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Is nematode colonisation in the presence of  
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Abstract

The role of a dominant macrobenthic polychaete, Scolelepis squamata, in the colonisation of defaunated tropical 
sediments by sandy-beach nematodes was investigated and compared with a previous colonisation experiment carried 
out on a temperate sandy beach. Experimental cylinders, equipped with lateral windows allowing infaunal colonisation, 
were filled with defaunated sediment containing two treatments, with and without S. squamata. These cylinders were 
inserted into microcosms containing sediment with indigenous meiofauna collected from the field. The treatments were 
incubated in the laboratory at ambient temperature and salinity for 7, 14 and 21 days. The nematode assemblages in 
both treatments did not differ in composition between treatments and from the natural assemblages, suggesting that 
all the species were equally able to colonise the experimental cores. The presence of the polychaete did not affect 
the development of the nematode community composition, in contrast to the results from a previous temperate-beach 
experiment. However, our results did not indicate whether the difference in results was caused by the different behaviour 
of the polychaete specimens, or by the different composition and response of the present nematode community.
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A colonização dos sedimentos de praias tropicais por  
nematódeos na presença de Scolelepis é similar ao processo de  

colonização que ocorre em praias arenosas temperadas?

Resumo

Esse estudo avaliou a influência da espécie Scolelepis squamata (Polychaeta) no processo de colonização de sedimentos 
defaunados obtidos em uma praia arenosa tropical, além de comparar esses resultados com um estudo similar realizado 
em uma praia temperada. Sedimentos, previamente defaunados, foram colocados em amostradores com aberturas 
laterais, que permitiram a colonização da meiofauna. Foram definidos dois tratamentos, um com a presença e outro com 
a ausência da espécie S. squamata, além do controle. Os amostradores desses tratamentos foram alocados em unidades 
experimentais do tipo microcosmo, as quais continham sedimento com a meiofauna residente. Os tratamentos foram 
incubados em laboratório por 7, 14 e 21 dias, com condições controladas de temperatura e salinidade. Os nematódeos 
não apresentaram diferenças significativas em termos de composição entre os tratamentos e nem em relação ao controle, 
sugerindo que todas as espécies desse grupo foram, igualmente, capazes de colonizar as unidades experimentais. Esses 
resultados indicaram que a presença do poliqueto não afetou a estrutura da comunidade de nematódeos, o que representou 
um resultado contrário ao obtido para a praia temperada. No entanto, não se pode concluir se essas diferenças entre 
as praias estariam relacionadas ao comportamento diferencial de S. squamata ou pela presença de comunidades de 
nematódeos distintas nas praias.

Palavras-chave: meiofauna, Scolelepis squamata, Praia da Fazenda, experimento de microcosmo, interações biológicas.
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1. Introduction

The presence of nematodes as a group in the sediment is 
independent of the sediment composition (Vanaverbeke et al., 
2000), but, in general, nematodes are said to be highly 
dominant in sand finer than 300 µm (McLachlan and 
Brown, 2006). Several studies have largely demonstrated 
the importance of sediment characteristics, such as median 
grain size, silt content and sorting as key aspects structuring 
the composition and diversity of free-living nematodes 
(e. g. Wieser, 1959; Ward, 1973; Heip and Decraemer, 
1974; Vincx, 1989; Vincx et al., 1990; Vanreusel, 1990; 
Vanaverbeke et al., 2002, 2011). Then, despite the geographic 
area or the tidal regime of a sandy beach, the sediment 
seems to be more important in structuring the nematode 
community. However, the three-dimensional sediment of 
sandy beaches is not exclusively inhabited by nematodes; 
diverse communities including species of different sizes of 
organisms, such as micro-, meio- (other than nematodes) and 
macrofauna are also found in sandy beach sediments. These 
organism group sizes generally interact with each other by 
means of trophic interactions (Schratzberger and Warwick, 
1999; Tita et al., 2000; Aarnio et al., 2001) or non-trophic 
interactions (Van Colen et al., 2009; Braeckman et al., 2011; 
Maria et al., 2011) and, therefore, interactions between 
macrofauna and nematodes also influence the nematode 
composition of sandy beach sediments (Maria et al., 2011).

Among the macrofauna organisms from medium to 
very fine sandy beach sediments Scolelepis squamata 
Müller, 1806 (Polychaeta) is often very abundant in the 
North and South Atlantic, the North Pacific, the Indian 
Ocean and the Mediterranean Sea (Souza and Borzone, 
2000). It can reach high abundances in the upper intertidal 
zone (Elliot et al., 1997; Degraer et al., 2003), the mid-
tide level (Knott et al., 1983; Souza and Borzone, 2000; 
Janssen and Mulder, 2005) or in the subtidal (Knott et al., 
1983; Hartmann-Schröeder, 1996; Souza and Borzone, 
2000). Recent morphometric studies have shown that 
this supposedly cosmopolitan species is, rather, a species 
complex, at least in the South Atlantic, and its members 
can be distinguished only by a detailed morphological 
analysis combined with electron microscopy (MacCord 
and Amaral, 2005; Rocha et al., 2009).

Polychaetes identified as Scolelepis squamata can 
modify the environment through their burrowing and 
deposit-feeding activities, and by producing pseudofaeces 
(Dauer, 1983; Pardo and Amaral, 2004; Van Hoey et al., 
2004). In experimental treatments with fauna from an 
ultradissipative sandy beach at De Panne, North Sea, 
Belgium, S. squamata was able to facilitate the early 
establishment of two non-predatory nematode species 
by inhibiting the continuous colonisation of initially 
dominant opportunistic nematode species represented only 
by Enoplolaimus litoralis (Maria et al., 2011). However, 
the generality of these results is not yet established. 
While it cannot be excluded that individuals presently 
attributed to S. squamata in different parts of the world 
are actually different species, it can be assumed that they 

do share similar behavioural characteristics. Therefore, 
by conducting nematode colonisation experiments with 
S. squamata in different regions of the world, it can be 
investigated whether the positive or negative effects of the 
presence of a dominant macrofaunal species established 
in temperate, macrotidal beaches (Maria et al., 2011) can 
be generalised to other beach types in other worldwide 
regions. Therefore, a laboratory microcosm experiment was 
set up to test the effect of S. squamata on the colonisation 
of azoic sediments by free-living nematodes in a tropical 
microtidal sandy beach in Brazil. We specifically tested 
the null hypothesis that the nematode community in newly 
colonised sediments is unaffected by the presence of the 
polychaete, and our results were compared with previously 
conducted experiments on macrotidal sandy beaches in 
temperate regions (Maria et al., 2011). The results of this 
study will (1) increase the knowledge of macrofauna-
meiofauna interactions in tropical sandy beaches, and (2) 
allow an assessment of the generality of these patterns 
across different sandy beaches.

2. Material and Methods

2.1. Study area and sediment sampling

Sediment from the upper 10 cm was collected from 
the upper intertidal level from Praia da Fazenda, a tropical, 
dissipative sandy beach (44° 48’ W - 44° 52’ W and 23° 
20’ - 23° 22’ S) in the Parque Estadual da Serra do Mar, 
municipality of Ubatuba, São Paulo, Brazil (Figure 1) four 
weeks prior to the experimental set-up (15th May 2008). 
The intertidal area is approximately 3.5 km long, with a 
mangrove located at the north inlet edge.

2.2. Experimental set-up

Sediments previously collected were defaunated and 
made inorganic by burning to 500 °C for 4 h in a muffle 
furnace. One day before the experimental set-up (19th June 
2008), triplicate field control (FC) samples were collected 
using Perspex corers (10 cm²) to a depth of 10 cm, in order 
to collect baseline information on the resident nematode 
community. Then, large volumes of sand were collected 
from the same area visited on 15th May. This sediment 
was homogenised in the field by successive rework and 
taken to the laboratory to fill the microcosm aquaria of 
0.24 m2. Scolelepis squamata individuals were sampled 
by sieving sediment from the upper intertidal level of the 
beach. They were kept alive until the experimental set-up 
in an aquarium filled with sand and oxygenated sea water.

Six microcosms, each consisting of a plastic aquarium 
(72 l), were filled with homogenised sediment inhabited 
by natural meiofaunal and macrofaunal sandy-beach 
communities to a depth of 12 cm. The sediments were 
left untouched for one day, to allow the community to 
stabilise. One corner (96 cm²) of the aquarium was kept 
free in order to place a water pump, silicone tubes and air 
stones in a plastic container, to avoid any disturbance of the 
sediment. Thirty-six experimental cylinders (10 cm2) were 
allocated to three types of treatment (see below) and were 
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randomly pushed into the sediment of different aquaria at a 
regular distance of 10 cm (Figure 2a). Before the addition 
of the experimental corers, a similar-sized corer removed 
the corresponding amount of sediment from the aquarium, 
in order to reduce disturbance. The experimental corers 
had two opposite lateral windows, each 5.3 cm × 2.6 cm, 
covered by gauze with a mesh size of 300 µm (Figure 2b). 
These lateral windows allowed meiofaunal migration from 
the adjacent sediment. The upper 2 cm of the gauze was 
in contact with the water, in order to allow mimicking of 
tides inside these corers; however, the water level never 
overtopped the edge of the corers.

Experimental cylinders with three different treatments 
were randomly distributed in the 6 aquaria. They consisted of:

1. Indigenous control (IC): natural sediment with 
indigenous community, collected simultaneously 
with the sediment used to fill the aquarium. This 
type of control was used to check for a possible 
effect of the use of the corer;

2. Azoic treatment (AT): defaunated sediment; and
3. Scolelepis treatment (ST): defaunated sediment + 5 

specimens of S. squamata, which corresponded to 
the size of the polychaetes used in the North Sea 
experiment.

Immediately after the set-up of the experiment, the 
sediment in the aquarium was covered with 3.5 cm filtered 
seawater of natural salinity (35).

The experiment ran in a temperature-controlled room 
(25 °C) in a day and night light regime of 12: 12. Tides 

were simulated twice a day, to a maximum water depth of 
3.5 cm above the sediment layer. The water entered into 
the experimental cylinders through the upper 2 cm of the 
gauze, covering the lateral windows of the cylinder. The 
sediment was submerged for 2 hours and exposed to the 
air for 10 hours. Changes in salinity of the seawater were 
monitored daily, and increases due to evaporation were 
avoided by adding deionised water to the water reservoir, 
thereby maintaining the natural salinity.

Three replicates of each treatment were removed from 
different aquaria and transferred into a plastic container at 
7, 14, 21 days post-placement during simulated low tide. 
At the same time, control samples (AQ) were randomly 
collected using a 10-cm2 cylinder. Immediately after the 
removal of the experimental cylinders, the holes were filled 
with similar-sized empty corers to prevent the surrounding 
sediment from collapsing. All samples were preserved in 
a 10% formaldehyde solution until sample processing.

2.3. Sample processing in the laboratory

After the experiment ended, nematodes were extracted 
from the sediment by centrifugation with Ludox (Heip et al., 
1985). Macrofauna was excluded by means of a 1-mm 
sieve. All organisms retained on a 38-µm sieve were 
counted and enumerated under a dissecting microscope. A 
sub-sample of 100 random nematodes were transferred to 
De Grisse solution (De Grisse, 1969) and mounted on slides 
for further identification to genus and species. Cylinders 
from the Scolelepis treatment were checked to assess if 
the organisms were still alive on the day of the sampling.

Figure 1. Study area localized in the Parque Estadual da Reserva do Mar at the southeast coast of Brazil.
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2.4. Data analyses

Nematode assemblages from all the treatments 
and sampling dates were analysed using univariate and 
multivariate techniques. Total densities per 10 cm2, species 
richness (S) and diversity (Shannon diversity index – H’ 
loge) were calculated for each treatment.

Differences between nematode densities of FC and 
AQ, and between FC and IC were analysed by t-tests. 
Differences in nematode densities among sampling times 
in AQ and IC were analysed by one-way ANOVA after 
checking that the necessary assumptions were met.

Experimental effects on total nematode density per 
10 cm2, species richness (S) and diversity (H’) were tested 
by two-way analysis of variance (two-way ANOVA). 
When significant differences were detected, Tukey HSD 
tests were applied for testing for pairwise differences. 
Cochran’s test was applied to check the homogeneity of the 
variances. Differences in nematode community structure 
were analysed by non-metric Multi-Dimensional Scaling 
(MDS) using the Bray-Curtis Similarity on non-transformed 
data for each sample. A one-way PERMANOVA was 
applied to analyse differences in the nematode community 
structure among FC, AQ and IC; and a two-way design 
was applied to evaluate differences in the community 
structure among treatments (AQ, IC, AT and ST) and over 
time (Anderson et al., 2008). Since a PERMANOVA test 
can show significant differences between groups, but does 
not distinguish between a difference due to factor effects 
or dispersion (variance), homogeneity of multivariate 
dispersion was tested with PERMDISP, using distances 

among centroids calculated in the treatment × time group. 
The PERMDISP test was never significant, indicating equally 
dispersed distances to centroids. In case of a significant 
result in the PERMANOVA design, pairwise tests for the 
significant term were performed. In cases of restricted 
number of possible permutations in pairwise tests, p-values 
were obtained from Monte Carlo samplings (Anderson 
and Robinson, 2003). The species contributing most to 
within-group similarity were identified by the two-way 
crossed SIMPER analysis. All the multivariate analyses, 
and the calculation of S and H’ were performed using the 
PRIMER v6 with PERMANOVA + add on software package 
(Clark and Gorley, 2006; Anderson et al., 2008), and the 
t-test and ANOVA were done using STATISTICA 7.0.

3. Results

3.1. Effect on density and diversity of the nematode 
communities

The nematode densities recorded in AQ samples were 
not significantly different from the values recorded from 
the field samples (time zero) (Figure 3; t-test, t = –0.49, 
p = 0.65) and did not change significantly over the course 
of the experiment (Figure 4, one-way ANOVA, F2,6 = 0.94, 
p = 0.44). Considering the indigenous controls, the 
densities were also not statistically different from the field 
samples (Figure 3; t-test, t = 0.81, p = 0.46). There was 
no significant change over time in the densities of IC over 
the course of the experiment (Figure 4, one-way ANOVA, 
F2,6 = 0.63, p = 0.57).

b

a

Figure 2. Schematic drawing of the experimental set-up. A: aerated microcosms (57 × 37 × 31 cm), B: syringes with lateral 
window of 5 cm × 2.6 cm which were filled with the different types of treatments.
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Nematode densities were not affected by treatment or 
by time, whereas species richness was significantly affected 
by the time × treatment interaction term (Table 1, Figure 5). 
Tukey HSD (Table 1) indicated that these differences 
were caused by the higher species richness found in AQ 
at day-7 and in IC at day-14 and day-21. H’ diversity was 
significantly affected by treatment only, since a higher 
diversity was found at IC (Table 1, Figure 5).

3.2. Effect on the nematode community composition

A mean of 16.983 individuals were counted in this 
study, belonging to 21 species and 2 unidentified genera. 
Daptonema sp. A, Theristus sp. A, Theristus sp. C, 
Neochromadora sp., and Nudora besnardi (Gerlach, 
1956) were the dominant species in both the field control 
and experimental treatments (Appendix). The first three 
species are classified as non-selective deposit feeders and 
the latter two as epistrate feeders, according to Wieser 
(1953). No significant differences in nematode community 
composition were observed among FC, AQ, and IC 
treatments at the beginning of the experiment (one-way 
PERMANOVA: Pseudo-F2,6 = 1.92, p = 0.057). In addition, 
nematode communities from both AQ and IC did not 
change significantly over time (one-way PERMANOVA; 

and Pseudo-F2,6 = 1.30, p = 0.253 and Pseudo-F2,6 = 1.586, 
p = 0.198, respectively).

Nematode community composition was significantly 
affected by treatment and time, but not affected by the 
interaction term (Table 2). The pairwise test showed that 
the nematode communities from AQ were different from 
AT, and the nematode communities present at day-7 were 
significantly different from the communities encountered 
at day-14 (Figure 6, Table 2).

The species contributing to the similarity within each 
treatment and time indicated by two-way crossed SIMPER 
are listed in Table 3. Within-group similarity in AQ and IC 
was mainly determined by Daptonema sp. A and Nudora 
besnardi, whereas Daptonema sp. A and Theristus sp. A 
were much more important in AT. The difference between 
day-7 and day-14 mainly occurred by the replacement of 
the dominant Theristus sp. C by Theristus sp. A on the 
latter sampling day (Table 3).

4. Discussion

4.1. Experimental set-up

Initial changes in nematode densities, diversity and 
community composition caused by manipulation of the 

Figure 3. Mean nematode density in the field control (t = 0) 
and in the initial stages of the experiments (t = 7). FC: field 
control, AQ: aquarium control, IC: indigenous control. Error 
bar represents ±SE (n = 3).

Figure 4. Mean nematode density in the controls over the 
21 days of the experiment. Black bars represent AQ and grey 
bars represent IC. Error bar shows ±SE (n = 3).

Table 1. Results from two-way ANOVA for the treatment and time effects on nematodes univariate measurements and 
overview of the Tukey HSD-test for number of species and Shannon diversity. Field controls are not included in this analysis.

ANOVA
Treatment Time Treatment × Time 

F (3,24) p F(2,24) p F(6,24) p

Density 0.79 0.507 2.68 0.089 2.06 0.096
Species richness (S) 23.18 <0.001* 0.25 0.805 3.18 0.019*
Diversity (H’) 11.36 <0.001* 2.54 0.100 0.99 0.448 

Groups compared Result for S Result for H’
AQ × IC no difference AQ < IC
AQ × AT no difference no difference
AQ × ST day 7 (ST < AQ) no difference
IC × AT day 14, 21 (IC > AT) IC > AT
IC × ST day 14, 21 (IC > ST) IC > ST

AT × ST no difference no difference
AQ: aquarium control, IC: indigenous control, AT: azoic treatment, ST: Scolelepis treatment. *: significant values
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sediment could not be detected by our experimental design. 
In addition, no temporal changes were observed over the 
course of the experiment in AQ, again suggesting that using 
relatively large microcosms in meiofaunal experimental 
work avoids experimental artefacts (Maria et al., 2011). The 
absence of changes in density and nematode composition 
in the IC shows that cage effects did not occur in our 
experiment.

4.2. Colonisation pattern

A similar colonisation pattern was observed between 
azoic and Scolelepis treatments in terms of density, diversity 
and community structure. The nematode colonisation was 
a very rapid process, and all species had the same ability 
to colonise the newly available sediment since many of the 
species found in the source community (AQ) were found 
in the colonising cores (AT and ST). Previous colonisation 
experiments have shown that the success of a certain 
nematode genus, such as Sabatieria (Schratzberger et al., 
2004), Leptolaimus (Gallucci et al., 2008) and Enoplolaimus 
(Maria et al., 2011), in colonising abundantly a new area 
is attributed to their relatively large body size. Our source 
community (AQ) lacked those large nematodes, mainly 

a b

c

Figure 5. Univariate indices for nematode assemblages over the 21 days of the experiment. Treatment results (black 
symbols) were plotted against data obtained for the laboratory controls – AQ and IC – (open symbols) that served as potential 
species pool for colonisation of the defaunated sediment. a) mean total nematode density, b) species richness (S), c) Shannon 
diversity index (H’). Error bar represents ±SE (n = 3). AQ: triangles, IC: diamonds, AT: squares, ST: circles.

Table 2. Results from two-way PERMANOVA using Bray-
Curtis similarity on non-transformed data showing the 
effect of treatment and time on nematode community and 
results from pair-wise tests using Bray-Curtis similarity on 
non-transformed, showing the treatment and time effect on 
nematode communities. Abbreviations as used in Table 1.

Factors MS Pseudo-F p
Treatment (3,24) 1382 2.06 0.022*
Time (2,24) 2066 3.07 0.007*
treatment × time (6,24) 1109 1.65 0.067

Groups of treatments T p
AQ × IC 0.97 0.437
AQ × AT 1.84 0.014*
AQ × ST 1.44 0.100
IC × AT 1.92 0.020*
IC × ST 1.43 0.123

AT × ST 0.99 0.396
Groups of days

7 × 14 1.91 0.026*
7 × 21 1.68 0.037*

14 × 21 1.65 0.055
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reflecting the granulometric characteristics of the studied 
beach since thin nematodes are more prone to occur in 
very fine sand (Fleeger et al., 2011).

The dominance of Xyalidae and the low number of 
nematode species also reflect the sediment grain size of 
Fazenda beach. A high abundance of Xyalidae in sandy 
beaches composed of fine-grained sediments was already 
evidenced by Gheskiere et al. (2004), Hourston et al. 
(2005) and Gourbault and Warwick (1994). In addition, 
fine sediment has a low diversity of nematodes and is 
generally inhabited by non-selective deposit feeders 
(Vanaverbeke et al., 2011), which includes members of 
Xyalidae.

Although density, diversity and community structure 
were not significant different, differences were found in 
terms of species richness. At day 7, a significant difference 
was found between ST and AQ, which may indicate that 
the chemical unattractiveness of the sediment is a barrier 
for the survival of successful rapid-colonising species 
(Maria et al., 2011). After day 7, there was a slight but 
significant rise in species richness in ST, indicating that 
environmental conditions had improved. Similar observations 
were made in temperate beaches (Maria et al., 2011) and 
were attributed to the recovery of microbial communities 
after defaunation (Stocum and Plante, 2006).

No significant differences in terms of density, diversity 
and nematode community composition were found between 
the azoic and the Scolelepis treatment, in contrast to 
the findings obtained for a temperate, macrotidal sandy 
beach (Maria et al., 2011). In the latter study, a significant 
difference in the diversity between AT and ST was observed, 
attributable to the ability of S. squamata to inhibit the 
initially high colonisation rates of an opportunistic, large-
sized predatory nematode, Enoplolaimus litoralis Schulz, 
1936. A similarly prominent, predatory nematode was not 
present in the experimental and natural communities of 
the tropical Brazilian beach. Although Nudora besnardi 
and Neochromadora sp. both have an armed buccal cavity 
with sclerotised teeth and/or denticles, their buccal cavity 
is mainly adapted to pierce diatoms and/or scrape sand 
particles (Moens and Vincx, 1997). Nudora besnardi 
can also be relatively large in size (0.9-1 mm), but will 
never attain the large size of E. litoralis (1.4-2.5 mm), to 
which its high mobility and high colonisation rate in the 
beginning of the experiment was attributed (Maria et al., 
2011). Therefore, the discrepancy between the results 
obtained here and the previous colonisation experiment 
may be a consequence of different nematode communities 
in both geographic areas which reflect directly the sediment 
composition of both areas.

The absence of interactions between nematodes 
and the polychaete could also be due to the species of 
polychaete used in our experiment. The species used here 
belongs to a species complex that includes S. squamata, 
S. chilensis and S. goodbodyi (Rocha et al., 2009). These 
species differ among each other in small morphological 
details, such as the shape of the notopodial lamellae and 
their fusion with gills (Rocha et al., 2009). Few studies 
have focused on the biology and ecology of these species 
(Hernandez et al., 2008; MacCord and Amaral, 2005, 
2007), but our results might indicate that species that are 
so closely related can show different behaviours in the 
sediment. However, further testing is necessary to resolve 
the question of whether the divergent results between this 
experiment and the previous experiment with North Sea 
fauna (Maria et al., 2011) might be related to differences 
in the nematode community composition or to differences 
in the behaviour of, perhaps, different members of the 
S. squamata-group in the colonisation process.
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Appendix

Appendix 1. Mean total density of the nematode species per 10 cm2 within each treatment at each specific sampling time. 

Species
Day-7 Day-14 Day-21

FC AQ IC AT ST AQ IC AT ST AQ IC AT ST
Ascolaimus sp. 0 0 0 0 0 0 13 0 0 0 0 0 0
Bolbolaimus sp. 0 0 0 0 0 0 5 0 0 0 0 0 0
Cobbia sp. 0 24 0 5 0 13 11 0 9 6 20 0 6
Daptonema sp.A 440 431 252 123 166 253 346 637 236 316 334 494 271
Daptonema sp.B 86 79 65 2 0 32 32 0 0 46 47 13 3
Daptonema sp.C 6 0 0 4 0 0 5 58 0 0 0 13 0
Dichromadora sp. 3 0 0 0 0 0 0 0 0 0 0 0 0
Marylynnia sp. 222 77 17 14 10 17 46 0 2 8 3 0 0
Neochromadora sp. 50 70 187 53 198 85 101 465 176 93 92 304 187
Nudora besnardi 243 250 199 156 409 286 471 389 314 392 197 89 149
Odontophora sp. 11 8 6 0 0 0 11 0 0 3 2 0 0
Paracyatholaimus sp. 3 0 0 0 0 7 0 0 23 3 39 0 5
Pseudosteineria sp. 0 3 8 8 2 0 13 0 0 0 0 6 6
Pselionema sp. 6 6 0 0 0 0 0 0 0 0 6 0 0
Sabatieria sp. 35 19 31 0 0 6 51 14 0 27 20 6 12
Scaptrella sp. 0 6 0 0 0 0 0 0 0 0 0 0 0
Thalassironus sp. 8 0 0 0 0 0 0 0 4 0 0 0 3
Theristus sp.A 141 179 158 108 192 225 308 552 571 143 105 434 372
Theristus sp.B 19 0 0 0 0 5 0 0 0 0 0 0 0
Theristus sp.C 31 329 149 127 148 151 193 310 219 94 103 147 106
Theristus sp.D 0 0 0 0 0 3 0 0 0 0 0 0 0
Non-identified genera 3 0 5 0 0 0 0 0 0 0 0 0 0
AQ: aquarium control, IC: indigenous control, AT: azoic treatment, ST: Scolelepis treatment.


