Acessibilidade / Reportar erro

First steps to study the demography of vascular epiphytes in cities

Primeiros passos para estudar a demografia de epífitas vasculares em cidades

Abstract

Urban ecosystems could jeopardize the existence of vascular epiphytes (VE) given that their occurrence is linked to phorophyte availability and particular climatic conditions. Despite reports of VE in cities, nothing is known about their demography. A first step in this direction is to describe their population structures (PS). We established the PS of VE present in urban parks in Oaxaca City (Mexico), addressing the following questions: 1) what is their demographic status? and 2) are there differences in the structure of populations growing in native versus exotic phorophytes? During 2021, we censused all the trees in six urban parks, recording their origin (native or exotic), the epiphytic species found on them and the development stages present in each VE population. Overall, five VE species were documented: Tillandsia ionantha, T. makoyana, T. sp., T. schiedeana and T. recurvata (Bromeliaceae); the first three with only one individual and the latter two with 95 and 5,694, respectively. A MANOVA test indicated significant differences in PS between T. recurvata (type I structure, suggesting a growing population) and T. schiedeana (type III structure, suggesting a senile population) (Wilkes' λ= 0.821, F-Radio= 11.96 P<0.001). PS showed no differences related to tree origin. Our results indicate that it is necessary to conduct demographic studies to have a more accurate idea of the current condition of vascular epiphytes in cities. For instance, even though we found five VS species, only one of them seems to have viable populations in Oaxaca city.

Keywords:
host effect; population structure; public parks; Tillandsia

Resumo

Ecossistemas urbanos podem comprometer a existência de epífitas vasculares (EV), dado que sua ocorrência está ligada à disponibilidade de forófitos e condições climáticas particulares. Apesar dos relatos de EV nas cidades, nada se sabe sobre sua demografia. Um primeiro passo nessa direção é descrever suas estruturas populacionais (PS). Estabelecemos o PS dos EV presentes nos parques urbanos da cidade de Oaxaca (Mexico), abordando as seguintes questões: 1) qual é a sua situação demográfica? e 2) existem diferenças na estrutura das populações crescendo em forófitos nativos versus exóticos? Durante o ano de 2021, realizamos o censo de todas as árvores em seis parques urbanos, registrando sua origem (nativa ou exótica), as espécies epífitas encontradas nelas e os estágios de desenvolvimento presentes em cada população de EV. Ao todo, cinco espécies de EV foram documentadas: Tillandsia ionantha, T. makoyana, T. sp, T. recurvata e T. schiedeana; as três primeiras com apenas um indivíduo e as duas últimas com 5.694 e 95, respectivamente. Um teste MANOVA indicou diferenças significativas no PS entre T. recurvata (estrutura tipo I, sugerindo uma população crescente) e T. schiedeana (estrutura tipo III, sugerindo uma população senil) (Wilkes' λ= 0,821, F-Radio= 11,96 e P < 0,001). PS não apresentou diferenças relacionadas à origem da árvore. Os resultados do presente trabalho indicam a necessidade de se realizar estudos demográficos para se ter uma ideia mais precisa da condição atual das epífitas vasculares nas cidades. Embora tenhamos encontrado cinco espécies de VS, apenas uma delas parece ter populações viáveis na cidade de Oaxaca.

Palavras-chave:
efeito hospedeiro; estrutura populacional; parques públicos; Tillandsia

1. Introduction

Vascular epiphytes are plants that rely on a phorophyte, usually a tree or a bush, without feeding directly from it, as parasitic plants do (Benzing, 1990BENZING, D.H., 1990. Vascular epiphytes: general biology and related biota. Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511525438.
http://dx.doi.org/10.1017/CBO97805115254...
). These plants represent 9% of vascular flora (Zotz, 2013ZOTZ, G., 2013. The systematic distribution of vascular epiphytes-a critical update. Botanical Journal of the Linnean Society, vol. 171, no. 3, pp. 453-481. http://dx.doi.org/10.1111/boj.12010.
http://dx.doi.org/10.1111/boj.12010...
) and play important roles in ecosystem functions, participating in hydrological and nutrient cycles (Gotsch et al., 2016GOTSCH, S.G., NADKARNI, N. and AMICI, A., 2016. The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. Journal of Tropical Ecology, vol. 32, no. 5, pp. 455-468. http://dx.doi.org/10.1017/S026646741600033X.
http://dx.doi.org/10.1017/S0266467416000...
; Hargis et al., 2019HARGIS, H., GOTSCH, S.G., PORADA, P., MOORE, G.W., FERGUSON, B. and VAN STAN II, J.T., 2019. Arboreal epiphytes in the soil-atmosphere interface: how often are the biggest “buckets” in the canopy empty? Geosciences, vol. 9, no. 8, pp. 342. http://dx.doi.org/10.3390/geosciences9080342.
http://dx.doi.org/10.3390/geosciences908...
; Mendieta-Leiva et al., 2020MENDIETA-LEIVA, G., PORADA, P. and BADER, M.Y. 2020. Interactions of epiphytes with precipitation partitioning. In: J. T. VAN STAN, E. GUTMANN and J. FRIESEN, eds. Precipitation partitioning by vegetation. Cham: Springer, pp. 133-146. http://dx.doi.org/10.1007/978-3-030-29702-2_9.
http://dx.doi.org/10.1007/978-3-030-2970...
; Pereira et al., 2022PEREIRA, T.A., VIEIRA, S.A., OLIVEIRA, R.S., ANTIQUEIRA, P.A., MIGLIORINI, G.H. and ROMERO, G.Q., 2022. Local drivers of heterogeneity in a tropical forest: epiphytic tank bromeliads affect the availability of soil resources and conditions and indirectly affect the structure of seedling communities. Oecologia, vol. 199, no. 1, pp. 205-215. http://dx.doi.org/10.1007/s00442-022-05179-8. PMid:35526202.
http://dx.doi.org/10.1007/s00442-022-051...
). Furthermore, vascular epiphytes increase the biodiversity of tropical ecosystem (Gentry and Dodson, 1987GENTRY, A.H. and DODSON, C., 1987. Contribution of nontrees to species richness of a tropical rain forest. Biotropica, vol. 19, no. 2, pp. 149-156. http://dx.doi.org/10.2307/2388737.
http://dx.doi.org/10.2307/2388737...
; Catchpole and Kirkpatrick, 2011CATCHPOLE, D.J. and KIRKPATRICK, J.B., 2011. The outstandingly speciose epiphytic flora of a single strangler fig (Ficus crassiuscula) in a Peruvian montane cloud forest. In: L. A. BRUIJNZEEL, F. N. SCATENA and L. S. HAMILTON, eds. Tropical montane cloud forests: science for conservation and management. Cambridge: Cambridge University Press, pp. 142-146. http://dx.doi.org/10.1017/CBO9780511778384.015.
http://dx.doi.org/10.1017/CBO97805117783...
). They also provide shelter, food and water for numerous organisms ranging from bacteria to mammals (Mondragon and Cruz-Ruiz, 2008MONDRAGON, D. and CRUZ-RUIZ, G.I., 2008. Seasonal variation of the macro-arthropod community associated to Tillandsia carlos-hankii (Bromeliaceae) in an oak-pine forest in Oaxaca, Mexico. Brenesia, no. 70, pp. 11-22.; Mondragon et al., 2015MONDRAGON, D., VALVERDE, T. and HERNÁNDEZ-APOLINAR, M., 2015. Population ecology of epiphytic angiosperms: a review. Tropical Ecology, vol. 56, no. 1, pp. 1-39.; Godoy‐Güinao et al., 2018GODOY‐GÜINAO, J., DÍAZ, I.A. and CELIS‐DIEZ, J.L., 2018. Confirmation of arboreal habits in Dromiciops gliroides: a key role in Chilean Temperate Rainforests. Ecosphere, vol. 9, no. 10, pp. e02424. http://dx.doi.org/10.1002/ecs2.2424.
http://dx.doi.org/10.1002/ecs2.2424...
), to the extent that some, especially trash-basket epiphytes, have been considered secondary foundation species because they facilitate the establishment of other species (Ortega-Solis et al., 2021ORTEGA-SOLIS, G., DÍAZ, I.A., MELLADO-MANSILLA, D., TEJO, C., TELLO, F., CRAVE, D., KREFT, H. and ARMESTO, J. J., 2021. Trash-basket epiphytes as secondary foundation species: a review of their distribution and effects on biodiversity and ecosystem functions. bioRxiv Online. https://doi.org/10.1101/2021.06.22.449473.
https://doi.org/10.1101/2021.06.22.44947...
).

Not all trees are suitable phorophytes for vascular epiphytes. Their potential as phorophytes depends on morphological (bark type, branch angle, deciduousness, etc.) and physicochemical (pH, water holding capacity of the bark, stem nutrient content and throughfall, etc.) features, which altogether create different micro niches for vascular epiphytes (Callaway et al., 2002CALLAWAY, R.M., REINHART, K.O., MOORE, G.W., MOORE, D.J. and PENNINGS, S.C., 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia, vol. 132, no. 2, pp. 221-230. http://dx.doi.org/10.1007/s00442-002-0943-3. PMid:28547355.
http://dx.doi.org/10.1007/s00442-002-094...
; Einzmann et al., 2014EINZMANN, H.J., BEYSCHLAG, J., HOFHANSL, F., WANEK, W. and ZOTZ, G., 2014. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB Plants, vol. 7, pp. plu073. http://dx.doi.org/10.1093/aobpla/plu073. PMid:25392188.
http://dx.doi.org/10.1093/aobpla/plu073...
; Ticktin et al., 2016TICKTIN, T., MONDRAGÓN, D. and GAOUE, O.G., 2016. Host genus and rainfall drive the population dynamics of a vascular epiphyte. Ecosphere, vol. 7, no. 11, pp. e01580. http://dx.doi.org/10.1002/ecs2.1580.
http://dx.doi.org/10.1002/ecs2.1580...
; Zarate‐García et al., 2020ZARATE‐GARCÍA, A.M., NOGUERA‐SAVELLI, E., ANDRADE‐CANTO, S.B., ZAVALETA‐MANCERA, H.A., GAUTHIER, A. and ALATORRE‐COBOS, F., 2020. Bark water storage capacity influences epiphytic orchid preference for host trees. American Journal of Botany, vol. 107, no. 5, pp. 726-734. http://dx.doi.org/10.1002/ajb2.1470. PMid:32346866.
http://dx.doi.org/10.1002/ajb2.1470...
). Even though most epiphytes are generalists, they frequently show preference for certain phorophytes (Vergara-Torres et al., 2010VERGARA-TORRES, C.A., PACHECO-ÁLVAREZ, M.C. and FLORES-PALACIOS, A., 2010. Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. Journal of Tropical Ecology, vol. 26, no. 6, pp. 563-570. http://dx.doi.org/10.1017/S0266467410000349.
http://dx.doi.org/10.1017/S0266467410000...
; Wagner et al., 2021WAGNER, K., WANEK, W. and ZOTZ, G., 2021. Functional traits of a rainforest vascular epiphyte community: trait covariation and indications for host specificity. Diversity (Basel), vol. 13, no. 2, pp. 97. http://dx.doi.org/10.3390/d13020097.
http://dx.doi.org/10.3390/d13020097...
). Consequently, their presence and abundance are linked to the availability of their preferred phorophytes.

Other factors that strongly regulate the occurrence of vascular epiphytes are humidity and temperature (Benzing, 1990BENZING, D.H., 1990. Vascular epiphytes: general biology and related biota. Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511525438.
http://dx.doi.org/10.1017/CBO97805115254...
; Zotz, 2016ZOTZ, G., 2016. Plants on plants-the biology of vascular epiphytes. Switzerland: Springer. http://dx.doi.org/10.1007/978-3-319-39237-0.
http://dx.doi.org/10.1007/978-3-319-3923...
). Their reliance on atmospheric sources of water due to their lack of a water reservoir (such as soil for terrestrial plants), make vascular epiphytes very susceptible to water stress (Benzing, 1990BENZING, D.H., 1990. Vascular epiphytes: general biology and related biota. Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511525438.
http://dx.doi.org/10.1017/CBO97805115254...
; Laube and Zotz, 2003LAUBE, S. and ZOTZ, G., 2003. Which abiotic factors limit vegetative growth in a vascular epiphyte? Functional Ecology, vol. 17, no. 5, pp. 598-604. http://dx.doi.org/10.1046/j.1365-2435.2003.00760.x.
http://dx.doi.org/10.1046/j.1365-2435.20...
; Zotz, 2016ZOTZ, G., 2016. Plants on plants-the biology of vascular epiphytes. Switzerland: Springer. http://dx.doi.org/10.1007/978-3-319-39237-0.
http://dx.doi.org/10.1007/978-3-319-3923...
). In epiphytes with CAM photosynthesis, high temperatures, high evaporative demands and excessive exposition to solar radiation, tend to promote CAM-idling, a metabolic variation where the CO2 produced by mitochondrial respiration becomes the only carbon source for photosynthesis. When vascular epiphytes go into CAM-idling, only survival, but not growth, is possible (Benzing, 1998BENZING, D.H., 1998. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. In: A. MARKHAM, eds. Potential impacts of climate change on tropical forest ecosystems. Dordrecht: Springer, pp. 379-400. http://dx.doi.org/10.1007/978-94-017-2730-3_19.
http://dx.doi.org/10.1007/978-94-017-273...
). This explains why the presence of vascular epiphytes is quite restricted in human disturbed habitats and when present, their diversity is mostly limited to drought tolerant species (Williams-Linera et al., 1995WILLIAMS-LINERA, G., SOSA, V. and PLATAS, T., 1995. The fate of epiphytic orchids after fragmentation of a Mexican cloud forest. Selbyana, vol. 16, pp. 36-40.; Köster et al., 2009KÖSTER, N., FRIEDRICH, K., NIEDER, J. and BARTHLOTT, W., 2009. Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conservation Biology, vol. 23, no. 4, pp. 911-919. http://dx.doi.org/10.1111/j.1523-1739.2008.01164.x. PMid:19210304.
http://dx.doi.org/10.1111/j.1523-1739.20...
; Parra-Sanchez and Banks-Leite, 2020PARRA-SANCHEZ, E. and BANKS-LEITE, C., 2020. The magnitude and extent of edge effects on vascular epiphytes across the Brazilian Atlantic Forest. Scientific Reports, vol. 10, no. 1, pp. 18847. http://dx.doi.org/10.1038/s41598-020-75970-1. PMid:33139836.
http://dx.doi.org/10.1038/s41598-020-759...
).

Typically, in cities, most native vegetation has been displaced and any remains are usually confined to few vegetation fragments, limiting the availability of phorophytes for vascular epiphytes to the bushes and trees present on those fragments, in public parks, in private gardens or along roadsides. Besides the low availability of trees, in cities most native species have been replaced by exotic ones (Nielsen et al., 2014NIELSEN, A.B., VAN DEN BOSCH, M., MARUTHAVEERAN, S. and VAN DEN BOSCH, C.K., 2014. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosystems, vol. 17, no. 1, pp. 305-327. http://dx.doi.org/10.1007/s11252-013-0316-1.
http://dx.doi.org/10.1007/s11252-013-031...
; Morgenroth et al., 2016MORGENROTH, J., ÖSTBERG, J., KONIJNENDIJK VAN DEN BOSCH, C., NIELSEN, A.B., HAUER, R., SJÖMAN, H., CHEN, W. and JANSSON, M., 2016. Urban tree diversity-Taking stock and looking ahead. Urban Forestry & Urban Greening, vol. 15, pp. 1-5. http://dx.doi.org/10.1016/j.ufug.2015.11.003.
http://dx.doi.org/10.1016/j.ufug.2015.11...
; Chang et al., 2021CHANG, C.R., CHEN, M.C. and SU, M.H., 2021. Natural versus human drivers of plant diversity in urban parks and the anthropogenic species-area hypotheses. Landscape and Urban Planning, vol. 208, pp. 104023. http://dx.doi.org/10.1016/j.landurbplan.2020.104023.
http://dx.doi.org/10.1016/j.landurbplan....
) that are not necessarily adequate phorophytes for vascular epiphytes. Additionally, the trees growing in urban settings, particularly along streets, suffer border effects including increased temperature and exposition to solar radiation (Murcia, 1995MURCIA, C., 1995. Edge effects in fragmented forests: implications for conservation. Trends in Ecology & Evolution, vol. 10, no. 2, pp. 58-62. http://dx.doi.org/10.1016/S0169-5347(00)88977-6. PMid:21236953.
http://dx.doi.org/10.1016/S0169-5347(00)...
), which have been demonstrated to have a strong negative impact on vascular epiphyte communities (Bianchi and Kersten, 2014BIANCHI, J.S. and KERSTEN, R.D.A., 2014. Edge effect on vascular epiphytes in a subtropical Atlantic Forest. Acta Botanica Brasílica, vol. 28, no. 1, pp. 120-126. http://dx.doi.org/10.1590/S0102-33062014000100012.
http://dx.doi.org/10.1590/S0102-33062014...
; Parra-Sanchez and Banks-Leite, 2020PARRA-SANCHEZ, E. and BANKS-LEITE, C., 2020. The magnitude and extent of edge effects on vascular epiphytes across the Brazilian Atlantic Forest. Scientific Reports, vol. 10, no. 1, pp. 18847. http://dx.doi.org/10.1038/s41598-020-75970-1. PMid:33139836.
http://dx.doi.org/10.1038/s41598-020-759...
). Additionally, air temperature in cities tends to be 1 to 3 °C higher than in surrounding rural and pristine vegetation areas, as a result of the heat island effect (Oke, 1982OKE, T.R., 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, vol. 108, no. 455, pp. 1-24. http://dx.doi.org/10.1002/qj.49710845502.
http://dx.doi.org/10.1002/qj.49710845502...
; Yang et al., 2019YANG, Q., HUANG, X. and TANG, Q., 2019. The footprint of urban heat island effect in 302 Chinese cities: temporal trends and associated factors. The Science of the Total Environment, vol. 655, pp. 652-662. http://dx.doi.org/10.1016/j.scitotenv.2018.11.171. PMid:30476846.
http://dx.doi.org/10.1016/j.scitotenv.20...
). Moreover, increased exposure to short-wave (Dahlhausen et al., 2018DAHLHAUSEN, J., RÖTZER, T., BIBER, P., UHL, E. and PRETZSCH, H., 2018. Urban climate modifies tree growth in Berlin. International Journal of Biometeorology, vol. 62, no. 5, pp. 795-808. http://dx.doi.org/10.1007/s00484-017-1481-3. PMid:29218447.
http://dx.doi.org/10.1007/s00484-017-148...
) and thermal radiation from buildings, asphalt, car tops, and concrete (Bassuk and Whitlow, 1985BASSUK, N. and WHITLOW, T., 1985. Environmental stress in street trees. The Scientific Management of Vegetation in the Urban Environment, vol. 195, pp. 49-58.), could also strongly limit the presence of epiphytes in urban settings.

Despite all the unfavorable factors mentioned, vascular epiphytes have been reported in cities (Dislich and Mantovani, 1998DISLICH, R. and MANTOVANI, W., 1998. A flora de epífitas vasculares da reserva da cidade universitária “Armando de Salles Oliveira” (São Paulo, Brasil). Boletim de Botânica da Universidade de São Paulo, vol. 17, pp. 61-83. http://dx.doi.org/10.11606/issn.2316-9052.v17i0p61-83.
http://dx.doi.org/10.11606/issn.2316-905...
; Bhatt et al., 2015BHATT, A., GAIROLA, S., GOVENDER, Y., BAIJNATH, H. and RAMDHANI, S., 2015. Epiphyte diversity on host trees in an urban environment, eThekwini Municipal Area, South Africa. New Zealand Journal of Botany, vol. 53, no. 1, pp. 24-37. http://dx.doi.org/10.1080/0028825X.2014.1000935.
http://dx.doi.org/10.1080/0028825X.2014....
; Jiménez-Orozco et al., 2019JIMÉNEZ-OROZCO, C., LEBRÓN-LIRIANO, B.V., FERNÁNDEZ-GUTIÉRREZ, R., URBÁEZ, R. and GUERRERO, A., 2019. Caracterización de la flora epífita vascular del Parque Iberoamérica, Santo Domingo, República Dominicana. Ciencia Ambiente y Clima, vol. 2, no. 1, pp. 23-33. http://dx.doi.org/10.22206/cac.2019.v2i1.pp23-33.
http://dx.doi.org/10.22206/cac.2019.v2i1...
; Alvim et al., 2021ALVIM, F.S., FURTADO, S.G. and MENINI NETO, L., 2021. Are vascular epiphytes in urban green areas subject to the homogenization of biodiversity? A case study in the Brazilian Atlantic Forest. Urban Ecosystems, vol. 24, no. 4, pp. 701-713. http://dx.doi.org/10.1007/s11252-020-01070-7.
http://dx.doi.org/10.1007/s11252-020-010...
; Alex et al., 2021ALEX, A., CHIMA, U.D. and UGBAJA, U.D., 2021. Diversity and phorophyte preference of vascular epiphytic flora on avenues within the University of Port Harcourt, Nigeria. Journal of Forest and Environmental Science, vol. 37, no. 3, pp. 217-225.; Figueiredo et al., 2021FIGUEIREDO, T.N.C., FERREIRA, J.L.S., CALIL, F.N. and DIVINO, J., 2021. Vascular epiphytes in urban trees in Goiânia city, Brazilian Cerrado. Revista Ecologia e Nutrição Florestal-ENFLO, vol. 9, pp. e02. http://dx.doi.org/10.5902/2316980X64867.
http://dx.doi.org/10.5902/2316980X64867...
). This leads to our central question for this study: are urban epiphytes only declining remnants of preexisting populations or perhaps isolated results of fortuitous dispersal events which don’t necessarily represent established populations which will persist in the future? As Einzmann et al. (2014)EINZMANN, H.J., BEYSCHLAG, J., HOFHANSL, F., WANEK, W. and ZOTZ, G., 2014. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB Plants, vol. 7, pp. plu073. http://dx.doi.org/10.1093/aobpla/plu073. PMid:25392188.
http://dx.doi.org/10.1093/aobpla/plu073...
mentioned, in order to understand how vascular epiphytes are dealing with urban environments it is necessary to develop demographic studies of their populations.

A first step in this direction involves examining the structure of these urban populations of epiphytes by looking at the proportion of individuals corresponding to each of the life stages recognized for these plants. This provides a quick and general notion of the demographic status of a population (Oostermeijer et al., 1994OOSTERMEIJER, J.G.B., VAN'T VEER, R. and DEN NIJS, J.C.M., 1994. Population structure of the rare, long-lived perennial Gentiana pneumonanthe in relation to vegetation and management in the Netherlands. Journal of Applied Ecology, vol. 31, no. 3, pp. 428-438. http://dx.doi.org/10.2307/2404440.
http://dx.doi.org/10.2307/2404440...
; Landi and Angiolini, 2011LANDI, M. and ANGIOLINI, C., 2011. Population structure of Osmunda regalis in relation to environment and vegetation: an example in the Mediterranean area. Folia Geobotanica, vol. 46, no. 1, pp. 49-68. http://dx.doi.org/10.1007/s12224-010-9086-1.
http://dx.doi.org/10.1007/s12224-010-908...
; Ramírez-Martínez et al., 2018RAMÍREZ-MARTÍNEZ, A., MONDRAGÓN, D., VALVERDE, T. and CHÁVEZ-SERVIA, J.L., 2018. Spatial variation in host preference in the endangered epiphytic bromeliad Tillandsia carlos-hankii. Acta Oecologica, vol. 92, pp. 75-84. http://dx.doi.org/10.1016/j.actao.2018.08.008.
http://dx.doi.org/10.1016/j.actao.2018.0...
). Landi and Angiolini (2011)LANDI, M. and ANGIOLINI, C., 2011. Population structure of Osmunda regalis in relation to environment and vegetation: an example in the Mediterranean area. Folia Geobotanica, vol. 46, no. 1, pp. 49-68. http://dx.doi.org/10.1007/s12224-010-9086-1.
http://dx.doi.org/10.1007/s12224-010-908...
developed the following classification to describe populations based on their demographic structure:

  • Type I or dynamic population: the structure is dominated by a high proportion of individuals in the early life stages, suggesting recruitment and, in general terms, indicating the population is growing.

  • Type II or stable population: characterized by a higher proportion of intermediate-stage individuals and adults, suggesting that the population is stable.

  • Type III or senescent population: this structure is dominated by adult individuals, with few or no individuals in early life stages, suggesting a poor recruitment rate and hence, a declining population.

To contribute with baseline data to understand how epiphytes are behaving in urban environments, we determined the population structure of the species found in six public parks of Oaxaca city (México). By doing this we aimed to address the following questions: 1) what is the demographic status of these vascular epiphytes? and, 2) are there differences between the structure of populations growing in native versus exotic phorophytes? Due to the harsh conditions that urban environments represent for many epiphyte species, we expected to find mostly senescent populations with the exception of drought tolerant species for which we expected to find stable or dynamic populations (Williams-Linera et al., 1995WILLIAMS-LINERA, G., SOSA, V. and PLATAS, T., 1995. The fate of epiphytic orchids after fragmentation of a Mexican cloud forest. Selbyana, vol. 16, pp. 36-40.; Köster et al., 2009KÖSTER, N., FRIEDRICH, K., NIEDER, J. and BARTHLOTT, W., 2009. Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conservation Biology, vol. 23, no. 4, pp. 911-919. http://dx.doi.org/10.1111/j.1523-1739.2008.01164.x. PMid:19210304.
http://dx.doi.org/10.1111/j.1523-1739.20...
; Parra-Sanchez and Banks-Leite, 2020PARRA-SANCHEZ, E. and BANKS-LEITE, C., 2020. The magnitude and extent of edge effects on vascular epiphytes across the Brazilian Atlantic Forest. Scientific Reports, vol. 10, no. 1, pp. 18847. http://dx.doi.org/10.1038/s41598-020-75970-1. PMid:33139836.
http://dx.doi.org/10.1038/s41598-020-759...
). We also expected to find a higher proportion of dynamic populations growing on native trees than on exotic species. This prediction is based on results by Ramírez-Martínez et al. (2018)RAMÍREZ-MARTÍNEZ, A., MONDRAGÓN, D., VALVERDE, T. and CHÁVEZ-SERVIA, J.L., 2018. Spatial variation in host preference in the endangered epiphytic bromeliad Tillandsia carlos-hankii. Acta Oecologica, vol. 92, pp. 75-84. http://dx.doi.org/10.1016/j.actao.2018.08.008.
http://dx.doi.org/10.1016/j.actao.2018.0...
who found that epiphytes presented stable or dynamic population structures on their preferred phorophytes.

2. Methods

2.1. Study area

The city of Oaxaca de Juárez is the capital of the state of Oaxaca, Mexico, and has an extension of 85.48 km2. It is located in the Valles Centrales region between coordinates 17°01' and 17°10' N and 96°40' and 96°47' W, at an average altitude of 1555 m.a.s.l. According to Köppen’s classification, different climates occur in the city, with 40% of its surface showing a semi-dry semi-humid climate (BS1h), an average annual temperature of 22.2 °C and average rainfall of 727.2 mm (INEGI, 2021INSTITUTO NACIONAL DE ESTADÍSTICA Y GEOGRAFÍA E INFORMÁTICA - INEGI, 2021 [viewed 9 January 2023]. Climatología [online]. Available from: https://www.inegi.org.mx/temas/climatologia/
https://www.inegi.org.mx/temas/climatolo...
).

To establish the population structure of vascular epiphytes found in Oaxaca city, we chose six of its largest public parks: El Llano (12 natives and 15 exotics phorophyte species), Jardín Conzatti (13 and 17), La Alameda (9 and 9), El Zócalo (7 and 3), Jardín Labastida (5 and 9) and Madero Park (4 and 12) (Figure 1).

Figure 1
Parks in Oaxaca city sampled during 2021 in search of vascular epiphytes.

In each park we conducted a census of all the trees present recording the number, size, and species of all epiphytic individuals growing in each phorophyte. We considered any group of individuals belonging to the same epiphytic species growing in a tree, as a population (Valverde and Bernal, 2010VALVERDE, T. and BERNAL, R., 2010. Is there demographic asynchrony among local populations of Tillandsia recurvata? Evidence of its metapopulation functioning. Boletín de la Sociedad Botánica de México, vol. 86, pp. 23-36.). Additionally, we documented the species and type of origin of each phorophyte (native or exotic). We defined a species as native if its natural distribution includes Oaxaca state.

Even though we found five vascular epiphyte species in our park census, three species were represented by only one individual (Tillandsia ionantha Planch, T. makoyana Baker, T. sp). Therefore, our analyses of population structure were restricted to T. recurvata (Gaudich.) Barker and T. schiedeana Steud., based on 5,694 and 95 individuals, respectively.

Since both species analyzed have a semi spherical shape, we decided to use diameter as a size measure combined with the presence of reproductive structures to stablish life cycle stages, assuming that individuals belonging to the same stage present similar demographic behavior (Lefkovitch, 1965LEFKOVITCH, L.P., 1965. The study of population growth in organisms grouped by stages. Biometrics, vol. 21, no. 1, pp. 1-18. http://dx.doi.org/10.2307/2528348.
http://dx.doi.org/10.2307/2528348...
; Caswell, 2000CASWELL, H., 2000. Matrix population models. Sunderland: Sinauer.; Mondragón et al., 2004MONDRAGÓN, D., DURÁN, R., RAMÍREZ, I. and VALVERDE, T., 2004. Temporal variation in the demography of the clonal epiphyte Tillandsia brachycaulos (Bromeliaceae) in the Yucatán Peninsula, Mexico. Journal of Tropical Ecology, vol. 20, no. 2, pp. 189-200. http://dx.doi.org/10.1017/S0266467403001287.
http://dx.doi.org/10.1017/S0266467403001...
; Valverde and Bernal, 2010VALVERDE, T. and BERNAL, R., 2010. Is there demographic asynchrony among local populations of Tillandsia recurvata? Evidence of its metapopulation functioning. Boletín de la Sociedad Botánica de México, vol. 86, pp. 23-36.). We established four size stages for each species: seedling (s), infant (i), juvenile (j), and adult (a). For T. recurvata: s = individuals with diameter < 1cm and leaves disposed as a fan; i = individuals with diameter < 2 cm and j = 2-5 cm in diameter, a = diameter > 5cm. For T. schiedeana: s = individuals with diameter < 1cm and leaves disposed as a fan, i = individuals with diameter < 2 cm, j = 2-9 cm in diameter, a= diameter > 9 cm.

After the census, we calculated the proportion of individuals belonging to each stage for each population. Subsequently, the resulting structures were classified according to the proposal by Landi and Angiolini (2011)LANDI, M. and ANGIOLINI, C., 2011. Population structure of Osmunda regalis in relation to environment and vegetation: an example in the Mediterranean area. Folia Geobotanica, vol. 46, no. 1, pp. 49-68. http://dx.doi.org/10.1007/s12224-010-9086-1.
http://dx.doi.org/10.1007/s12224-010-908...
. To compare population structures between the two epiphytic species, and between the two phorophyte origins (native vs. exotic), we conducted a two-way multivariate analysis of variance (MANOVA) to detect any overall differences in the proportion represented by each life stage (response variable). When the MANOVA rendered significant differences, we then ran a univariate ANOVA (Zar, 2014ZAR, J., 2014. Biostatistical analysis. 5th ed. New Jersey: Pearson Education. ).

3. Results

We sampled a total of 475 trees (188 natives, 285 exotics and two dead ones). The five species of vascular epiphytes we found belong to the Tillandsia genus in the Bromeliaceae family; and all are drought resistant species. T. recurvata presented in all sample parks has a type I populations structures dominated by individuals of non-reproductive classes, suggesting they are growing populations, whereas T. schiedeana presented on the Jardín Conzatti and Llano, has a type III structures dominated by individuals of adult classes with evidence of poor recruitment, suggesting they are senile populations in decline (Figure 2). The MANOVA analysis indicated statistically significant differences between the two species in the proportion of individuals in each life-stage (Wilkes' λ= 0.821, F-Radio= 11.96 P<0.001), while the ANOVA revealed differences only regarding the infantile (F= 23.20, P= < 0.001) and adult stages (F= 44.79, P= < 0.001) with a higher proportion of infantile individuals in T. recurvata, and a higher proportion of adults in T. schiedeana.

Figure 2
Population structure of the two most abundant epiphytic species (Tillandsia recurvata and Tillandsia schiedeana) found in public parks in Oaxaca city during 2021. Columns represent development stages, from left to right: seedling, infantile, juvenile and adult. Bars marked with a “b” indicate a significant difference between species for that stage.

Since we found no statistically significant interaction between the Tillandsia species and phorophyte origin (Wilkes' λ= 0.920, F-Radio= 4.79, P<0.001), we decided to perform a MANOVA per bromeliad species to evaluate the effect of phorophyte origin on the population structures of each species. We found no statistical differences in the structure of epiphytic populations of either species growing in native vs. exotic phorophytes (T. recurvata Wilkes' λ= 0.969, F-Radio= 1.63, P=0.168; T. schiedeana Wilkes' λ= 0.688, F-Radio= 1.59, P=0.233) (Figure 3).

Figure 3
Population structures of (a) Tillandsia recurvata and (b) Tillandsia schiedeana on native or exotic phorophytes, in Oaxaca de Juarez during 2021. Columns represent development stages, from left to right: seedling, infantile, juvenile and adults. We found no statistical differences in the proportion of individuals in each development stage depending on phorophyte origin.

4. Discussion

Our results shown that the demography status of vascular epiphytes in cities, depended of the species evaluated. On one hand, we have species capable to success in urban environments like Tillandsia recurvata. This species possesses one of the broadest distribution ranges of all the bromeliads, ranging from Florida to Argentina, with presence in almost every ecosystem, even in semi-desert environments (Smith and Downs, 1977SMITH, L.B. and DOWNS, R.J., 1977. Tillandsioideae (Bromeliaceae). Flora Neotropica Monograph, vol. 14, no. 2, pp. 663-1492.). Different adaptations allow this species to thrive in the driest environments (e.g., CAM photosynthetic metabolism; presence of trichomes on both sides of the leaves that protect stomas preventing water loss (Loeschen et al., 1993LOESCHEN, V.S., MARTIN, C.E., SMITH, M. and EDER, S.L., 1993. Leaf anatomy and CO 2 recycling during crassulacean acid metabolism in twelve epiphytic species of Tillandsia (Bromeliaceae). International Journal of Plant Sciences, vol. 154, no. 1, pp. 100-106. http://dx.doi.org/10.1086/297095.
http://dx.doi.org/10.1086/297095...
; Piazzetta et al., 2019PIAZZETTA, K.D., RAMSDORF, W.A. and MARANHO, L.T., 2019. Use of airplant Tillandsia recurvata L., Bromeliaceae, as biomonitor of urban air pollution. Aerobiologia, vol. 35, no. 1, pp. 125-137. http://dx.doi.org/10.1007/s10453-018-9545-3.
http://dx.doi.org/10.1007/s10453-018-954...
) explaining why the species is considered the most xerophytic species among all epiphytes (McWilliams, 1992MCWILLIAMS, E., 1992. Chronology of the natural range expansion of Tillandsia recurvata (Bromeliaceae) in Texas. SIDA, Contributions to Botany, vol. 15, no. 2, pp. 343-346.; Chaves and Rossatto, 2021CHAVES, C.J. and ROSSATTO, D.R., 2021. Reducing tree density affects interactions between trees and atmospheric Tillandsia species (Bromeliaceae). Austral Ecology, vol. 46, no. 2, pp. 218-227. http://dx.doi.org/10.1111/aec.12970.
http://dx.doi.org/10.1111/aec.12970...
). For instance, Pérez-Noyola et al. (2020)PÉREZ-NOYOLA, F.J., FLORES, J., YÁÑEZ-ESPINOSA, L., JURADO, E., DE LA ROSA-MANZANO, E. and BADANO, E., 2020. Complete vivipary behavior detected in the epiphytic Tillandsia recurvata L. (Ball moss) in the Chihuahuan Desert in two continuous years. Journal of Arid Environments, vol. 174, pp. 103993. http://dx.doi.org/10.1016/j.jaridenv.2019.103993.
http://dx.doi.org/10.1016/j.jaridenv.201...
reported 100% vivipary in T. recurvata seeds evaluated in the Chihuahuan desert. Vivipary is germination inside the fruits and has been associated with thermoregulation, parental care, conspecific nursing and rapid seedling establishment, constituting an adaptation to harsh environments (Cota-Sánchez and Abreu, 2007COTA-SÁNCHEZ, J.H. and ABREU, D.D., 2007. Vivipary and offspring survival in the epiphytic cactus Epiphyllum phyllanthus (Cactaceae). Journal of Experimental Botany, vol. 58, no. 14, pp. 3865-3873. http://dx.doi.org/10.1093/jxb/erm232. PMid:17975210.
http://dx.doi.org/10.1093/jxb/erm232...
; Pérez-Noyola et al., 2020PÉREZ-NOYOLA, F.J., FLORES, J., YÁÑEZ-ESPINOSA, L., JURADO, E., DE LA ROSA-MANZANO, E. and BADANO, E., 2020. Complete vivipary behavior detected in the epiphytic Tillandsia recurvata L. (Ball moss) in the Chihuahuan Desert in two continuous years. Journal of Arid Environments, vol. 174, pp. 103993. http://dx.doi.org/10.1016/j.jaridenv.2019.103993.
http://dx.doi.org/10.1016/j.jaridenv.201...
). So, the presence of this trait could improve the establishment of T. recurvata in the harsh environment represented by Oaxaca city. However, to confirm this idea it is necessary to test the presence of vivipary in Oaxaca city, because Pérez-Noyola et al. (2020)PÉREZ-NOYOLA, F.J., FLORES, J., YÁÑEZ-ESPINOSA, L., JURADO, E., DE LA ROSA-MANZANO, E. and BADANO, E., 2020. Complete vivipary behavior detected in the epiphytic Tillandsia recurvata L. (Ball moss) in the Chihuahuan Desert in two continuous years. Journal of Arid Environments, vol. 174, pp. 103993. http://dx.doi.org/10.1016/j.jaridenv.2019.103993.
http://dx.doi.org/10.1016/j.jaridenv.201...
found that the trait is not widespread in all T. recurvata populations. Another adaptation that could explain the dynamic population structure of this species in Oaxacan parks, is its ability to accumulate and filter air pollutants in cities without any decrement in its development (Graciano et al., 2003GRACIANO, C., FERNÁNDEZ, L.V. and CALDIZ, D.O., 2003. Tillandsia recurvata L. as a bioindicator of sulfur atmospheric pollution. Ecología Austral, vol. 13, no. 1, pp. 3-14.; Castañeda Miranda et al., 2016CASTAÑEDA MIRANDA, A.G., CHAPARRO, M.A., CHAPARRO, M.A. and BÖHNEL, H.N., 2016. Magnetic properties of Tillandsia recurvata L. and its use for biomonitoring a Mexican metropolitan area. Ecological Indicators, vol. 60, pp. 125-136. http://dx.doi.org/10.1016/j.ecolind.2015.06.025.
http://dx.doi.org/10.1016/j.ecolind.2015...
; Piazzetta et al., 2019PIAZZETTA, K.D., RAMSDORF, W.A. and MARANHO, L.T., 2019. Use of airplant Tillandsia recurvata L., Bromeliaceae, as biomonitor of urban air pollution. Aerobiologia, vol. 35, no. 1, pp. 125-137. http://dx.doi.org/10.1007/s10453-018-9545-3.
http://dx.doi.org/10.1007/s10453-018-954...
).

Additionally, T. recurvata is one of the few vascular epiphytes classified as a weed (Claver et al., 1983CLAVER, F.K., ALANIZ, J.R. and CALDÍZ, D.O., 1983. Tillandsia spp.: epiphytic weeds of trees and bushes. Forest Ecology and Management, vol. 6, no. 4, pp. 367-372. http://dx.doi.org/10.1016/0378-1127(83)90044-0.
http://dx.doi.org/10.1016/0378-1127(83)9...
), partly due to its huge reproductive capacity, both sexually (self-compatible, large number of fruits and seeds, relatively short periods for fruit ripening and size to first reproductive event) and asexually via vegetative propagation (Fernández et al., 1989FERNÁNDEZ, L.V., BELTRANO, J. and CALDIZ, D.O., 1989. Germinación y longevidad de semillas de Tillandsia recurvata L. Revista de la Facultad de Agronomía, vol. 65, pp. 81-85.; Orozco-Ibarrola et al., 2015OROZCO-IBARROLA, O.A., FLORES-HERNÁNDEZ, P.S., VICTORIANO-ROMERO, E., CORONA-LÓPEZ, A.M. and FLORES-PALACIOS, A., 2015. Are breeding system and florivory associated with the abundance of Tillandsia species (Bromeliaceae)? Botanical Journal of the Linnean Society, vol. 177, no. 1, pp. 50-65. http://dx.doi.org/10.1111/boj.12225.
http://dx.doi.org/10.1111/boj.12225...
; Chaves et al., 2021CHAVES, C.J.N., LEAL, B.S.S., ROSSATTO, D.R., BERGER, U. and PALMA-SILVA, C., 2021. Deforestation is the turning point for the spreading of a weedy epiphyte: an IBM approach. Scientific Reports, vol. 11, no. 1, pp. 20397. http://dx.doi.org/10.1038/s41598-021-99798-5. PMid:34650134.
http://dx.doi.org/10.1038/s41598-021-997...
). This was reflected in the population structures recorded in Oaxaca city, with large proportions of seedlings and infants, evidencing good recruitment of new individuals. Such reproductive capacity together with the high abundance of T. recurvata already present in Oaxaca city, act synergistically to increase its abundance, producing heavy seed rain. According to different authors, epiphytic communities are reflections of the abundance and composition of propagule rain (Yeaton and Gladstone, 1982YEATON, R.I. and GLADSTONE, D.E., 1982. The pattern of colonization of epiphytes on Calabash Trees (Crescentia alata HBK.) in Guanacaste Province, Costa Rica. Biotropica, vol. 14, no. 2, pp. 137-140. http://dx.doi.org/10.2307/2387743.
http://dx.doi.org/10.2307/2387743...
; Cascante-Marín et al., 2009CASCANTE-MARÍN, A., VON MEIJENFELDT, N., DE LEEUW, H.M., WOLF, J.H., OOSTERMEIJER, J.G.B. and DEN NIJS, J.C., 2009. Dispersal limitation in epiphytic bromeliad communities in a Costa Rican fragmented montane landscape. Journal of Tropical Ecology, vol. 25, no. 1, pp. 63-73. http://dx.doi.org/10.1017/S0266467408005622.
http://dx.doi.org/10.1017/S0266467408005...
; Zotz, 2016ZOTZ, G., 2016. Plants on plants-the biology of vascular epiphytes. Switzerland: Springer. http://dx.doi.org/10.1007/978-3-319-39237-0.
http://dx.doi.org/10.1007/978-3-319-3923...
).

In addition, there are species that could not support the environmental conditions of cities like T. schiedeana, that despite its abundance of 95 individuals, the observed structures indicate a senescent or declining populations, with little evidence of recruitment. Even when the species has adaptations to deal with dry environments (e.g., CAM metabolism, peltate trichomes, CO2 recycling (Loeschen et al., 1993LOESCHEN, V.S., MARTIN, C.E., SMITH, M. and EDER, S.L., 1993. Leaf anatomy and CO 2 recycling during crassulacean acid metabolism in twelve epiphytic species of Tillandsia (Bromeliaceae). International Journal of Plant Sciences, vol. 154, no. 1, pp. 100-106. http://dx.doi.org/10.1086/297095.
http://dx.doi.org/10.1086/297095...
), T. schiedeana has a smaller distribution range than T. recurvata and has lower abundances when growing simpatrically (Orozco-Ibarrola et al., 2015OROZCO-IBARROLA, O.A., FLORES-HERNÁNDEZ, P.S., VICTORIANO-ROMERO, E., CORONA-LÓPEZ, A.M. and FLORES-PALACIOS, A., 2015. Are breeding system and florivory associated with the abundance of Tillandsia species (Bromeliaceae)? Botanical Journal of the Linnean Society, vol. 177, no. 1, pp. 50-65. http://dx.doi.org/10.1111/boj.12225.
http://dx.doi.org/10.1111/boj.12225...
). This could result from the synergetic effect of: a) T. recurvata inhibiting the germination of other Tillandsia species, including T. schiedeana (Claver et al., 1983CLAVER, F.K., ALANIZ, J.R. and CALDÍZ, D.O., 1983. Tillandsia spp.: epiphytic weeds of trees and bushes. Forest Ecology and Management, vol. 6, no. 4, pp. 367-372. http://dx.doi.org/10.1016/0378-1127(83)90044-0.
http://dx.doi.org/10.1016/0378-1127(83)9...
; Valencia-Díaz et al., 2012VALENCIA-DÍAZ, S., FLORES-PALACIOS, A., RODRÍGUEZ-LÓPEZ, V. and JIMÉNEZ-APARICIO, A.R., 2012. Effects of Tillandsia recurvata extracts on the seed germination of Tillandsia spp. Allelopathy Journal, vol. 29, no. 1, pp. 125-135.) and b) T. schiedeana producing less fruit and with longer ripening periods than T. recurvata. In our study site, T. recurvata could be limiting the germination of T. schiedeana, since almost all trees had individuals of T. recurvata, and we observed that T. schiedeana required a year from fruit production to seed dispersal, while T. recurvata only required six months (pers. obs.). But more studies are necessary to understand why the populations of T. schiedeana shows a type III structure.

On the other side, there are species as T. ionantha (Zocalo), T. makoyana (Madero Park) and T. sp (Conzzatti. whit only one individual, that could be the result of fortuitous long-distance dispersal events of the forest near the Oaxaca City, where those species has been documented (Rojas-Zárate and Mondragón, 2016ROJAS-ZÁRATE, Y. and MONDRAGÓN, D., 2016. Epiphytic bromeliads of the Zaachila district, Oaxaca, Mexico. Revista Mexicana de Biodiversidad, vol. 87, no. 1, pp. 252-254. http://dx.doi.org/10.1016/j.rmb.2016.01.003.
http://dx.doi.org/10.1016/j.rmb.2016.01....
). This dispersal event, could result in the establishment of new populations of these species or not. As many other epiphytic species T. ionantha and T. makoyana have mixed breeding systems that allow a single individual to produce viable seeds which can develop into adult individuals (Mondragon et al., 2015MONDRAGON, D., VALVERDE, T. and HERNÁNDEZ-APOLINAR, M., 2015. Population ecology of epiphytic angiosperms: a review. Tropical Ecology, vol. 56, no. 1, pp. 1-39.). However, these isolated dispersal events could result in populations which do not prosper, as in the case of T. schiedeana.

The lack of differences found in the structures of populations growing on native vs. exotic trees for both Tillandsia species, may be related to the fact that, within each host category, there was a mix of tree species with different morphological, physiological and chemical characteristics, which can impact the demographic behavior of epiphytic individuals (Einzmann et al., 2014EINZMANN, H.J., BEYSCHLAG, J., HOFHANSL, F., WANEK, W. and ZOTZ, G., 2014. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB Plants, vol. 7, pp. plu073. http://dx.doi.org/10.1093/aobpla/plu073. PMid:25392188.
http://dx.doi.org/10.1093/aobpla/plu073...
; Martins et al., 2020MARTINS, P.L.S.S., FURTADO, S.G. and MENINI NETO, L., 2020. Could epiphytes be xenophobic? Evaluating the use of native versus exotic phorophytes by the vascular epiphytic community in an urban environment. Community Ecology, vol. 21, no. 1, pp. 91-101. http://dx.doi.org/10.1007/s42974-020-00001-y.
http://dx.doi.org/10.1007/s42974-020-000...
; González and Ceballos, 2021GONZÁLEZ, M.V. and CEBALLOS, S.J., 2021. Las epífitas vasculares en un ambiente urbano están influidas por características del arbolado, el clima y las fuentes de propágulos. Ecología Austral, vol. 31, no. 2, pp. 357-371. http://dx.doi.org/10.25260/EA.21.31.2.0.1354.
http://dx.doi.org/10.25260/EA.21.31.2.0....
; Ramírez-Martínez et al., 2022RAMÍREZ-MARTÍNEZ, A., TICKTIN, T. and MONDRAGON, D., 2022. Host tree species effects on long-term persistence of epiphytic orchid populations. Frontiers in Ecology and Evolution, vol. 10, pp. 1059136. http://dx.doi.org/10.3389/fevo.2022.1059136.
http://dx.doi.org/10.3389/fevo.2022.1059...
). This agree with results by Martins et al. (2020)MARTINS, P.L.S.S., FURTADO, S.G. and MENINI NETO, L., 2020. Could epiphytes be xenophobic? Evaluating the use of native versus exotic phorophytes by the vascular epiphytic community in an urban environment. Community Ecology, vol. 21, no. 1, pp. 91-101. http://dx.doi.org/10.1007/s42974-020-00001-y.
http://dx.doi.org/10.1007/s42974-020-000...
showing a lack of preference between exotic and native hosts by vascular epiphytes in a Brazilian urban area. This lack of an effect of tree origin on associated species agrees with results by Berthon et al. (2021)BERTHON, K., THOMAS, F. and BEKESSY, S., 2021. The role of ‘nativeness’ in urban greening to support animal biodiversity. Landscape and Urban Planning, vol. 205, pp. 103959. http://dx.doi.org/10.1016/j.landurbplan.2020.103959.
http://dx.doi.org/10.1016/j.landurbplan....
who examined the relationship between native plants and animal biodiversity in urban areas. The authors found that the resources provided by the plants were more important predictors than their origin, but when in doubt, nativeness was a good surrogate of whether a plant would provide food for local animals. In our case, even when our result suggests that there are no differences in population structures related to tree origin, we recommend taking those results in consideration and developing an experiment to assess the effect of the origin of phorophytes over the demography of vascular epiphytes.

5. Conclusions

Our results showed that in order to have a real idea of the presence of epiphytes in cities, it is necessary not only to consider richness or diversity, but also to develop studies of the state of their populations (Einzmann et al., 2014EINZMANN, H.J., BEYSCHLAG, J., HOFHANSL, F., WANEK, W. and ZOTZ, G., 2014. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB Plants, vol. 7, pp. plu073. http://dx.doi.org/10.1093/aobpla/plu073. PMid:25392188.
http://dx.doi.org/10.1093/aobpla/plu073...
). Although in Oaxaca city we found five species of vascular epiphytes, in demographic terms we could say there is only one species, T. recurvata. Since population structure is a static picture of the state of a population, we strongly recommend developing long-term demographic studies in order to have a more accurate knowledge of the demographic status of the vascular epiphytes and the biotic and abiotic factors that are shaping their demographic behavior in urban ecosystems.

Through our study and the literature review conducted as part of it, we observed that the overabundance of T. recurvata in cities can jeopardize the survival of urban trees, since it can cause leaf abscission, branch death and ultimately the death of the phorophyte (Fernández et al., 1989FERNÁNDEZ, L.V., BELTRANO, J. and CALDIZ, D.O., 1989. Germinación y longevidad de semillas de Tillandsia recurvata L. Revista de la Facultad de Agronomía, vol. 65, pp. 81-85.; Claver et al., 1983CLAVER, F.K., ALANIZ, J.R. and CALDÍZ, D.O., 1983. Tillandsia spp.: epiphytic weeds of trees and bushes. Forest Ecology and Management, vol. 6, no. 4, pp. 367-372. http://dx.doi.org/10.1016/0378-1127(83)90044-0.
http://dx.doi.org/10.1016/0378-1127(83)9...
; Pérez-Noyola et al., 2021PÉREZ-NOYOLA, F.J., FLORES, J., YÁÑEZ-ESPINOSA, L., JURADO, E., GONZÁLEZ-SALVATIERRA, C. and BADANO, E., 2021. Is ball moss (Tillandsia recurvata) a structural parasite of mesquite (Prosopis laevigata)? Anatomical and ecophysiological evidence. Trees (Berlin), vol. 35, no. 1, pp. 135-144. http://dx.doi.org/10.1007/s00468-020-02023-5.
http://dx.doi.org/10.1007/s00468-020-020...
). T. recurvata can also limit the presence of other epiphytes by producing substances that inhibit the germination of other epiphyte species (Valencia-Díaz et al., 2012VALENCIA-DÍAZ, S., FLORES-PALACIOS, A., RODRÍGUEZ-LÓPEZ, V. and JIMÉNEZ-APARICIO, A.R., 2012. Effects of Tillandsia recurvata extracts on the seed germination of Tillandsia spp. Allelopathy Journal, vol. 29, no. 1, pp. 125-135.). Consequently, we suggest conducting studies for their control without exterminating them; since these same plants are capable of capturing pollutants from the air (Graciano et al., 2003GRACIANO, C., FERNÁNDEZ, L.V. and CALDIZ, D.O., 2003. Tillandsia recurvata L. as a bioindicator of sulfur atmospheric pollution. Ecología Austral, vol. 13, no. 1, pp. 3-14.; Castañeda Miranda et al., 2016CASTAÑEDA MIRANDA, A.G., CHAPARRO, M.A., CHAPARRO, M.A. and BÖHNEL, H.N., 2016. Magnetic properties of Tillandsia recurvata L. and its use for biomonitoring a Mexican metropolitan area. Ecological Indicators, vol. 60, pp. 125-136. http://dx.doi.org/10.1016/j.ecolind.2015.06.025.
http://dx.doi.org/10.1016/j.ecolind.2015...
; Piazzetta et al., 2019PIAZZETTA, K.D., RAMSDORF, W.A. and MARANHO, L.T., 2019. Use of airplant Tillandsia recurvata L., Bromeliaceae, as biomonitor of urban air pollution. Aerobiologia, vol. 35, no. 1, pp. 125-137. http://dx.doi.org/10.1007/s10453-018-9545-3.
http://dx.doi.org/10.1007/s10453-018-954...
); and increasing the biodiversity and functions of urban ecosystems by providing shelter for birds (Brush, 1999BRUSH, T., 1999. Current status of Northern Beardless-Tyrannulet and Tropical Parula in Bentsen-Rio Grande Valley State Park and Santa Ana National Wildlife Refuge, southern Texas. Bulletin of the Texas Ornithological Society, vol. 32, pp. 3-12.; Werner et al., 2015WERNER, S.M., HEJL, S.J. and BRUSH, T., 2015. Nesting ecology of the northern beardless-tyrannulet (Camptostoma imberbe) in the lower Rio Grande Valley of Texas, USA. Ornitologia Neotropical, vol. 26, no. 1, pp. 89-101. http://dx.doi.org/10.58843/ornneo.v26i1.15.
http://dx.doi.org/10.58843/ornneo.v26i1....
) and arthropods (Frank et al., 2004FRANK, J.H., SREENIVASAN, S., BENSHOFF, P.J., DEYRUP, M.A., EDWARDS, G.B., HALBERT, S.E., HAMON, A.B., LOWMAN, M.D., MOCKFORD, E.L., SCHEFFRAHN, R.H., STECK, G.J., THOMAS, M.C., WALKER, T.J. and WELBOURN, W.C., 2004. Invertebrate animals extracted from native Tillandsia (Bromeliales: Bromeliaceae) in Sarasota county, Florida. The Florida Entomologist, vol. 87, no. 2, pp. 176-185. http://dx.doi.org/10.1653/0015-4040(2004)087[0176:IAEFNT]2.0.CO;2.
http://dx.doi.org/10.1653/0015-4040(2004...
; Luna-Cozar et al., 2020LUNA-COZAR, J., MARTÍNEZ-MADERO, O. and JONES, R.W., 2020. Ball Moss, Tillandsia recurvata L., as a refuge site for arthropods in a seasonally dry tropical forest of Central Mexico. Southwestern Entomologist, vol. 45, no. 2, pp. 445-460. http://dx.doi.org/10.3958/059.045.0213.
http://dx.doi.org/10.3958/059.045.0213...
). As Luna-Cozar et al. (2020)LUNA-COZAR, J., MARTÍNEZ-MADERO, O. and JONES, R.W., 2020. Ball Moss, Tillandsia recurvata L., as a refuge site for arthropods in a seasonally dry tropical forest of Central Mexico. Southwestern Entomologist, vol. 45, no. 2, pp. 445-460. http://dx.doi.org/10.3958/059.045.0213.
http://dx.doi.org/10.3958/059.045.0213...
say “T. recurvata augments the quantity and/or quality of habitat in tropical dry forests that might increase arthropod survival and enhance resilience to disturbances and local extinctions, among other benefits”, this could apply for urban ecosystem, especially in cities with strong seasonality like Oaxaca de Juarez.

References

  • ALEX, A., CHIMA, U.D. and UGBAJA, U.D., 2021. Diversity and phorophyte preference of vascular epiphytic flora on avenues within the University of Port Harcourt, Nigeria. Journal of Forest and Environmental Science, vol. 37, no. 3, pp. 217-225.
  • ALVIM, F.S., FURTADO, S.G. and MENINI NETO, L., 2021. Are vascular epiphytes in urban green areas subject to the homogenization of biodiversity? A case study in the Brazilian Atlantic Forest. Urban Ecosystems, vol. 24, no. 4, pp. 701-713. http://dx.doi.org/10.1007/s11252-020-01070-7
    » http://dx.doi.org/10.1007/s11252-020-01070-7
  • BASSUK, N. and WHITLOW, T., 1985. Environmental stress in street trees. The Scientific Management of Vegetation in the Urban Environment, vol. 195, pp. 49-58.
  • BENZING, D.H., 1990. Vascular epiphytes: general biology and related biota Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511525438
    » http://dx.doi.org/10.1017/CBO9780511525438
  • BENZING, D.H., 1998. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. In: A. MARKHAM, eds. Potential impacts of climate change on tropical forest ecosystems. Dordrecht: Springer, pp. 379-400. http://dx.doi.org/10.1007/978-94-017-2730-3_19
    » http://dx.doi.org/10.1007/978-94-017-2730-3_19
  • BERTHON, K., THOMAS, F. and BEKESSY, S., 2021. The role of ‘nativeness’ in urban greening to support animal biodiversity. Landscape and Urban Planning, vol. 205, pp. 103959. http://dx.doi.org/10.1016/j.landurbplan.2020.103959
    » http://dx.doi.org/10.1016/j.landurbplan.2020.103959
  • BHATT, A., GAIROLA, S., GOVENDER, Y., BAIJNATH, H. and RAMDHANI, S., 2015. Epiphyte diversity on host trees in an urban environment, eThekwini Municipal Area, South Africa. New Zealand Journal of Botany, vol. 53, no. 1, pp. 24-37. http://dx.doi.org/10.1080/0028825X.2014.1000935
    » http://dx.doi.org/10.1080/0028825X.2014.1000935
  • BIANCHI, J.S. and KERSTEN, R.D.A., 2014. Edge effect on vascular epiphytes in a subtropical Atlantic Forest. Acta Botanica Brasílica, vol. 28, no. 1, pp. 120-126. http://dx.doi.org/10.1590/S0102-33062014000100012
    » http://dx.doi.org/10.1590/S0102-33062014000100012
  • BRUSH, T., 1999. Current status of Northern Beardless-Tyrannulet and Tropical Parula in Bentsen-Rio Grande Valley State Park and Santa Ana National Wildlife Refuge, southern Texas. Bulletin of the Texas Ornithological Society, vol. 32, pp. 3-12.
  • CALLAWAY, R.M., REINHART, K.O., MOORE, G.W., MOORE, D.J. and PENNINGS, S.C., 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia, vol. 132, no. 2, pp. 221-230. http://dx.doi.org/10.1007/s00442-002-0943-3 PMid:28547355.
    » http://dx.doi.org/10.1007/s00442-002-0943-3
  • CASCANTE-MARÍN, A., VON MEIJENFELDT, N., DE LEEUW, H.M., WOLF, J.H., OOSTERMEIJER, J.G.B. and DEN NIJS, J.C., 2009. Dispersal limitation in epiphytic bromeliad communities in a Costa Rican fragmented montane landscape. Journal of Tropical Ecology, vol. 25, no. 1, pp. 63-73. http://dx.doi.org/10.1017/S0266467408005622
    » http://dx.doi.org/10.1017/S0266467408005622
  • CASTAÑEDA MIRANDA, A.G., CHAPARRO, M.A., CHAPARRO, M.A. and BÖHNEL, H.N., 2016. Magnetic properties of Tillandsia recurvata L. and its use for biomonitoring a Mexican metropolitan area. Ecological Indicators, vol. 60, pp. 125-136. http://dx.doi.org/10.1016/j.ecolind.2015.06.025
    » http://dx.doi.org/10.1016/j.ecolind.2015.06.025
  • CASWELL, H., 2000. Matrix population models. Sunderland: Sinauer.
  • CATCHPOLE, D.J. and KIRKPATRICK, J.B., 2011. The outstandingly speciose epiphytic flora of a single strangler fig (Ficus crassiuscula) in a Peruvian montane cloud forest. In: L. A. BRUIJNZEEL, F. N. SCATENA and L. S. HAMILTON, eds. Tropical montane cloud forests: science for conservation and management. Cambridge: Cambridge University Press, pp. 142-146. http://dx.doi.org/10.1017/CBO9780511778384.015
    » http://dx.doi.org/10.1017/CBO9780511778384.015
  • CHANG, C.R., CHEN, M.C. and SU, M.H., 2021. Natural versus human drivers of plant diversity in urban parks and the anthropogenic species-area hypotheses. Landscape and Urban Planning, vol. 208, pp. 104023. http://dx.doi.org/10.1016/j.landurbplan.2020.104023
    » http://dx.doi.org/10.1016/j.landurbplan.2020.104023
  • CHAVES, C.J. and ROSSATTO, D.R., 2021. Reducing tree density affects interactions between trees and atmospheric Tillandsia species (Bromeliaceae). Austral Ecology, vol. 46, no. 2, pp. 218-227. http://dx.doi.org/10.1111/aec.12970
    » http://dx.doi.org/10.1111/aec.12970
  • CHAVES, C.J.N., LEAL, B.S.S., ROSSATTO, D.R., BERGER, U. and PALMA-SILVA, C., 2021. Deforestation is the turning point for the spreading of a weedy epiphyte: an IBM approach. Scientific Reports, vol. 11, no. 1, pp. 20397. http://dx.doi.org/10.1038/s41598-021-99798-5 PMid:34650134.
    » http://dx.doi.org/10.1038/s41598-021-99798-5
  • CLAVER, F.K., ALANIZ, J.R. and CALDÍZ, D.O., 1983. Tillandsia spp.: epiphytic weeds of trees and bushes. Forest Ecology and Management, vol. 6, no. 4, pp. 367-372. http://dx.doi.org/10.1016/0378-1127(83)90044-0
    » http://dx.doi.org/10.1016/0378-1127(83)90044-0
  • COTA-SÁNCHEZ, J.H. and ABREU, D.D., 2007. Vivipary and offspring survival in the epiphytic cactus Epiphyllum phyllanthus (Cactaceae). Journal of Experimental Botany, vol. 58, no. 14, pp. 3865-3873. http://dx.doi.org/10.1093/jxb/erm232 PMid:17975210.
    » http://dx.doi.org/10.1093/jxb/erm232
  • DAHLHAUSEN, J., RÖTZER, T., BIBER, P., UHL, E. and PRETZSCH, H., 2018. Urban climate modifies tree growth in Berlin. International Journal of Biometeorology, vol. 62, no. 5, pp. 795-808. http://dx.doi.org/10.1007/s00484-017-1481-3 PMid:29218447.
    » http://dx.doi.org/10.1007/s00484-017-1481-3
  • DISLICH, R. and MANTOVANI, W., 1998. A flora de epífitas vasculares da reserva da cidade universitária “Armando de Salles Oliveira” (São Paulo, Brasil). Boletim de Botânica da Universidade de São Paulo, vol. 17, pp. 61-83. http://dx.doi.org/10.11606/issn.2316-9052.v17i0p61-83
    » http://dx.doi.org/10.11606/issn.2316-9052.v17i0p61-83
  • EINZMANN, H.J., BEYSCHLAG, J., HOFHANSL, F., WANEK, W. and ZOTZ, G., 2014. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB Plants, vol. 7, pp. plu073. http://dx.doi.org/10.1093/aobpla/plu073 PMid:25392188.
    » http://dx.doi.org/10.1093/aobpla/plu073
  • FERNÁNDEZ, L.V., BELTRANO, J. and CALDIZ, D.O., 1989. Germinación y longevidad de semillas de Tillandsia recurvata L. Revista de la Facultad de Agronomía, vol. 65, pp. 81-85.
  • FIGUEIREDO, T.N.C., FERREIRA, J.L.S., CALIL, F.N. and DIVINO, J., 2021. Vascular epiphytes in urban trees in Goiânia city, Brazilian Cerrado. Revista Ecologia e Nutrição Florestal-ENFLO, vol. 9, pp. e02. http://dx.doi.org/10.5902/2316980X64867
    » http://dx.doi.org/10.5902/2316980X64867
  • FRANK, J.H., SREENIVASAN, S., BENSHOFF, P.J., DEYRUP, M.A., EDWARDS, G.B., HALBERT, S.E., HAMON, A.B., LOWMAN, M.D., MOCKFORD, E.L., SCHEFFRAHN, R.H., STECK, G.J., THOMAS, M.C., WALKER, T.J. and WELBOURN, W.C., 2004. Invertebrate animals extracted from native Tillandsia (Bromeliales: Bromeliaceae) in Sarasota county, Florida. The Florida Entomologist, vol. 87, no. 2, pp. 176-185. http://dx.doi.org/10.1653/0015-4040(2004)087[0176:IAEFNT]2.0.CO;2
    » http://dx.doi.org/10.1653/0015-4040(2004)087[0176:IAEFNT]2.0.CO;2
  • GENTRY, A.H. and DODSON, C., 1987. Contribution of nontrees to species richness of a tropical rain forest. Biotropica, vol. 19, no. 2, pp. 149-156. http://dx.doi.org/10.2307/2388737
    » http://dx.doi.org/10.2307/2388737
  • GODOY‐GÜINAO, J., DÍAZ, I.A. and CELIS‐DIEZ, J.L., 2018. Confirmation of arboreal habits in Dromiciops gliroides: a key role in Chilean Temperate Rainforests. Ecosphere, vol. 9, no. 10, pp. e02424. http://dx.doi.org/10.1002/ecs2.2424
    » http://dx.doi.org/10.1002/ecs2.2424
  • GONZÁLEZ, M.V. and CEBALLOS, S.J., 2021. Las epífitas vasculares en un ambiente urbano están influidas por características del arbolado, el clima y las fuentes de propágulos. Ecología Austral, vol. 31, no. 2, pp. 357-371. http://dx.doi.org/10.25260/EA.21.31.2.0.1354
    » http://dx.doi.org/10.25260/EA.21.31.2.0.1354
  • GOTSCH, S.G., NADKARNI, N. and AMICI, A., 2016. The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. Journal of Tropical Ecology, vol. 32, no. 5, pp. 455-468. http://dx.doi.org/10.1017/S026646741600033X
    » http://dx.doi.org/10.1017/S026646741600033X
  • GRACIANO, C., FERNÁNDEZ, L.V. and CALDIZ, D.O., 2003. Tillandsia recurvata L. as a bioindicator of sulfur atmospheric pollution. Ecología Austral, vol. 13, no. 1, pp. 3-14.
  • HARGIS, H., GOTSCH, S.G., PORADA, P., MOORE, G.W., FERGUSON, B. and VAN STAN II, J.T., 2019. Arboreal epiphytes in the soil-atmosphere interface: how often are the biggest “buckets” in the canopy empty? Geosciences, vol. 9, no. 8, pp. 342. http://dx.doi.org/10.3390/geosciences9080342
    » http://dx.doi.org/10.3390/geosciences9080342
  • INSTITUTO NACIONAL DE ESTADÍSTICA Y GEOGRAFÍA E INFORMÁTICA - INEGI, 2021 [viewed 9 January 2023]. Climatología [online]. Available from: https://www.inegi.org.mx/temas/climatologia/
    » https://www.inegi.org.mx/temas/climatologia/
  • JIMÉNEZ-OROZCO, C., LEBRÓN-LIRIANO, B.V., FERNÁNDEZ-GUTIÉRREZ, R., URBÁEZ, R. and GUERRERO, A., 2019. Caracterización de la flora epífita vascular del Parque Iberoamérica, Santo Domingo, República Dominicana. Ciencia Ambiente y Clima, vol. 2, no. 1, pp. 23-33. http://dx.doi.org/10.22206/cac.2019.v2i1.pp23-33
    » http://dx.doi.org/10.22206/cac.2019.v2i1.pp23-33
  • KÖSTER, N., FRIEDRICH, K., NIEDER, J. and BARTHLOTT, W., 2009. Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conservation Biology, vol. 23, no. 4, pp. 911-919. http://dx.doi.org/10.1111/j.1523-1739.2008.01164.x PMid:19210304.
    » http://dx.doi.org/10.1111/j.1523-1739.2008.01164.x
  • LANDI, M. and ANGIOLINI, C., 2011. Population structure of Osmunda regalis in relation to environment and vegetation: an example in the Mediterranean area. Folia Geobotanica, vol. 46, no. 1, pp. 49-68. http://dx.doi.org/10.1007/s12224-010-9086-1
    » http://dx.doi.org/10.1007/s12224-010-9086-1
  • LAUBE, S. and ZOTZ, G., 2003. Which abiotic factors limit vegetative growth in a vascular epiphyte? Functional Ecology, vol. 17, no. 5, pp. 598-604. http://dx.doi.org/10.1046/j.1365-2435.2003.00760.x
    » http://dx.doi.org/10.1046/j.1365-2435.2003.00760.x
  • LEFKOVITCH, L.P., 1965. The study of population growth in organisms grouped by stages. Biometrics, vol. 21, no. 1, pp. 1-18. http://dx.doi.org/10.2307/2528348
    » http://dx.doi.org/10.2307/2528348
  • LOESCHEN, V.S., MARTIN, C.E., SMITH, M. and EDER, S.L., 1993. Leaf anatomy and CO 2 recycling during crassulacean acid metabolism in twelve epiphytic species of Tillandsia (Bromeliaceae). International Journal of Plant Sciences, vol. 154, no. 1, pp. 100-106. http://dx.doi.org/10.1086/297095
    » http://dx.doi.org/10.1086/297095
  • LUNA-COZAR, J., MARTÍNEZ-MADERO, O. and JONES, R.W., 2020. Ball Moss, Tillandsia recurvata L., as a refuge site for arthropods in a seasonally dry tropical forest of Central Mexico. Southwestern Entomologist, vol. 45, no. 2, pp. 445-460. http://dx.doi.org/10.3958/059.045.0213
    » http://dx.doi.org/10.3958/059.045.0213
  • MARTINS, P.L.S.S., FURTADO, S.G. and MENINI NETO, L., 2020. Could epiphytes be xenophobic? Evaluating the use of native versus exotic phorophytes by the vascular epiphytic community in an urban environment. Community Ecology, vol. 21, no. 1, pp. 91-101. http://dx.doi.org/10.1007/s42974-020-00001-y
    » http://dx.doi.org/10.1007/s42974-020-00001-y
  • MCWILLIAMS, E., 1992. Chronology of the natural range expansion of Tillandsia recurvata (Bromeliaceae) in Texas. SIDA, Contributions to Botany, vol. 15, no. 2, pp. 343-346.
  • MENDIETA-LEIVA, G., PORADA, P. and BADER, M.Y. 2020. Interactions of epiphytes with precipitation partitioning. In: J. T. VAN STAN, E. GUTMANN and J. FRIESEN, eds. Precipitation partitioning by vegetation. Cham: Springer, pp. 133-146. http://dx.doi.org/10.1007/978-3-030-29702-2_9
    » http://dx.doi.org/10.1007/978-3-030-29702-2_9
  • MONDRAGON, D. and CRUZ-RUIZ, G.I., 2008. Seasonal variation of the macro-arthropod community associated to Tillandsia carlos-hankii (Bromeliaceae) in an oak-pine forest in Oaxaca, Mexico. Brenesia, no. 70, pp. 11-22.
  • MONDRAGÓN, D., DURÁN, R., RAMÍREZ, I. and VALVERDE, T., 2004. Temporal variation in the demography of the clonal epiphyte Tillandsia brachycaulos (Bromeliaceae) in the Yucatán Peninsula, Mexico. Journal of Tropical Ecology, vol. 20, no. 2, pp. 189-200. http://dx.doi.org/10.1017/S0266467403001287
    » http://dx.doi.org/10.1017/S0266467403001287
  • MONDRAGON, D., VALVERDE, T. and HERNÁNDEZ-APOLINAR, M., 2015. Population ecology of epiphytic angiosperms: a review. Tropical Ecology, vol. 56, no. 1, pp. 1-39.
  • MORGENROTH, J., ÖSTBERG, J., KONIJNENDIJK VAN DEN BOSCH, C., NIELSEN, A.B., HAUER, R., SJÖMAN, H., CHEN, W. and JANSSON, M., 2016. Urban tree diversity-Taking stock and looking ahead. Urban Forestry & Urban Greening, vol. 15, pp. 1-5. http://dx.doi.org/10.1016/j.ufug.2015.11.003
    » http://dx.doi.org/10.1016/j.ufug.2015.11.003
  • MURCIA, C., 1995. Edge effects in fragmented forests: implications for conservation. Trends in Ecology & Evolution, vol. 10, no. 2, pp. 58-62. http://dx.doi.org/10.1016/S0169-5347(00)88977-6 PMid:21236953.
    » http://dx.doi.org/10.1016/S0169-5347(00)88977-6
  • NIELSEN, A.B., VAN DEN BOSCH, M., MARUTHAVEERAN, S. and VAN DEN BOSCH, C.K., 2014. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosystems, vol. 17, no. 1, pp. 305-327. http://dx.doi.org/10.1007/s11252-013-0316-1
    » http://dx.doi.org/10.1007/s11252-013-0316-1
  • OKE, T.R., 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, vol. 108, no. 455, pp. 1-24. http://dx.doi.org/10.1002/qj.49710845502
    » http://dx.doi.org/10.1002/qj.49710845502
  • OOSTERMEIJER, J.G.B., VAN'T VEER, R. and DEN NIJS, J.C.M., 1994. Population structure of the rare, long-lived perennial Gentiana pneumonanthe in relation to vegetation and management in the Netherlands. Journal of Applied Ecology, vol. 31, no. 3, pp. 428-438. http://dx.doi.org/10.2307/2404440
    » http://dx.doi.org/10.2307/2404440
  • OROZCO-IBARROLA, O.A., FLORES-HERNÁNDEZ, P.S., VICTORIANO-ROMERO, E., CORONA-LÓPEZ, A.M. and FLORES-PALACIOS, A., 2015. Are breeding system and florivory associated with the abundance of Tillandsia species (Bromeliaceae)? Botanical Journal of the Linnean Society, vol. 177, no. 1, pp. 50-65. http://dx.doi.org/10.1111/boj.12225
    » http://dx.doi.org/10.1111/boj.12225
  • ORTEGA-SOLIS, G., DÍAZ, I.A., MELLADO-MANSILLA, D., TEJO, C., TELLO, F., CRAVE, D., KREFT, H. and ARMESTO, J. J., 2021. Trash-basket epiphytes as secondary foundation species: a review of their distribution and effects on biodiversity and ecosystem functions. bioRxiv Online. https://doi.org/10.1101/2021.06.22.449473
    » https://doi.org/10.1101/2021.06.22.449473
  • PARRA-SANCHEZ, E. and BANKS-LEITE, C., 2020. The magnitude and extent of edge effects on vascular epiphytes across the Brazilian Atlantic Forest. Scientific Reports, vol. 10, no. 1, pp. 18847. http://dx.doi.org/10.1038/s41598-020-75970-1 PMid:33139836.
    » http://dx.doi.org/10.1038/s41598-020-75970-1
  • PEREIRA, T.A., VIEIRA, S.A., OLIVEIRA, R.S., ANTIQUEIRA, P.A., MIGLIORINI, G.H. and ROMERO, G.Q., 2022. Local drivers of heterogeneity in a tropical forest: epiphytic tank bromeliads affect the availability of soil resources and conditions and indirectly affect the structure of seedling communities. Oecologia, vol. 199, no. 1, pp. 205-215. http://dx.doi.org/10.1007/s00442-022-05179-8 PMid:35526202.
    » http://dx.doi.org/10.1007/s00442-022-05179-8
  • PÉREZ-NOYOLA, F.J., FLORES, J., YÁÑEZ-ESPINOSA, L., JURADO, E., DE LA ROSA-MANZANO, E. and BADANO, E., 2020. Complete vivipary behavior detected in the epiphytic Tillandsia recurvata L. (Ball moss) in the Chihuahuan Desert in two continuous years. Journal of Arid Environments, vol. 174, pp. 103993. http://dx.doi.org/10.1016/j.jaridenv.2019.103993
    » http://dx.doi.org/10.1016/j.jaridenv.2019.103993
  • PÉREZ-NOYOLA, F.J., FLORES, J., YÁÑEZ-ESPINOSA, L., JURADO, E., GONZÁLEZ-SALVATIERRA, C. and BADANO, E., 2021. Is ball moss (Tillandsia recurvata) a structural parasite of mesquite (Prosopis laevigata)? Anatomical and ecophysiological evidence. Trees (Berlin), vol. 35, no. 1, pp. 135-144. http://dx.doi.org/10.1007/s00468-020-02023-5
    » http://dx.doi.org/10.1007/s00468-020-02023-5
  • PIAZZETTA, K.D., RAMSDORF, W.A. and MARANHO, L.T., 2019. Use of airplant Tillandsia recurvata L., Bromeliaceae, as biomonitor of urban air pollution. Aerobiologia, vol. 35, no. 1, pp. 125-137. http://dx.doi.org/10.1007/s10453-018-9545-3
    » http://dx.doi.org/10.1007/s10453-018-9545-3
  • RAMÍREZ-MARTÍNEZ, A., MONDRAGÓN, D., VALVERDE, T. and CHÁVEZ-SERVIA, J.L., 2018. Spatial variation in host preference in the endangered epiphytic bromeliad Tillandsia carlos-hankii. Acta Oecologica, vol. 92, pp. 75-84. http://dx.doi.org/10.1016/j.actao.2018.08.008
    » http://dx.doi.org/10.1016/j.actao.2018.08.008
  • RAMÍREZ-MARTÍNEZ, A., TICKTIN, T. and MONDRAGON, D., 2022. Host tree species effects on long-term persistence of epiphytic orchid populations. Frontiers in Ecology and Evolution, vol. 10, pp. 1059136. http://dx.doi.org/10.3389/fevo.2022.1059136
    » http://dx.doi.org/10.3389/fevo.2022.1059136
  • ROJAS-ZÁRATE, Y. and MONDRAGÓN, D., 2016. Epiphytic bromeliads of the Zaachila district, Oaxaca, Mexico. Revista Mexicana de Biodiversidad, vol. 87, no. 1, pp. 252-254. http://dx.doi.org/10.1016/j.rmb.2016.01.003
    » http://dx.doi.org/10.1016/j.rmb.2016.01.003
  • SMITH, L.B. and DOWNS, R.J., 1977. Tillandsioideae (Bromeliaceae). Flora Neotropica Monograph, vol. 14, no. 2, pp. 663-1492.
  • TICKTIN, T., MONDRAGÓN, D. and GAOUE, O.G., 2016. Host genus and rainfall drive the population dynamics of a vascular epiphyte. Ecosphere, vol. 7, no. 11, pp. e01580. http://dx.doi.org/10.1002/ecs2.1580
    » http://dx.doi.org/10.1002/ecs2.1580
  • VALENCIA-DÍAZ, S., FLORES-PALACIOS, A., RODRÍGUEZ-LÓPEZ, V. and JIMÉNEZ-APARICIO, A.R., 2012. Effects of Tillandsia recurvata extracts on the seed germination of Tillandsia spp. Allelopathy Journal, vol. 29, no. 1, pp. 125-135.
  • VALVERDE, T. and BERNAL, R., 2010. Is there demographic asynchrony among local populations of Tillandsia recurvata? Evidence of its metapopulation functioning. Boletín de la Sociedad Botánica de México, vol. 86, pp. 23-36.
  • VERGARA-TORRES, C.A., PACHECO-ÁLVAREZ, M.C. and FLORES-PALACIOS, A., 2010. Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. Journal of Tropical Ecology, vol. 26, no. 6, pp. 563-570. http://dx.doi.org/10.1017/S0266467410000349
    » http://dx.doi.org/10.1017/S0266467410000349
  • WAGNER, K., WANEK, W. and ZOTZ, G., 2021. Functional traits of a rainforest vascular epiphyte community: trait covariation and indications for host specificity. Diversity (Basel), vol. 13, no. 2, pp. 97. http://dx.doi.org/10.3390/d13020097
    » http://dx.doi.org/10.3390/d13020097
  • WERNER, S.M., HEJL, S.J. and BRUSH, T., 2015. Nesting ecology of the northern beardless-tyrannulet (Camptostoma imberbe) in the lower Rio Grande Valley of Texas, USA. Ornitologia Neotropical, vol. 26, no. 1, pp. 89-101. http://dx.doi.org/10.58843/ornneo.v26i1.15
    » http://dx.doi.org/10.58843/ornneo.v26i1.15
  • WILLIAMS-LINERA, G., SOSA, V. and PLATAS, T., 1995. The fate of epiphytic orchids after fragmentation of a Mexican cloud forest. Selbyana, vol. 16, pp. 36-40.
  • YANG, Q., HUANG, X. and TANG, Q., 2019. The footprint of urban heat island effect in 302 Chinese cities: temporal trends and associated factors. The Science of the Total Environment, vol. 655, pp. 652-662. http://dx.doi.org/10.1016/j.scitotenv.2018.11.171 PMid:30476846.
    » http://dx.doi.org/10.1016/j.scitotenv.2018.11.171
  • YEATON, R.I. and GLADSTONE, D.E., 1982. The pattern of colonization of epiphytes on Calabash Trees (Crescentia alata HBK.) in Guanacaste Province, Costa Rica. Biotropica, vol. 14, no. 2, pp. 137-140. http://dx.doi.org/10.2307/2387743
    » http://dx.doi.org/10.2307/2387743
  • ZAR, J., 2014. Biostatistical analysis. 5th ed. New Jersey: Pearson Education.
  • ZARATE‐GARCÍA, A.M., NOGUERA‐SAVELLI, E., ANDRADE‐CANTO, S.B., ZAVALETA‐MANCERA, H.A., GAUTHIER, A. and ALATORRE‐COBOS, F., 2020. Bark water storage capacity influences epiphytic orchid preference for host trees. American Journal of Botany, vol. 107, no. 5, pp. 726-734. http://dx.doi.org/10.1002/ajb2.1470 PMid:32346866.
    » http://dx.doi.org/10.1002/ajb2.1470
  • ZOTZ, G., 2013. The systematic distribution of vascular epiphytes-a critical update. Botanical Journal of the Linnean Society, vol. 171, no. 3, pp. 453-481. http://dx.doi.org/10.1111/boj.12010
    » http://dx.doi.org/10.1111/boj.12010
  • ZOTZ, G., 2016. Plants on plants-the biology of vascular epiphytes. Switzerland: Springer. http://dx.doi.org/10.1007/978-3-319-39237-0
    » http://dx.doi.org/10.1007/978-3-319-39237-0

Publication Dates

  • Publication in this collection
    05 May 2023
  • Date of issue
    2024

History

  • Received
    09 Jan 2023
  • Accepted
    17 Feb 2023
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br