureate 
Luc Montagnier (Montagnier et al., 2011).

We studied these PECC planes in various protein 
crystal structures. On comparing the proteins in their free 
(uncoupled) and coupled states, it was noted that some 
charged residues exhibited intramolecular ionic pairing. 
We  therefore focused our attention only on the PECC 
formed by these residues. These were given the name 
PECC-ionic (PECC-i) and constitute planes that span the 
entire protein.

In the case of the TCR molecule, the PECC-i extends from 
the TCR intracellular domain to its most exposed point, 
known as the Complementary Determining Region (CDR), 
located in the αβ domains and responsible for recognizing 
the peptide presented by the Human Leukocyte Antigen 
(HLA) molecule in humans (Bridgeman et al., 2012).

The coordinated ionic pairing seen in all of the PECC-i 
demonstrates characteristics typical of quantum coherence. 
If all the component residues of the PECC are interconnected 
by a same field of a possible electromagnetic nature, it 
would cause the ionic pairing to occur in a coordinated 
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way in the whole structure. Quantum phenomena have 
two main characteristics: quantization of energy and 
quantum engagement. Quantization of energy does not 
allow the existence of intermediate energy values, so that 
in the PECC system there could only be two quantized 
states - the free and the coupled - excluding intermediate 
energy values, while quantum engagement may be 
present here, interconnecting the PECC residues. These 
are properties that recent findings have shown may be 
present in biological phenomena. Two common examples 
of this include the process of photosynthesis in plants 
and the ability in birds to navigate using Earth’s magnetic 
field (Ball, 2011; Lambert et al., 2013). In the first, photons 
are captured from the environment and channeled to 
the photosynthesis reaction center, so efficiently that 
almost every photon is transferred (the success rate is 
nearly 100%). Various researchers have indicated that 
photon-electron interactions in this process may well be 
coherent, with their waves extending to more than one 
molecule while staying in step and reinforcing one another. 
Similarly, in the case of birds, photons of light striking the 
retina of the eye appear to create pairs of free radicals 
that can be reoriented by magnetic fields, enabling these 
electron pairs to exist in a state of quantum coherence 
(Lambert et al., 2013). Importantly then, quantum laws 
may apply not only under strict laboratory conditions, 
but in everyday biological situations.

2. Material and Methods

We studied a number of structures of receptor-ligand 
systems with widely differing biochemical functionality. 
In this article, we describe some of these (TCR-peptide, 
calcium pump-ADP, haemoglobin-oxygen and gp120-CD4). 
Each crystal structure is presented in its free state and in its 
coupled state. A search for crystal structures was performed 
in the Structure database of the National Center for 
Biotechnology Information (NCBI), using the search criteria 
“TCR coupled form” and “TCR free” for TCR molecules; 
this same search strategy was carried out with the other 

systems - calcium pump-ADP, haemoglobin-oxygen and 
gp120-CD4 - via the Global Query Cross-Database Search 
System, ENTREZ. Once the MMDB ID was obtained from 
the Structure database, it was possible to locate the PDB 
ID of each selected crystal structure (see Table 1 and 
Figures 1-3). The crystal structures selected were then 
located, using the PDB ID, in the PDB database (http://
www.rcsb.org/pdb/home/home.do). The results of the 
searches yielded the following three-dimensional protein 
crystal structures: for TCR (αβ) coupled with peptides (1FYT 
(Hennecke et al., 2000)) as well as free TCR (αβ) structures 
(4GKZ (Holland et al., 2012), 1KGC (Kjer-Nielsen et al., 2002), 
3QEU (Borbulevych et al., 2011), 2HAC (ζζ transmembrane 
dimer domain) (Call et al., 2006)); for the other systems: 
calcium pump-ADP (free: 2ZBE (Toyoshima et al., 2007), 
coupled: 2ZBD (Toyoshima et al., 2004)), haemoglobin-
oxygen (free: 1JY7 (Biswal and Vijayan, 2002), coupled: 
3B75), and gp120-CD4 (free: 3DNN (Liu  et  al.,  2008), 
coupled: 2QAD (Huang et al., 2007)).

From a large database, we analyzed protein sequences 
of every receptor available in the Conserved Domains 
Database (CDD), also from NCBI. We then selected protein 
sequences of only that species most abundant in the CDD 
for each structure, so that for the TCR (αβ) and haemoglobin 
molecules, all sequences related to Homo sapiens were 
selected; for the calcium pump, those of Oryctolagus 
cuniculus, and for gp120, only the HIV type I species. 
Sequences were aligned in Clustal Omega (a multiple 
sequence alignment algorithm available in the database 
of the European Molecular Biology Laboratory-European 
Bioinformatics Institute (EMBL-EBI, 2018).

The fully conserved residues with electrical charge 
were then selected, as were the aromatic residues. 
In the molecules coupled with the ligand, we looked for 
intramolecular ionic pairings of opposite charges. We then 
further located the same residues in the molecules in their 
free state. All of these residues were selected and placed in 
the virtual displays for 3D analysis, to locate them spatially.

The methodology used to visualize the crystal structures 
was designed by the authors from prior studies on 
complexes. It uses bioinformatics tools including Cn3D 

Table 1. Fully conserved charged and aromatic residues that form PECC planes, in the receptor-ligand systems studied.

Receptor TCR Ca pump Hb gp 120

PDB ID 1KGC 3QEU 4GKZ 1FYT
2ZBE 1JY7 3DNN

2ZBD 3B75 2QAD

Charged 
residues

D135 D128 D133 D135 R560 E43 D368

K136 K129 K134 K136 R671 R92 K487

K184 K177 K182 K184 K297 K127 K490

D 186 D179 D184 D 186 E696 D6 E492

-- -- -- -- E90 -- --

-- -- -- -- R110 -- --

-- -- -- -- E113 -- --

Aromatic 
residues

Y159 Y152 Y157 Y159 F57 H58 F93

 (TCR, T-cell receptor; Ca pump, Calcium pump; Hb, Haemoglobin; gp120)
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(macromolecular structure display, version 4.3, 2011; 
Cn3D, 2011) and Jmol (an open-source Java viewer for 
chemical structures in three dimensions, version 12.0, 
2011; Jmol, 2011). Using the tools of the visualizers, we 
selected only the fully conserved, charged residues and 
placed them in the 3D structures of the free and coupled 
states. We compared residue by residue in all states, looking 
for possible intramolecular pairings between opposite 
charges in the coupled 3D structures. The residues that 
formed new pairs were registered and recorded in images 
taken from Jmol.

3. Results

Table 1 shows the fully conserved charged and aromatic 
residues in the receptor of the systems studied in this 
paper. These residues form PECC planes and occupy 

equivalent spatial positions in the receptors in both the 
free and coupled state.

Figure 1 shows the spatial positions of the fully conserved, 
charged residues of the TCR(αβ). These residues form planes 
that extend throughout the entire complex, from the ζζ 
transmembrane dimer domain (D30, R22) to the peptide-
recognition residues (D28, E94) in the CDR (αβ chains). 
The positive residues of the coupled peptide (shown in 
blue) form two ionic pairings with the peptide-recognition 
residues exposed by the TCR. The side view shows the 
planarity in the complex; this plane constitutes the PECC-i.

Figure 2 shows four TCR(αβ) molecules (1KGC, 3QEU, 
4GKZ, 1FYT). In Figure 2a), b) and c), the molecule is shown 
in its free (uncoupled) form, whereas in Figure 2d) the TCR 
is in its peptide-coupled form. The charged residues are 
shown in red for negative charges and blue for positive 
charges. The fully conserved residues are highlighted in 
the boxes beneath each figure.

Figure 1. Spatial positions of fully conserved, charged residues and peptide-recognition residues in TCR. These together form a PECC-i 
by which the signal reaches the ζζ transmembrane dimer domain. Image recordings taken from Jmol.
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Figure 3 shows the PECC-i of some of the receptor-
ligand systems studied by the authors: calcium pump-ADP 
(a,b,c) haemoglobin-oxygen (d,e,f) and gp120-CD4 (g,h,i). 
All systems are shown with the free (uncoupled) form on 
the left. The central and right-hand representations show 
the coupled form.

4. Discussion

The only pairs of residues that produce a strong and 
stable coupling in a receptor-ligand system are electrically 
charged residues. These are always located in the most 
exposed part of the proteins, due to their hydrophilic 
nature (Wang et al., 1993). They also interact best with 
electromagnetic fields (Pokutnyi and Naumenko, 2014). 
From this it follows that the amino acids with the best 
properties for bringing about the transduction of an 
electromagnetic signal in a receptor are those, such as the 
aspartate (D), glutamate (E), arginine (R), histidine (H), and 
lysine (K) residues, that have an electric charge (Table 1).

Certain mutations effected on the TCR, for example, 
have shown that by replacing charged amino acids with 
other oppositely-charged ones, it is possible to induce 
activation of T cells (Lynch et al., 2013; Fukui et al., 2000). 
Also, the mutation of electrical amino acids by other 

residues with no charge is linked to the induction of a 
number of diseases. In sickle cell anaemia, the E6 amino 
acid of the beta chain of the haemoglobin is substituted 
for the hydrophobic V6 residue (Ingram, 2004), while in 
HIV infection, blocking of the charged D2 and D11 residues 
of the CCR5 molecule of T-lymphocytes impedes coupling 
of the virus (Cormier et al., 2000). Charged amino acids 
are thus clearly important in the functionality of proteins.

The PECC-i planes function precisely by means of their 
charged amino acids. These residues acquire a coordinated, 
synchronized behaviour due to an interconnection 
produced by the electromagnetic field. This would explain 
the functional importance of this class of amino acids in 
proteins. To corroborate this, we looked at each residue 
of the PECC-i in different crystal structures of proteins of 
several receptor-ligand systems with diverse biological 
functions. Free and coupled systems were compared.

In all the studied structures, it was found that the charged 
residues formed ionic pairings with residues of opposite 
charges. This is because all the residues mentioned are 
interconnected by the same electromagnetic field. This type 
of ionic pairing could not be produced by mechanical 
conformational changes for two reasons: 1) because too 
much energy would be required at the time of molecular 
ligand-receptor coupling and 2) if the conformational 
changes occurred mechanically, they could operate with 

Figure 2. TCR(αβ) molecules in free (a, b, c) and coupled (d) states, showing the charged residues in red for negative charges and blue 
for positive charges. The fully conserved residues are highlighted in the boxes below each figure. Image records taken from Jmol.
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any amount of energy allowing an infinity of intermediate 
states, increasing the disorder of the molecular system and 
making molecular transduction extremely inefficient, or 
even impossible. These pairings are depicted in Figures 1-3, 
showing the involvement of the D, E, R and K residues, 
principally. (In the case of haemoglobin (Figure 3 d-f), the 
H residue is involved, coupling with the oxygen.)

This is the basis of the model we hereby propose with 
the aim of explaining the transduction of signals over 

relatively long distances within a receptor. We call this 
model Transduction in Molecules by PECC-i (TM-PECC-i).

4.1. TCR activation mechanism according to the TM-
PECC-i model

TCR activation is vital for induction of the immune 
response against pathogenic microorganisms and 
consequently for the functioning of vaccines (Wang 

Figure 3. Some examples of PECC-i present in: calcium-ADP pump (a,b,c); haemoglobin-oxygen (d,e,f); and gp120-CD4 (g,h,i) receptor-
ligand protein systems. Image records taken from Jmol.
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and Reinherz, 2013). The activation is triggered by the 
recognition of certain foreign antigens. These antigens 
must send a signal to the interior domain of the TCR 
(from the αβ domains to the ζζ domain). This mechanism 
has lacked a clear explanation, since transmission of the 
signal by molecular mechanical vibration is not capable of 
accounting for the efficacy of an immunological response. 
First, such a mechanical mechanism requires too much 
energy to be able to induce a signal that travels all the 
way from the point of coupling with the ligand to the 
intracellular domain. Secondly, a mechanical signal induces 
multiple aimless movements, raising the entropy of the 
system and dispersing the energy (Bischof and Del Giudice, 
2013). Finally, the activation mechanism would not be 
sufficiently specific and lack the selectivity necessary to 
differentiate between one ligand and another.

Analyzing the human protein sequences of TCR reported 
in the NCBI database, we identified the fully conserved 
residues seen in Table 1. All these residues showed planar 
spatial patterns, as seen in Figure 1 where the electrical 
peptide-recognition residues D28 and E94 of the TCR are 
observed to act as couplings for the positive charges of 
the coupled peptide. This type of plane was also found 
in HLA-II molecules, as we have previously indicated 
(Cortés et al., 2013, Cortés et al., 2017b).

In Figure 2, it was seen that all the fully conserved 
residues of the free TCR are found in a dissociated state, 
while in the molecule coupled with the peptide, these 
same residues are paired. This shows that the coupling 
of opposite charges between the TCR and the peptide 
induces the additional formation of new ionic pairings 
within the planar system.

According to the TM-PECC-i model, the formation of 
new ionic pairings in the interior would be induced by 
the signal generated by the TCR-peptide coupling and 
simultaneously replicated by all of the internal residues 
of the PECC-i. This, as we have outlined above, would 
occur by means of the quantum coherence mechanism.

Quantum coherence predicts that in a system that is 
thermodynamically open, fully ordered and internally 
interconnected by an electromagnetic field, the component 
elements of the system will behave in a coherent and 
synchronized way (Collini et al., 2010; Bischof and Del 
Giudice, 2013; Engel et al., 2007). The planar geometry 
of the PECC-i ensures that these are fully ordered systems 
(of low entropy). The very occurrence of ionic pairings in 
the PECC-i is responsible for internalizing the signal (Fig. 3). 
This system meets the conditions required by quantum 
coherence. As observed, a local change in the receptor is 
transduced by the coherent and synchronized behavior 
of the whole system. On the contrary, a hypothetical 
mechanical transmission, induced by receptor-ligand 
molecular contact, would rapidly lose mechanical vibration 
through the dissipative effects of the medium (Bischof and 
Del Giudice, 2013; Lambert et al., 2013).

We thus infer that the signal reaches beyond the 
αβ domain to the D30 and R22 residues in the ζζ 
transmembrane dimer domain, permitting the signal 
to appear in the cell interior in a timespan concomitant 
with the immediate reaction time required by the human 
immunological system (Figure 1).

4.2. Signal transduction in other receptor-ligand systems

To verify the universality of the phenomenon of 
simultaneous ionic pairings across the whole plane (as 
witnessed in the TCR-peptide system), we proceeded to 
analyze these other receptor-ligand systems: calcium 
pump-ADP, haemoglobin-oxygen and gp120-CD4.

Figure 3 presented the different receptor-ligand 
systems in their free and coupled state. Figure 3b,d,h 
highlighted the fact that coupling with the respective 
ligand induces the formation of identical ionic pairings 
across the planar system, while the planar geometry of 
each of the three systems could be most easily seen in 
Figure 3c,f,i. Our hypothesis is that when a ligand couples 
with its respective receptor all the residues of the PECC-i 
pair with an opposite charge, cancelling out the charges 
and releasing the electromagnetic field that connects 
them. This released field may be the transduction signal 
carried by the ligand.

The effects of amino acid mutations have been the 
subject of wide-ranging research (Guzzi  et  al.,  2020). 
In the action of calcium pumps, a number of studies 
have shown that on mutating the R560 residue (whose 
position is considered to be strategic), the functionality 
of the pumps is altered. Further, such mutation may also 
interfere with the protective effect of the nucleotides. 
This may alter the stabilization of the coupling with 
ATP; this is one of the causes of congenital dystonia in 
animal muscle (Ma et al., 2003; Brini and Carafoli, 2009; 
Dorotea et al., 2015). Elsewhere, it was discovered that 
mutation of the R671 residue (that modulates the activity 
of early tryptic fragmentation) alters the conformation of 
the calcium pumps of SERCA 3 (Corvazier et al., 2009). 
In the haemoglobin molecule, genetic variants have been 
reported that cause cyanosis (a diminution in oxygen 
affinity) when the H58 residue is mutated (a variant 
known as Hb M Boston) (Nishikura  et  al.,  1975; Viana 
and Belisário, 2014). Similarly, a further variant known 
as Hb Hornchurch shows a mutation in the E43 residue, 
which may be related to diminution in the plate count 
(thrombocytopenia) (Shi and Wang, 2017). Mutations in 
the D368 residue of the gp120 protein, meanwhile, have 
proved to be relevant for effective coupling of the gp120-
CD4 system, demonstrating a key function in this protein 
(Olshevsky et al., 1990).

All of these charged amino acids form part of the 
PECC-i systems in the molecules studied. Wherever one 
of these residues was altered, the coupling was unable 
to be replicated and the signal was thus interrupted, 
affecting the TM-PECC-i mechanism. These residues are 
therefore seen to have a critical role in the functionality 
of each of the proteins. This is due to the fact that it is 
not a local amino acid that is altered, but an organized 
internal system in the protein, which is relevant to the 
functionality of the entire protein.

In fact, returning to the two examples cited of quantum 
coherence present in biological phenomena – plant 
photosynthesis and bird navigation - the PECC-i model 
can shed light on both. In photosynthesis, the reason 
behind the near 100% success rate of photon transfer 
is not well understood, but researchers have suggested 
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that the waves of photon-electron interactions may 
extend to more than one molecule (Ball, 2011). Our study 
confirms that an extended electromagnetic field, 
intercommunicating amino acids, is indeed present in 
the form of a PECC field. Meanwhile, the electron pairs 
created by photons of light striking the retina in birds are 
known to exhibit quantum coherence, but the cause of this 
phenomena is not well enough understood (Ball, 2011; 
Lambert et al., 2013). When the electrons are not entangled, 
they act independently. But when the system entangles 
the electrons they locate themselves precisely, like two 
poles of a magnet, in opposing positions, thus acting as 
a compass. Again, the PECC-i model offers a satisfactory 
explanation for this quantum coherence.

Now, if traditional mechanical criteria such as induced 
adjustment are used to explain the processes involved, the 
enormous ensemble of signals required in an organism 
to keep other parts of the organism informed about what 
is going would demand an immense consumption of 
energy. We know, however, that the energy demands of an 
organism in contrast are quite moderate (Bischof and Del 
Giudice, 2013). The coherence exhibited by the PECC-i may 
explain the efficiency in energy of a biochemical system, 
bearing in mind that the coherent behavior of the PECC-i 
can only be induced by the coupling of a single, unique 
ligand type and not by any other. This indicates that each 
type of ligand must possess an energy that corresponds 
exclusively with the energy to activate the corresponding 
receptor. From this it can be deduced that the energy for 
the activation of a receptor is possibly quantized. This idea 
will be presented in fuller detail in a forthcoming article.

The mechanism we now propose for explaining the 
molecular transduction of signals, TM-PECC–I, operates 
along the plane in a manner that is thus consistent with 
quantum coherence (Lambert et al., 2013). The coherence 
may be enabled by electromagnetic coupling between all 
amino acid constituents of PECC-i, producing a synchronized 
and collective behaviour among these component residues. 
The aromatic residues located at the point of origin of all 
PECC may have a pulsing behavior, absorbing energy from 
the environment and then re-emitting this same energy in 
the form of a planar field. This is analogous to the mode 
of operation of photosynthetic systems. The TM-PECC–i 
model further enables a number of diverse systems of 
molecular coupling to be explained, which would be useful 
for the design of bioactive molecules and would also allow 
us to propose an explanation for the recognition between 
a receptor and a ligand, in future work.

Finally, the fact that the aminoacids comprising PECC 
fields are fully conserved, or constant, precludes any use 
of statistical analysis: no variable data are used, rather 
invariable data, which allows us to speak of exactitudes, 
rather than average results.

5. Conclusions

We propose a mechanism to explain molecular 
transduction in receptor-ligand systems, based on an earlier 
discovery of Planar Electromagnetic fields of Cortés-Coral 
(PECC) present in crystal structures of proteins reported 

by NCBI. Comprising fully conserved residues of the same 
chemical species organized across the entire protein, these 
planes always contain an aromatic residue.

This is able to generate electromagnetic signals that 
provide the system with energy and furthermore interconnect 
all of the residues of the PECC, as explained above.

Special PECC formed by charged residues are known 
as PECC-ionic (PECC-i). These exhibit a coherent and 
synchronized behaviour in their electrical residues 
consistent with quantum coherence phenomena. 
Thus,  when an electric charge at a single point in the 
PECC-i couples with an opposite charge in the ligand, this 
action is immediately replicated across the whole planar 
system. The mechanism, given the name Transduction in 
Molecules by PECC-ionic (TM-PECC-i), was found to be 
present in all of the systems studied (calcium pump-ADP, 
haemoglobin-oxygen, gp120-CD4) - suggesting that it 
may be universal in character - as well as in TCR-peptide.

Since the TM-PECC-i model thus offers an explanation 
of the key principles involved in activation of the TCR 
molecule, application of the mechanism to the design of 
vaccine-peptides ought to be of value, ensuring that these 
activate an effective immune response.

The functionality of TM-PECC-i is demonstrated by 
the fact that, as reported by other studies, the mutation 
of a component amino acid of the PECC-i invariably 
alters the activity of the proteins studied or renders 
them inactive.

Finally, TM-PECC-i is furthermore capable of explaining 
1) the high efficacy of signal transduction in all receptor-
ligand systems; and 2) the high specificity of recognition, 
in which each receptor is activated exclusively by a unique 
ligand type, suggesting that the energy liberated in the 
receptor-ligand coupling is exclusively specific and thus 
possibly quantized.
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