Percentage of importance indice-production unknown: loss and solution sources identification on system

Percentagem de índice de importância-produção desconhecida: identificação de fontes de perda e de solução no sistema

G. L. Demolin-Leite About the author

Abstract

Indices are used to help on decision-making. This study aims to develop and test an index, which can determine the loss (e.g., herbivorous insects) and solution (e.g., natural enemies) sources. They will be classified according to their importance regarding the ability to damage or to reduce the source of damage to the system when the final production is unknown. Acacia auriculiformis (Fabales: Fabaceae), a non-native pioneer species in Brazil with fast growth and rusticity, is used in restoration programs, and it is adequate to evaluate a new index. The formula was: Percentage of the Importance Indice-Production Unknown (% I.I.-PU) = [(ks1 x c1 x ds1)/Σ (ks1 x c1 x ds1) + (ks2 x c2 x ds2) + (ksn x cn x dsn)] x 100. The loss sources Aethalion reticulatum L., 1767 (Hemiptera: Aethalionidae), Aleyrodidae (Hemiptera), Stereoma anchoralis Lacordaire, 1848 (Coleoptera: Chrysomelidae), and Tettigoniidae, and solution sources Uspachus sp. (Araneae: Salticidae), Salticidae (Araneae), and Pseudomyrmex termitarius (Smith, 1877) (Hymenoptera: Formicidae) showed the highest % I.I.-PU on leaves of A. auriculiformis saplings. The number of Diabrotica speciosa Germar, 1824 (Coleoptera: Chrysomelidae) was reduced per number of Salticidae; that of A. reticulatum that of Uspachus sp.; and that of Cephalocoema sp. (Orthoptera: Proscopiidae) that of P. termitarius on A. auriculiformis saplings. However, the number of Aleyrodidae was increased per number of Cephalotes sp. (Hymenoptera: Formicidae) and that of A. reticulatum that of Brachymyrmex sp. (Hymenoptera: Formicidae) on A. auriculiformis saplings. The A. reticulatum damage was reduced per number of Uspachus sp., but the Aleyrodidae damage was increased per number of Cephalotes sp., totaling 23.81% of increase by insect damages on A. auriculiformis saplings. Here I show and test the % I.I.-PU. It is an new index that can detect the loss or solution sources on a system when production is unknown. It can be applied in some knowledge areas.

Keywords:
abundance; aggregation; agriculture; chi-squared test; constancy; forestry production; frequency; natural system

Resumo

Índices são usados para ajudar na tomada de decisões. Este trabalho teve como objetivo desenvolver e testar um índice capaz de determinar fontes de perda (ex.: insetos herbívoros) e de solução (ex.: inimigos naturais). Eles serão classificados de acordo com sua importância quanto a habilidade de danificar ou reduzir danos no sistema, quando a produção final é desconhecida. Acacia auriculiformis (Fabales: Fabaceae), uma espécie pioneira não nativa do Brasil com rápido crescimento e rusticidade, usada em programas de restauração, é adequada para avaliar um novo índice. A fórmula foi: Porcentagem de Índice de Importância-Produção Desconhecida (% I.I.-PD) = [(ks1 x c1 x ds1)/Σ (ks1 x c1 x ds1) + (ks2 x c2 x ds2) + (ksn x cn x dsn)] x 100. As fontes de perda Aethalion reticulatum L., 1767 (Hemiptera: Aethalionidae), Aleyrodidae (Hemiptera), Stereoma anchoralis Lacordaire, 1848 (Coleoptera: Chrysomelidae) e Tettigoniidae, e as fontes de solução Uspachus sp. (Araneae: Salticidae), Salticidae (Araneae) e Pseudomyrmex termitarius (Smith, 1877) (Hymenoptera: Formicidae) apresentaram maiores % I.I.-PD nas folhas das mudas de A. auriculiformis. O número de Diabrotica speciosa Germar, 1824 (Coleoptera: Chrysomelidae) foi reduzido pelo número de Salticidae; o de A. reticulatum pelo de Uspachus sp.; e o de Cephalocoema sp. (Orthoptera: Proscopiidae) pelo de P. termitarius em mudas de A. auriculiformis. Entretanto, o número de Aleyrodidae foi aumentado pelo número de Cephalotes sp. (Hymenoptera: Formicidae) e o de A. reticulatum pelo de Brachymyrmex sp. (Hymenoptera: Formicidae) em mudas de A. auriculiformis. O dano de A. reticulatum foi reduzido pelo número de Uspachus sp., mas o dano de Aleyrodidae foi aumentado pelo número de Cephalotes sp., totalizando 23,81% de aumento de danos em mudas de A. auriculiformis. Aqui eu apresento e testo o % I.I.-PD. Ele é um novo índice capaz de detectar fontes de perda e de solução no sistema quando não se conhece a produção final. Ele pode ser aplicado em algumas áreas do conhecimento.

Palavras-chave:
abundância; agregação; agricultura; constância; frequência; produção florestal; sistema natural; teste do chi-quadrado

1. Introduction

Indices are used to help on decision-making, and, whenever possible, determining key factor. They might be crucial in various areas, such as agrarian (Peterson, et al. 2009PETERSON, R.K., DAVIS, R.S., HIGLEY, L.G. and FERNANDES, O.A., 2009. Mortality risk in insects. Environmental Entomology, vol. 38, no. 1, pp. 2-10. http://dx.doi.org/10.1603/022.038.0102. PMid:19791592.
http://dx.doi.org/10.1603/022.038.0102...
; Da Silva et al., 2017DA SILVA, E.M., DA SILVA, R.S., RODRIGUES-SILVA, N., MILAGRES, C.C., BACCI, L. and PICANÇO, M.C., 2017. Assessment of the natural control of Neoleucinodes elegantalis in tomato cultivation using ecological life tables. Biocontrol Science and Technology, vol. 27, no. 4, pp. 1-14. http://dx.doi.org/10.1080/09583157.2017.1319911.
http://dx.doi.org/10.1080/09583157.2017....
; Demolin-Leite, 2021DEMOLIN-LEITE, G.L., 2021. Importance indice: loss estimates and solution effectiveness on production. Cuban Journal of Agricultural Science, vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf.
http://scielo.sld.cu/pdf/cjas/v55n2/2079...
), educational (Davis and Wigelsworth, 2018DAVIS, S.K. and WIGELSWORTH, M., 2018. Structural and predictive properties of the emotional quotient inventory youth version–short form (EQ-i:YV[S]). Journal of Personality Assessment, vol. 100, no. 2, pp. 197-206. http://dx.doi.org/10.1080/00223891.2017.1280502. PMid:28631978.
http://dx.doi.org/10.1080/00223891.2017....
), industrial (Lin et al., 2007LIN, S.J., LU, I.J. and LEWIS, C., 2007. Grey relation performance correlations among economics, energy use and carbon dioxide emission in Taiwan. Energy Policy, vol. 35, no. 3, pp. 1948-1955. http://dx.doi.org/10.1016/j.enpol.2006.06.012.
http://dx.doi.org/10.1016/j.enpol.2006.0...
), medical (Liu et al., 2017LIU, Y., CHEN, Y. and TZENG, G.H., 2017. Identification of key factors in consumers’ adoption behavior of inteligente medical terminals based on a hybrid modified MADM model for product improvement. International Journal of Medical Informatics, vol. 105, pp. 68-82. http://dx.doi.org/10.1016/j.ijmedinf.2017.05.017. PMid:28750913.
http://dx.doi.org/10.1016/j.ijmedinf.201...
; Goldenberg and Grantcharov, 2019GOLDENBERG, M.G. and GRANTCHAROV, T.P., 2019. A novel method of setting performance standards in surgery using patient outcomes. Annals of Surgery, vol. 269, no. 1, pp. 79-82. http://dx.doi.org/10.1097/SLA.0000000000002562. PMid:29064892.
http://dx.doi.org/10.1097/SLA.0000000000...
), among others. These indices, in general, use abundance, constancy, and/or frequency and other factors, related to the events. Those can be analyzed by correlation, factor analysis, frequency distribution, matrices, mean or t-test, multiple or simple regression analysis, etc. (Lin et al., 2007LIN, S.J., LU, I.J. and LEWIS, C., 2007. Grey relation performance correlations among economics, energy use and carbon dioxide emission in Taiwan. Energy Policy, vol. 35, no. 3, pp. 1948-1955. http://dx.doi.org/10.1016/j.enpol.2006.06.012.
http://dx.doi.org/10.1016/j.enpol.2006.0...
; Da Silva et al., 2017DA SILVA, E.M., DA SILVA, R.S., RODRIGUES-SILVA, N., MILAGRES, C.C., BACCI, L. and PICANÇO, M.C., 2017. Assessment of the natural control of Neoleucinodes elegantalis in tomato cultivation using ecological life tables. Biocontrol Science and Technology, vol. 27, no. 4, pp. 1-14. http://dx.doi.org/10.1080/09583157.2017.1319911.
http://dx.doi.org/10.1080/09583157.2017....
; Liu et al., 2017LIU, Y., CHEN, Y. and TZENG, G.H., 2017. Identification of key factors in consumers’ adoption behavior of inteligente medical terminals based on a hybrid modified MADM model for product improvement. International Journal of Medical Informatics, vol. 105, pp. 68-82. http://dx.doi.org/10.1016/j.ijmedinf.2017.05.017. PMid:28750913.
http://dx.doi.org/10.1016/j.ijmedinf.201...
; Goldenberg and Grantcharov, 2019GOLDENBERG, M.G. and GRANTCHAROV, T.P., 2019. A novel method of setting performance standards in surgery using patient outcomes. Annals of Surgery, vol. 269, no. 1, pp. 79-82. http://dx.doi.org/10.1097/SLA.0000000000002562. PMid:29064892.
http://dx.doi.org/10.1097/SLA.0000000000...
; Demolin-Leite, 2021DEMOLIN-LEITE, G.L., 2021. Importance indice: loss estimates and solution effectiveness on production. Cuban Journal of Agricultural Science, vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf.
http://scielo.sld.cu/pdf/cjas/v55n2/2079...
). Sometimes, indices are complex and laborious to be obtained. The Importance Indice (I.I.) can determine the loss and solution sources on a system in some knowledge areas (e.g., agronomy), since production is known (Demolin-Leite, 2021DEMOLIN-LEITE, G.L., 2021. Importance indice: loss estimates and solution effectiveness on production. Cuban Journal of Agricultural Science, vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf.
http://scielo.sld.cu/pdf/cjas/v55n2/2079...
). Events (eg., agricultural pest) can have different magnitudes (numerical measurements), frequencies, and distributions (aggregate, random, or regular) of event occurrence, and I.I. bases in this triplet (Demolin-Leite, 2021DEMOLIN-LEITE, G.L., 2021. Importance indice: loss estimates and solution effectiveness on production. Cuban Journal of Agricultural Science, vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf.
http://scielo.sld.cu/pdf/cjas/v55n2/2079...
). In general, the higher magnitude and frequency, with aggregated distribution, the greater will be the problem or the solution (eg., natural enemies versus pests) on the system (Demolin-Leite, 2021DEMOLIN-LEITE, G.L., 2021. Importance indice: loss estimates and solution effectiveness on production. Cuban Journal of Agricultural Science, vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf.
http://scielo.sld.cu/pdf/cjas/v55n2/2079...
). However, the final production of the system is not always known or is challenging to measure (e.g., degraded area recovery).

The earleaf acacia, Acacia auriculiformis A. Cunn. ex Benth. (Fabales: Fabaceae), is native from Australia, Papua New Guinea, and Indonesia (Doran and Turnbull, 1997DORAN, J.C. and TURNBULL, J.W., 1997. Australian trees and shrubs: species for land rehabilitation and farm planting in the tropics. Bruce, Australian: ACIAR, pp. 384.). Its leaves are dense, bipinnate with petioles and size from 8 to 22.5 cm and 10 to 52 mm with three longitudinal and many secondary ribs (Doran and Turnbull, 1997DORAN, J.C. and TURNBULL, J.W., 1997. Australian trees and shrubs: species for land rehabilitation and farm planting in the tropics. Bruce, Australian: ACIAR, pp. 384.). This plant is a priority species for the International Union of Forestry Research Organisations (IUFRO) for research and development in tropical areas (Wickneswari and Norwati, 1993WICKNESWARI, R. and NORWATI, M., 1993. Genetic diversity of natural-populations of Acacia auriculiformis. Australian Journal of Botany, vol. 41, no. 1, pp. 65-77. https://doi.org/10.1071/BT9930065.
https://doi.org/10.1071/BT9930065...
). Its wood is of high quality for particleboard, pulpwood, tannin, and timber (Firmansyah et al., 2020FIRMANSYAH, M.A., ERFIANI, E., JAYANEGARA, A., ACHMAD, A. and WIJAYANTO, N., 2020. In vitro biological control of Ceratobasidium ramicola by using tannin extracts from Acacia villosa, Myristica fragrans, Acacia mangium, and Calliandra calothyrsus leaves. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 80, no. 2, pp. 235-239. http://dx.doi.org/10.1590/1519-6984.184912. PMid:31482970.
http://dx.doi.org/10.1590/1519-6984.1849...
). Acacia spp. (Fabales: Fabaceae) are used to recover degraded areas (Balieiro et al., 2017BALIEIRO, F.C., COSTA, C.A., OLIVEIRA, R.B., DONAGEMMA, G.K., ANDRADE, A.G. and CAPECHE, C.L., 2017. Carbon stocks in mined area reclaimed by leguminous trees and sludge. Revista Árvore, vol. 41, e410610. https://doi.org/10.1590/1806-90882017000600010.
https://doi.org/10.1590/1806-90882017000...
), although the introduction of non-native plants may impact natural ecosystems. The abiotic characteristics of the area and the life history facilitate the establishment and dispersal of mangium tree, Acacia mangium Willd. (Fabales: Fabaceae), in the Amazonian savannas (Aguiar Junior et al., 2014). On the other hand, the local biotic resistance may reduce the dispersal of introduced Acacia spp. as an invasive species (Londe et al., 2020LONDE, V., SOUSA, H.C. and MESSIAS, M.C.T.B., 2020. Monitoring of forest components reveals that exotic tree species are not always invasive in areas under ecological restoration. Environmental Monitoring and Assessment, vol. 192, no. 10, pp. 618-628. http://dx.doi.org/10.1007/s10661-020-08583-w. PMid:32880735.
http://dx.doi.org/10.1007/s10661-020-085...
). The durability of the A. auriculiformis wood is long-term, and the susceptibility to diseases and adaptability to poor soils by this plant is high (Wong et al., 2011WONG, M.M., CANNON, C.H. and WICKNESWARI, R., 2011. Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing. BMC Genomics, vol. 12, pp. 342. http://dx.doi.org/10.1186/1471-2164-12-342. PMid:21729267.
http://dx.doi.org/10.1186/1471-2164-12-3...
; Rahman et al., 2017RAHMAN, M.M., RAHMAN, M.A., MIAH, M.G., SAHA, S.R., KARIM, M.A. and MOSTOFA, M.G., 2017. Mechanistic insight into salt tolerance of Acacia auriculiformis: the importance of ion selectivity, osmoprotection, tissue tolerance, and Na+ exclusion. Frontiers in Plant Science, vol. 8, pp. 155. http://dx.doi.org/10.3389/fpls.2017.00155. PMid:28421081.
http://dx.doi.org/10.3389/fpls.2017.0015...
). Acacia auriculiformis can increase moisture retention, deposition of potassium and organic carbon in the soil (litter). It can also make the phytoextraction of heavy metals from the soil (through mycorrhizal associations) (Rana and Maiti, 2018RANA, V. and MAITI, S.K., 2018. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). Environmental Science and Pollution Research International, vol. 25, no. 10, pp. 9745-9758. http://dx.doi.org/10.1007/s11356-018-1254-5. PMid:29368202.
http://dx.doi.org/10.1007/s11356-018-125...
) and biological fixation of atmospheric nitrogen via bacteria in its roots. Arthropods on this and other Acacia spp. (Rodríguez et al., 2020RODRÍGUEZ, J., CORDERO-RIVERA, A. and GONZÁLEZ, L., 2020. Characterizing arthropod communities and trophic diversity in areas invaded by Australian acacias. Arthropod-Plant Interactions, vol. 14, no. 4, pp. 531-545. http://dx.doi.org/10.1007/s11829-020-09758-5.
http://dx.doi.org/10.1007/s11829-020-097...
) have been studied, but their importance is unknown.

The objective of this study was to develop and test an index, which can determine the loss (e.g., herbivores insects) and solution sources (e.g., natural enemies), classifying them according to their importance regarding the ability to damage or reduce the source of damage on 48 A. auriculiformis saplings - system with production unknown.

2. Material and methods

2.1. Experimental site

This study was carried out in a degraded area (≈ 1 ha) of the “Instituto de Ciências Agrárias da Universidade Federal de Minas Gerais (ICA/UFMG)” in the municipality of Montes Claros, Minas Gerais state, Brazil (latitude 16º 51' 38” S, longitude 44º 55' 00” W, altitude 943 m) for 24 months (April 2015 to March 2017). According to the Köppen climate classification, the climate of this area is tropical dry, with annual precipitation and temperature between 1,000 and 1,300 mm and ≥ 24ºC, respectively (Alvares et al., 2013ALVARES, C.A., STAPE, J.L., SENTELHAS, P.C., DE MORAES GONÇALVES, J.L. and SPAROVEK, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift (Berlin), vol. 22, no. 6, pp. 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507.
http://dx.doi.org/10.1127/0941-2948/2013...
). The soil is Neosol Litolic with an Alic horizon (Silva et al., 2020SILVA, J.L., DEMOLIN LEITE, G.L., DE SOUZA TAVARES, W., SOUZA SILVA, F.W., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C.. 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
).

2.2. Experimental design

The A. auriculiformis seedlings were prepared, in March 2014, in a nursery in plastic bags (16 x 24 cm) with reactive natural phosphate mixed with the substrate at a dosage of 160g and planted, at the same time, in the final site in September of this year. Each A. auriculiformis seedling was planted in a hole (40 x 40 x 40 cm) when they were 30 cm high with a 2-meter spacing between them. The soil was corrected with dolomitic limestone with the base saturation increased to 50%, natural phosphate, gypsum, FTE (Fried Trace Elements), potassium chloride, and micronutrients based on the soil analysis. A total of 20 L of dehydrated sewage sludge with its biochemical characteristics defined (Silva et al., 2020SILVA, J.L., DEMOLIN LEITE, G.L., DE SOUZA TAVARES, W., SOUZA SILVA, F.W., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C.. 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
) was placed in a single dose, per hole. The young 48 A. auriculiformis saplings (young trees in the vegetative period) were irrigated twice a week until the beginning of the rainy season (October).

2.3. Counting the arthropods

Defoliation - leaf area loss on a 0–100% scale with 5% increments for removed leaf area (Silva et al., 2020SILVA, J.L., DEMOLIN LEITE, G.L., DE SOUZA TAVARES, W., SOUZA SILVA, F.W., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C.. 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
) - and boring of branches by insects, and score damage by sap-sucking insects: I = non-damage; II = appearance of yellow chlorotic spots (leaf with 1% to 25% of attack symptoms); III = some yellow chlorotic spots and/or starting of black sooty mold (leaf with 26% to 50% of attack symptoms); IV = several yellow chlorotic spots and/or severe blackening of leaves (leaf with 51% to 75% of attack symptoms); and V = yellowing or complete drying leaves (leaf with 76% to 100% of attack symptoms) - were assessed visually, and all insects (e.g., Formicidae - eusocial insects) and spiders were counted, between 7:00 A.M. and 11:00 A.M., by visual observation, every two weeks on the adaxial and abaxial surfaces of the first 12 leaves expanded, per sapling. These leaves were assessed, randomly, on branches (one leaf per position) in the basal, middle, and apical parts of the canopy – vertical axis - (0 to 33%, 34 to 66%, and 67 to 100% of total sapling height, respectively) and in the north, south, east, and west directions - horizontal axis. A total of 12 leaves/sapling/evaluation were observed on 48 A. auriculiformis saplings starting six months after transplantation for 24 months (27,648 total leaves), covering the entire sapling (vertical and horizontal axis), capturing the highest possible number of arthropods (insects and spiders), especially the rarest ones. The evaluator approached, carefully, firstly assessing the adaxial leaf surface and, if it was not possible to visualize the abaxial one, with a delicate and slow movement, the leaf was lifted and visualized. The position of leaves of A. auriculiformis saplings is generally tilted upwards, facilitating the visual assessment of arthropods on their leaf surfaces. Insects with greater mobility (e.g., Orthoptera), that flew, on approach, were counted as they were recognized (e.g., Order). The arthropods (insects and spiders) were not removed from the saplings during the evaluation.

A few arthropod specimens (up to 3 individuals) per species were collected with an aspirator (two hours per week), at the beginning of the study (between transplantation and first evaluation, six months after), stored in flasks with 70% alcohol, separated into morph species, and sent to specialists for identification (see acknowledgments). Any visible arthropod, not yet computed in previous evaluations, was collected, coded and sent to a taxonomist of its group.

2.4. Statistical analysis

Each replication is the total of individuals collected on 12 leaves (three heights and four sides of the sapling) for 24 months. The type of distribution (aggregated, random, or regular) of lost source (L.S.) or solution source (S.S.) was defined by the Chi-square test using the BioDiversity Professional program, version 2 (Krebs, 1989KREBS, C.J., 1989 [accessed 2 May 2018]. Bray-Curtis cluster analysis [online]. Available from: http://biodiversity-pro.software.informer.com
http://biodiversity-pro.software.informe...
) (Tables 1 and 2). The data were subjected to simple regression analysis and their parameters were all significant (P< 0.05) using the statistical program System for Analysis Statistics and Genetics (Saeg, 2007SISTEMA PARA ANÁLISES ESTATÍSTICAS E GENÉTICAS – SAEG, 2007 [accessed 30 June 2018]. Version 9.1 [online]. Available from: http://arquivo.ufv.br/saeg/
http://arquivo.ufv.br/saeg/...
), version 9.1 (Table 3). Simple equations were selected by observing the criteria: i) distribution of data in the figures (linear or quadratic response), ii) the parameters used in these regressions were the most significant ones (P<0.05), iii) P< 0.05 and F of the Analysis of Variance of these regressions, and iv) the coefficient of determination of these equations (R2). Only L.S. and S.S. with P< 0.05 were shown in tables 1-3. It is necessary knowledge of the system to select the possible loss sources and solution sources.

Table 1
Aggregated (Agg.), regular (Reg.), or random (Ran.) distribution (Dist.) of the loss sources on 48 Acacia auriculiformis (Fabaceae) saplings.
Table 2
Aggregated (Agg.), regular (Reg.), or random (Ran.) distribution (Dist.) of the solution sources on 48 Acacia auriculiformis (Fabaceae) saplings.
Table 3
Simple regression equations of damage per loss source (L.S.) and reduction or increase of L.S. (abundance or damage) per solution source (S.S.) on 48 Acacia auriculiformis (Fabaceae) saplings.

Percentage of Importance Indice-Production Unknown (% I.I.-PU) was named because three other indexes, two with lower and one with higher knowledge of the system (Demolin-Leite, 2021DEMOLIN-LEITE, G.L., 2021. Importance indice: loss estimates and solution effectiveness on production. Cuban Journal of Agricultural Science, vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf.
http://scielo.sld.cu/pdf/cjas/v55n2/2079...
), were created, but are not presented on this paper.

The developed formula is Equation 1:

% I . I . P U = k s 1 x c 1 x d s 1 / Σ k s 1 x c 1 x d s 1 + k s 2 x c 2 x d s 2 + k s n x c n x d s n x 100, (1)

where,

  1. i

    key source (ks) is Equation 2:

    ks= damage nonpercentage Da./total n of the L.S. on the samples orks= reduction of the total n. of L.S.R.L.S/total n of the S. S. on the samples(2)

Where,

Da. or R.L.S. = R2 x (1 - P), when it is of the first degree, or ((R2 x (1 - P))x(β21), when it is of the second degree, where R2 = determination coefficient and P = significance of ANOVA, β1 = regression coefficient, and β2 = regression coefficient (variable2), of the simple regression equation of the loss source (L.S.) or solution source (S.S.).

When it is not possible to separate the Da. between two or more L.S., divide the Da. among the L.S. in proportion to their respective “total n”. Da. = 0 when Da. non-significant for damage or non-detected by L.S. on the system.

When a S.S. operates in more than one L.S., that caused damage, its ks are summed. R.L.S. = 0 when Da. by L.S. or R.L.S. non-significant for damage by L.S. or reduced L.S. by S.S. on the system.

  1. ii

    c (constancy) = Σ of occurrence of L.S. or S.S. on samples,

where,

absence = 0 or presence = 1.

  1. iii

    ds (distribution source) = 1 - P of the chi-square test of L.S. or S.S. on the samples.

The Percentage of R.L.S. per S.S. is Equation 3:

P e r c e n t a g e o f R . L . S . p e r S . S . % R . L . S . S . S . = R . L . S . S . S . / t o t a l n o f t h e L . S . a b u n d a n c e o r d a m a g e x 100 (3)

where,

R.L.S.S.S. = R.L.S. x total n of the S.S.,

In this case, the R.L.S. are not summed.

3. Results

The loss sources, per individual, Aethalion reticulatum L., 1767 (Hemiptera: Aethalionidae) (38.86%), Aleyrodidae (Hemiptera) (37.69%), Stereoma anchoralis Lacordaire, 1848 (Coleoptera: Chrysomelidae) (13.90%), and Tettigoniidae (5.54%), among 35 herbivorous insects (≈ 0.10%), showed the highest % I.I.-PU on leaves of A. auriculiformis saplings (Table 4).

Table 4
Total number (n), damage (Da.), key-source (ks), constancy (c), distribution source (ds), number of importance indice (n. I.I.), sum of n. I.I.-PUn. I.I.), and percentage of I.I. by loss source (L.S.) on 48 Acacia auriculiformis (Fabaceae) saplings.

The solution sources, per individual, Uspachus sp. (Araneae: Salticidae) (96.72%), Salticidae (Araneae) (2.83%), and Pseudomyrmex termitarius (Smith, 1877) (Hymenoptera: Formicidae) (0.45%), among 24 natural enemies (= 0.00%), revealed the highest % I.I.-PU on leaves of A. auriculiformis saplings. The number of Diabrotica speciosa Germar, 1824 (Coleoptera: Chrysomelidae) was reduced per number of Salticidae (13.85%); that of A. reticulatum that of Uspachus sp. (1.01%); and that of Cephalocoema sp. (Orthoptera: Proscopiidae) that of P. termitarius (23.54%), totaling 38.40% of reduction of these herbivorous insects (numbers) on A. auriculiformis saplings. However, the number of Aleyrodidae was increased per number of Cephalotes sp. (Hymenoptera: Formicidae) (2.10%) and that of A. reticulatum that of Brachymyrmex sp. (Hymenoptera: Formicidae) (93.01%), totaling 95.11% of increase of these sap-sucking insects on A. auriculiformis saplings. The final balance was negative, with an increase of herbivorous insects of 56.71% in these saplings. The A. reticulatum damage, per individual, was reduced per number of Uspachus sp. (6.17%); but the Aleyrodidae damage, per individual, was increased per number of Cephalotes sp. (30.00%), totaling 23.81% of increase by insect damages on A. auriculiformis saplings (Tables 5 and 6).

Table 5
Total number (n), reduction of L.S. (R.L.S.), key-source (ks), constancy (c), distribution source (ds), number of importance indice (n. I.I.), sum of n. I.I.-PUn. I.I.), and percentage of I.I. by solution source (S.S.) on 48 Acacia auriculiformis (Fabaceae) saplings.
Table 6
Percentage of reduction in abundance and/or damage (%R.) of loss source (L.S.) per solution source (S.S.), sum (Σ), and total of Σ of R.L.S. (T.Σ) on 48 Acacia auriculiformis (Fabaceae) saplings.

4. Discussion

The Percentage of Importance Indice-Production Unknown (% I.I.-PU) was effective in identifying loss (e.g., Tettigoniidae) and solution (e.g., Salticidae) sources and of the S.S. important on damage reduction by L.S. (e.g., Uspachus sp. versus A. reticulatum) on a system with production unknown (e.g., A. auriculiformis saplings).

The loss sources A. reticulatum, Aleyrodidae, S. anchoralis, and Tettigoniidae presented the highest % I.I.-PU on leaves of A. auriculiformis saplings. These herbivorous insects are related as a pest in some crops. The A. reticulatum is a pest that reduces the development of fruits and sprouts, leading to hypertrophy and cracks in the apex of seedlings and possibly killing plants of “mulungu” Erythrina speciosa Andrews (Fabales: Fabaceae) (Araújo et al., 2010ARAÚJO, V.A., BÁO, S.N., MOREIRA, J., NEVES, C.A. and LINO-NETO, J., 2010. Ultrastructural characterization of the spermatozoa of Aethalion reticulatum Linnaeus 1767 (Hemiptera: Auchenorrhyncha: Aethalionidae). Micron (Oxford, England : 1993), vol. 41, no. 4, pp. 306-311. http://dx.doi.org/10.1016/j.micron.2009.12.001. PMid:20047835.
http://dx.doi.org/10.1016/j.micron.2009....
; Zanuncio et al., 2015ZANUNCIO, A.J.V., SERRÃO, J.E., PEREIRA, A.I.A., SOARES, M.A., WILCKEN, C.F., LEITE, G.L.D. and ZANUNCIO, J.C., 2015. Aethalion reticulatum (Hemiptera: Aethalionidae) feeding on Erythrina speciosa (Fabales: Fabaceae): first record of its host plant and damage characteristics. The Florida Entomologist, vol. 98, no. 1, pp. 175-177. http://dx.doi.org/10.1653/024.098.0130.
http://dx.doi.org/10.1653/024.098.0130...
). In addition, this sap-sucking insect damages A. mangium, ant tree Triplaris americana L. (Caryophyllales: Polygonaceae), and bitterleaf Vernonia condensata Baker (Asterales: Asteraceae) (De Menezes et al., 2013DE MENEZES, C.W.G., BERTOLUCCI, S.K.V., PINTO, J.E.B.P., CARVALHO, G.A. and SOARES, M.A., 2013. First record of Aethalion reticulatum (Hemiptera: Aethalionidae) in Vernonia condensata (Asteraceae), a medicinal plant from Brazil. Phytoparasitica, vol. 41, no. 5, pp. 611-613. http://dx.doi.org/10.1007/s12600-013-0322-0.
http://dx.doi.org/10.1007/s12600-013-032...
; Pires et al., 2015PIRES, E.M., SILVA, L.C., BATTIROLA, L.D., NOGUEIRA, R.M., BARRETO, M.R. and CORASSA, J. N., 2015. Triplaris americana L. (Polygonaceae), a new host plant for Aethalion reticulatum (Linnaeus, 1767) (Hemiptera: Aethalionidae). Brazilian Archives of Biology and Technology, vol. 58, no. 1, pp. 31-33. https://doi.org/10.1590/S1516-8913201400039.
https://doi.org/10.1590/S1516-8913201400...
; Silva et al., 2020SILVA, J.L., DEMOLIN LEITE, G.L., DE SOUZA TAVARES, W., SOUZA SILVA, F.W., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C.. 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
; Gomes et al., 2023GOMES, G.N., LEITE, G.L.D., SOARES, M.A., GUANÃBENS, R.E.M., LEMES, P.G. and ZANUNCIO, J.C., 2023. Arthropod fauna on the abaxial and adaxial surfaces of Acacia mangium (Fabaceae) leaves. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, pp. e245536. http://dx.doi.org/10.1590/1519-6984.245536. PMid:34669792.
http://dx.doi.org/10.1590/1519-6984.2455...
; Lima et al., 2024LIMA, J.S., LEITE, G.L.D., GUANABENS, P.F.S., SOARES, M.A., SILVA, J.L., MOTA, M.V.S., LEMES, P.G. and ZANUNCIO, J.C., 2024. Insects and spiders on Acacia mangium (Fabaceae) saplings as bioindicators for the recovery of tropical degraded areas. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, pp. e252088. PMid:34755814.). Aleyrodidae family has Bemisia tabaci (Genn., 1889), as a pest of several plants, including sweet pepper Capsicum annuum L. (Solanales: Solanaceae), melon Cucumis melo L. (Cucurbitales: Cucurbitaceae), soybean Glycine max (L.) Merrill (Fabales: Fabaceae) and common bean Phaseolus vulgaris L. (Fabales: Fabaceae), and tomato Solanum lycopersicon Mill. (Solanales: Solanaceae) by sucking sap, injecting toxins, transmitting viruses, and favors the development of fumagine (Zhang et al., 2004ZHANG, W., MCAUSLANE, H.J. and SCHUSTER, D.J., 2004. Repellency of ginger oil to Bemisia argentifolii (Homoptera: Aleyrodidae) on tomato. Journal of Economic Entomology, vol. 97, no. 4, pp. 1310-1318. http://dx.doi.org/10.1093/jee/97.4.1310. PMid:15384342.
http://dx.doi.org/10.1093/jee/97.4.1310...
; Mansaray and Sundufu, 2009MANSARAY, A. and SUNDUFU, A.J., 2009. Oviposition, development and survivorship of the sweetpotato whitefly Bemisia tabaci on soybean, Glycine max, and the garden bean, Phaseolus vulgaris. Journal of Insect Science, vol. 9, pp. 1. http://dx.doi.org/10.1673/031.009.0101. PMid:19611218.
http://dx.doi.org/10.1673/031.009.0101...
; Kim et al., 2017KIM, S., JUNG, M., SONG, Y.J., KANG, C., KIM, B.Y., CHOI, I.J., KIM, H.G. and LEE, D.H., 2017. Evaluating the potential of the extract of Perilla sp. as a natural insecticide for Bemisia tabaci (Hemiptera: Aleyrodidae) on sweet peppers. Entomological Research, vol. 47, no. 3, pp. 208-216. http://dx.doi.org/10.1111/1748-5967.12211.
http://dx.doi.org/10.1111/1748-5967.1221...
; Felicio et al., 2019FELICIO, T.N.P., COSTA, T.L., SARMENTO, R.A., RAMOS, R.S., PEREIRA, P.S., DA SILVA, R.S. and PICANÇO, M.C., 2019. Surrounding vegetation, climatic elements, and predators affect the spatial dynamics of Bemisia tabaci (Hemiptera: Aleyrodidae) in commercial melon fields. Journal of Economic Entomology, vol. 112, no. 6, pp. 2774-2781. http://dx.doi.org/10.1093/jee/toz181. PMid:31265728.
http://dx.doi.org/10.1093/jee/toz181...
). The species S. anchoralis damages A. mangium and leucaena Leucaena leucocephala (Lam.) de Wit (Fabales: Fabaceae) trees (Damascena et al., 2017DAMASCENA, J.G., LEITE, G.L.D., SILVA, F.W.S., SOARES, M.A., GUAÑABENS, R.E.M., SAMPAIO, R.A. and ZANUNCIO, J.C., 2017. Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabales: Fabaceae) trees in the Cerrado. Florida Entomologist, vol. 100, no. 3, pp. 558-565. https://doi.org/10.1653/024.100.0311.
https://doi.org/10.1653/024.100.0311...
; Silva et al., 2020SILVA, J.L., DEMOLIN LEITE, G.L., DE SOUZA TAVARES, W., SOUZA SILVA, F.W., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C.. 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
), and Meroncidius intermedius (Brunner von Wattenwyl, 1895) (Orthoptera: Tettigoniidae) damaged grasses and banana Musa spp. fruits (Zingiberales: Musaceae) (Zanuncio-Junior et al., 2017ZANUNCIO-JUNIOR, J.S., FORNAZIER, M.J., MARTINS, D.S., CHAMORRO-RENGIFO, J., QUEIRÓZ, R.B., LAZZARINI, A.L. and FERREIRA, P.S.F., 2017. Meroncidius intermedius (Orthoptera: Tettigoniidae): a threat to Brazilian banana. The Florida Entomologist, vol. 100, no. 3, pp. 669-671. http://dx.doi.org/10.1653/024.100.0329.
http://dx.doi.org/10.1653/024.100.0329...
).

The solution sources Uspachus sp., Salticidae, and P. termitarius showed the highest % I.I.-PU on leaves of A. auriculiformis saplings. The numbers of D. speciosa, A. reticulatum, and Cephalocoema sp. were reduced per numbers of Salticidae, Uspachus sp. (also reduced damage by this pest, ≈ 6%), and P. termitarius, respectively, on A. auriculiformis saplings. Spiders are important predators, as an example, on A. mangium and pequi tree Caryocar brasiliense Camb. (Malpighiales: Caryocaraceae) trees, in the Brazilian Cerrado (Leite et al., 2012aLEITE, G.L.D., VELOSO, R.V.S., ZANUNCIO, J.C., ALMEIDA, C.I.M., FERREIRA, P.S.F., FERNANDES, G.W. and SOARES, M.A., 2012a. Habitat complexity and Caryocar brasiliense herbivores (Insecta; Arachnida; Araneae). The Florida Entomologist, vol. 95, no. 4, pp. 819-830. http://dx.doi.org/10.1653/024.095.0402.
http://dx.doi.org/10.1653/024.095.0402...
; Silva et al., 2020SILVA, J.L., DEMOLIN LEITE, G.L., DE SOUZA TAVARES, W., SOUZA SILVA, F.W., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C.. 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
); on pastures and forests in Greece, and in A. auriculiformis saplings in a degraded area in Brazil, being directly correlated with Orthoptera (Zografou et al., 2017ZOGRAFOU, K., ADAMIDIS, G.C., KOMNENOV, M., KATI, V., SOTIRAKOPOULOS, P., PITTA, E. and CHATZAKI, M., 2017. Diversity of spiders and orthopterans respond to intra-seasonal and spatial environmental changes. Journal of Insect Conservation, vol. 21, no. 3, pp. 531-543. http://dx.doi.org/10.1007/s10841-017-9993-z.
http://dx.doi.org/10.1007/s10841-017-999...
; Mota et al., 2023MOTA, M.V.S., DEMOLIN-LEITE, G.L., GUANABENS, P.F.S., TEIXEIRA, G.L., SOARES, M.A., SILVA, J.L., SAMPAIO, R.A. and ZANUNCIO, J.C., 2023. Chewing insects, pollinators, and predators on Acacia auriculiformis A. Cunn. ex Beth (Fabales: Fabaceae) plants fertilized with dehydrated sewage sludge. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, pp. e248305. http://dx.doi.org/10.1590/1519-6984.248305. PMid:34669795.
http://dx.doi.org/10.1590/1519-6984.2483...
); in many agroecosystems in the USA (Landis et al., 2000LANDIS, D., WRATTEN, S.D. and GURR, G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, vol. 45, no. 1, pp. 175-201. http://dx.doi.org/10.1146/annurev.ento.45.1.175. PMid:10761575.
http://dx.doi.org/10.1146/annurev.ento.4...
) and Italy (Venturino et al., 2008VENTURINO, E., ISAIA, M., BONA, F., CHATTERJEE, S. and BADINO, G., 2008. Biological controls of intensive agroecosystems: wanderer spiders in the Langa astigiana. Ecological Complexity, vol. 5, no. 2, pp. 157-164. http://dx.doi.org/10.1016/j.ecocom.2007.10.003.
http://dx.doi.org/10.1016/j.ecocom.2007....
); and in 12 agricultural landscapes in the low mountain ranges of Central Hesse (Germany) (Öberg et al., 2008ÖBERG, S., MAYR, S. and DAUBER, J., 2008. Landscape effects on recolonisation patterns of spiders in arable fields. Agriculture, Ecosystems & Environment, vol. 23, no. 1-3, pp. 211-218. http://dx.doi.org/10.1016/j.agee.2007.06.005.
http://dx.doi.org/10.1016/j.agee.2007.06...
). Moreover, ants can reduce defoliation and fruit-boring insect populations (e.g., Coleoptera and Lepidoptera) (Leite et al., 2012aLEITE, G.L.D., VELOSO, R.V.S., ZANUNCIO, J.C., ALMEIDA, C.I.M., FERREIRA, P.S.F., FERNANDES, G.W. and SOARES, M.A., 2012a. Habitat complexity and Caryocar brasiliense herbivores (Insecta; Arachnida; Araneae). The Florida Entomologist, vol. 95, no. 4, pp. 819-830. http://dx.doi.org/10.1653/024.095.0402.
http://dx.doi.org/10.1653/024.095.0402...
; Gonthier et al., 2013GONTHIER, D.J., ENNIS, K.K., PHILPOTT, S.M., VANDERMEER, J. and PERFECTO, I., 2013. Ants defend coffee from berry borer colonization. BioControl, vol. 58, no. 6, pp. 815-820. http://dx.doi.org/10.1007/s10526-013-9541-z.
http://dx.doi.org/10.1007/s10526-013-954...
; Fagundes et al., 2017FAGUNDES, R., DÁTTILO, W., RIBEIRO, S.P., RICO-GRAY, V., JORDANO, P. and DEL-CLARO, K., 2017. Differences among ant species in plant protection are related to production of extrafloral nectar and degree of leaf herbivory. Biological Journal of the Linnean Society. Linnean Society of London, vol. 122, no. 1, pp. 71-83. http://dx.doi.org/10.1093/biolinnean/blx059.
http://dx.doi.org/10.1093/biolinnean/blx...
, Dassou et al. 2019DASSOU, A.G., VODOUHÉ, S.D., BOKONON-GANTA, A., GOERGEN, G., CHAILLEUX, A., DANSI, A., CARVAL, D. and TIXIER, P., 2019. Associated cultivated plants in tomato cropping systems structure arthropod communities and increase the Helicoverpa armigera regulation. Bulletin of Entomological Research, vol. 109, no. 6, pp. 733-740. http://dx.doi.org/10.1017/S0007485319000117. PMid:30968787.
http://dx.doi.org/10.1017/S0007485319000...
) besides, they are bioindicators of the recovery of degraded areas (Sanchez, 2015SANCHEZ, A., 2015. Fidelity and promiscuity in an ant-plant mutualism: a case study of Triplaris and Pseudomyrmex. PLoS One, vol. 10, no. 12, pp. e0143535. http://dx.doi.org/10.1371/journal.pone.0143535. PMid:26630384.
http://dx.doi.org/10.1371/journal.pone.0...
). However, the numbers of Aleyrodidae and A. reticulatum were increased per numbers of Cephalotes sp. (increasing Aleyrodidae damage ≈ 30%) and Brachymyrmex sp., respectively, totaling, ≈95% of increase of these sap-sucking insects on A. auriculiformis saplings. These facts can be a problem in A. auriculiformis commercial crops. Sap-sucking insects, especially at high densities, can be associated with ants (mutual benefit), showing a direct correlation between these groups (Leite et al., 2012bLEITE, G.L.D., VELOSO, R.V.S., ZANUNCIO, J.C., FERNANDES, G.W., ALMEIDA, C.I.M., FERREIRA, P.S.F., ALONSO, J. and SERRÃO, J.E., 2012b. Seasonal abundance of hemipterans on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Cerrado. The Florida Entomologist, vol. 95, no. 4, pp. 862-872. http://dx.doi.org/10.1653/024.095.0407.
http://dx.doi.org/10.1653/024.095.0407...
, 2015LEITE, G.L.D., VELOSO, R.V.S., ZANUNCIO, J.C., FERNANDES, G.W., ALMEIDA, C.I.M., FERREIRA, P.S.F., ALONSO, J. and SERRÃO, J.E., 2015. Cardinal distribution of sucking insects in Caryocar brasiliense (Caryocaraceae) in Cerrado (Brazil). Revista Colombiana de Entomologia, vol. 41, no. 1, pp. 105-111., 2016LEITE, G.L.D., VELOSO, R.V.S., ZANUNCIO, J.C., ALONSO, J., FERREIRA, P.S.F., ALMEIDA, C.I.M., FERNANDES, G.W. and SERRÃO, J.E., 2016. Diversity of Hemiptera (Arthropoda: Insecta) and their natural enemies on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Brazilian Cerrado. The Florida Entomologist, vol. 99, no. 2, pp. 239-247. http://dx.doi.org/10.1653/024.099.0213.
http://dx.doi.org/10.1653/024.099.0213...
; Novgorodova, 2015NOVGORODOVA, T.A., 2015. Organization of honeydew collection by foragers of different species of ants (Hymenoptera: formicidae). European Journal of Entomology, vol. 112, no. 4, pp. 688-697. http://dx.doi.org/10.14411/eje.2015.077.
http://dx.doi.org/10.14411/eje.2015.077...
; Sanchez et al., 2020SANCHEZ, J.A., LÓPEZ‐GALLEGO, E. and LA‐SPINA, M., 2020. The impact of ant mutualistic and antagonistic interactions on the population dynamics of sap‐sucking hemipterans in pear orchards. Pest Management Science, vol. 76, no. 4, pp. 1422-1434. http://dx.doi.org/10.1002/ps.5655. PMid:31628776.
http://dx.doi.org/10.1002/ps.5655...
) because they collectively and aggressively defend their resources (e.g., sap-sucking insects) (Novgorodova, 2015NOVGORODOVA, T.A., 2015. Organization of honeydew collection by foragers of different species of ants (Hymenoptera: formicidae). European Journal of Entomology, vol. 112, no. 4, pp. 688-697. http://dx.doi.org/10.14411/eje.2015.077.
http://dx.doi.org/10.14411/eje.2015.077...
). Dominant ants form mutualistic relationships with sap-sucking insects, with the negative impact of the latter on the biological control of sap-sucking hemipterans (Karami-Jamour et al., 2018KARAMI-JAMOUR, T., MIRMOAYEDI, A., ZAMANI, A. and KHAJEHZADEH, Y., 2018. The impact of ant attendance on protecting Aphis gossypii against two aphidophagous predators and it’s role on the intraguild predation between them. Journal of Insect Behavior, vol. 31, no. 2, pp. 222-239. http://dx.doi.org/10.1007/s10905-018-9670-4.
http://dx.doi.org/10.1007/s10905-018-967...
; Tong et al., 2019TONG, H., AO, Y., LI, Z., WANG, Y. and JIANG, M., 2019. Invasion biology of the cotton mealybug, Phenacoccus solenopsis Tinsley: current knowledge and future directions. Journal of Integrative Agriculture, vol. 18, no. 4, pp. 758-770. https://doi.org/10.1016/S2095-3119(18)61972-0.
https://doi.org/10.1016/S2095-3119(18)61...
). This relationship increases pest problems in agricultural systems (Sagata and Gibb, 2016SAGATA, K. and GIBB, H., 2016. The effect of temperature increases on an ant-Hemiptera-plant interaction. PLoS One, vol. 11, pp. e0155131. https://doi.org/10.1371/journal.pone.0155131.
https://doi.org/10.1371/journal.pone.015...
).

5. Conclusions

The loss sources A. reticulatum, Aleyrodidae, S. anchoralis, and Tettigoniidae showed the highest % I.I.-PU on leaves of A. auriculiformis saplings. These insects turn into problems on A. auriculiformis plantations since they are related to pests in some crops. The solution sources Uspachus sp., Salticidae, and P. termitarius showed the highest % I.I.-PU on leaves of A. auriculiformis saplings. These natural enemies can be important to A. auriculiformis because they can reduce herbivorous damages (e.g., A. reticulatum damage versus Uspachus sp.). However, ants Cephalotes sp. and Brachymyrmex sp. increased around 95% of Aleyrodidae and A. reticulatum populations and can be a problem in A. auriculiformis commercial crops. Here I showed and tested the %I.I.-PU, a new index that can detect the loss or solution sources, when production is unknown, on a system, and it can be applied in various knowledge areas.

Acknowledgments

I wish to thank the taxonomists Dr. Antônio Domingos Brescovit (Butantan Institute, São Paulo State, Brazil - Arachnida), Dr. Ayr de Moura Bello (Oswaldo Cruz Foundation, Rio de Janeiro State, Brazil - Coleoptera), Dr. Carlos Matrangolo (University of Montes Claros, Minas Gerais State, Brazil - Formicidae), Dr. Ivan Cardoso Nascimento (EMBRAPA-ILHÉUS Cocoa Research Center, CEPLAC, Itabuna, Bahia State, Brazil - Formicidae), Dr. Luci Boa Nova Coelho (Federal University of Rio de Janeiro, Rio de Janeiro State, Brazil - Cicadellidae), and Dr. Paulo Sérgio Fiuza Ferreira (Federal University of Viçosa, Minas Gerais State, Brazil - Hemiptera) for the identification of specimens. The voucher numbers are 1595/02 and 1597/02 (CDZOO, Federal University of Paraná, Paraná State, Brazil).

References

  • AGUIAR JUNIOR, A., BARBOSA, R.I., BARBOSA, J.B.F. and MOURÃO JUNIOR, M., 2014. Invasion of Acacia mangium in Amazonian savannas following planting for forestry. Plant Ecology & Diversity, vol. 7, no. 1-2, pp. 359-369. http://dx.doi.org/10.1080/17550874.2013.771714
    » http://dx.doi.org/10.1080/17550874.2013.771714
  • ALVARES, C.A., STAPE, J.L., SENTELHAS, P.C., DE MORAES GONÇALVES, J.L. and SPAROVEK, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift (Berlin), vol. 22, no. 6, pp. 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507
    » http://dx.doi.org/10.1127/0941-2948/2013/0507
  • ARAÚJO, V.A., BÁO, S.N., MOREIRA, J., NEVES, C.A. and LINO-NETO, J., 2010. Ultrastructural characterization of the spermatozoa of Aethalion reticulatum Linnaeus 1767 (Hemiptera: Auchenorrhyncha: Aethalionidae). Micron (Oxford, England : 1993), vol. 41, no. 4, pp. 306-311. http://dx.doi.org/10.1016/j.micron.2009.12.001 PMid:20047835.
    » http://dx.doi.org/10.1016/j.micron.2009.12.001
  • BALIEIRO, F.C., COSTA, C.A., OLIVEIRA, R.B., DONAGEMMA, G.K., ANDRADE, A.G. and CAPECHE, C.L., 2017. Carbon stocks in mined area reclaimed by leguminous trees and sludge. Revista Árvore, vol. 41, e410610. https://doi.org/10.1590/1806-90882017000600010
    » https://doi.org/10.1590/1806-90882017000600010
  • DA SILVA, E.M., DA SILVA, R.S., RODRIGUES-SILVA, N., MILAGRES, C.C., BACCI, L. and PICANÇO, M.C., 2017. Assessment of the natural control of Neoleucinodes elegantalis in tomato cultivation using ecological life tables. Biocontrol Science and Technology, vol. 27, no. 4, pp. 1-14. http://dx.doi.org/10.1080/09583157.2017.1319911
    » http://dx.doi.org/10.1080/09583157.2017.1319911
  • DAMASCENA, J.G., LEITE, G.L.D., SILVA, F.W.S., SOARES, M.A., GUAÑABENS, R.E.M., SAMPAIO, R.A. and ZANUNCIO, J.C., 2017. Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabales: Fabaceae) trees in the Cerrado. Florida Entomologist, vol. 100, no. 3, pp. 558-565. https://doi.org/10.1653/024.100.0311
    » https://doi.org/10.1653/024.100.0311
  • DASSOU, A.G., VODOUHÉ, S.D., BOKONON-GANTA, A., GOERGEN, G., CHAILLEUX, A., DANSI, A., CARVAL, D. and TIXIER, P., 2019. Associated cultivated plants in tomato cropping systems structure arthropod communities and increase the Helicoverpa armigera regulation. Bulletin of Entomological Research, vol. 109, no. 6, pp. 733-740. http://dx.doi.org/10.1017/S0007485319000117 PMid:30968787.
    » http://dx.doi.org/10.1017/S0007485319000117
  • DAVIS, S.K. and WIGELSWORTH, M., 2018. Structural and predictive properties of the emotional quotient inventory youth version–short form (EQ-i:YV[S]). Journal of Personality Assessment, vol. 100, no. 2, pp. 197-206. http://dx.doi.org/10.1080/00223891.2017.1280502 PMid:28631978.
    » http://dx.doi.org/10.1080/00223891.2017.1280502
  • DE MENEZES, C.W.G., BERTOLUCCI, S.K.V., PINTO, J.E.B.P., CARVALHO, G.A. and SOARES, M.A., 2013. First record of Aethalion reticulatum (Hemiptera: Aethalionidae) in Vernonia condensata (Asteraceae), a medicinal plant from Brazil. Phytoparasitica, vol. 41, no. 5, pp. 611-613. http://dx.doi.org/10.1007/s12600-013-0322-0
    » http://dx.doi.org/10.1007/s12600-013-0322-0
  • DEMOLIN-LEITE, G.L., 2021. Importance indice: loss estimates and solution effectiveness on production. Cuban Journal of Agricultural Science, vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf
    » http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf
  • DORAN, J.C. and TURNBULL, J.W., 1997. Australian trees and shrubs: species for land rehabilitation and farm planting in the tropics Bruce, Australian: ACIAR, pp. 384.
  • FAGUNDES, R., DÁTTILO, W., RIBEIRO, S.P., RICO-GRAY, V., JORDANO, P. and DEL-CLARO, K., 2017. Differences among ant species in plant protection are related to production of extrafloral nectar and degree of leaf herbivory. Biological Journal of the Linnean Society. Linnean Society of London, vol. 122, no. 1, pp. 71-83. http://dx.doi.org/10.1093/biolinnean/blx059
    » http://dx.doi.org/10.1093/biolinnean/blx059
  • FELICIO, T.N.P., COSTA, T.L., SARMENTO, R.A., RAMOS, R.S., PEREIRA, P.S., DA SILVA, R.S. and PICANÇO, M.C., 2019. Surrounding vegetation, climatic elements, and predators affect the spatial dynamics of Bemisia tabaci (Hemiptera: Aleyrodidae) in commercial melon fields. Journal of Economic Entomology, vol. 112, no. 6, pp. 2774-2781. http://dx.doi.org/10.1093/jee/toz181 PMid:31265728.
    » http://dx.doi.org/10.1093/jee/toz181
  • FIRMANSYAH, M.A., ERFIANI, E., JAYANEGARA, A., ACHMAD, A. and WIJAYANTO, N., 2020. In vitro biological control of Ceratobasidium ramicola by using tannin extracts from Acacia villosa, Myristica fragrans, Acacia mangium, and Calliandra calothyrsus leaves. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 80, no. 2, pp. 235-239. http://dx.doi.org/10.1590/1519-6984.184912 PMid:31482970.
    » http://dx.doi.org/10.1590/1519-6984.184912
  • GOLDENBERG, M.G. and GRANTCHAROV, T.P., 2019. A novel method of setting performance standards in surgery using patient outcomes. Annals of Surgery, vol. 269, no. 1, pp. 79-82. http://dx.doi.org/10.1097/SLA.0000000000002562 PMid:29064892.
    » http://dx.doi.org/10.1097/SLA.0000000000002562
  • GOMES, G.N., LEITE, G.L.D., SOARES, M.A., GUANÃBENS, R.E.M., LEMES, P.G. and ZANUNCIO, J.C., 2023. Arthropod fauna on the abaxial and adaxial surfaces of Acacia mangium (Fabaceae) leaves. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, pp. e245536. http://dx.doi.org/10.1590/1519-6984.245536 PMid:34669792.
    » http://dx.doi.org/10.1590/1519-6984.245536
  • GONTHIER, D.J., ENNIS, K.K., PHILPOTT, S.M., VANDERMEER, J. and PERFECTO, I., 2013. Ants defend coffee from berry borer colonization. BioControl, vol. 58, no. 6, pp. 815-820. http://dx.doi.org/10.1007/s10526-013-9541-z
    » http://dx.doi.org/10.1007/s10526-013-9541-z
  • KARAMI-JAMOUR, T., MIRMOAYEDI, A., ZAMANI, A. and KHAJEHZADEH, Y., 2018. The impact of ant attendance on protecting Aphis gossypii against two aphidophagous predators and it’s role on the intraguild predation between them. Journal of Insect Behavior, vol. 31, no. 2, pp. 222-239. http://dx.doi.org/10.1007/s10905-018-9670-4
    » http://dx.doi.org/10.1007/s10905-018-9670-4
  • KIM, S., JUNG, M., SONG, Y.J., KANG, C., KIM, B.Y., CHOI, I.J., KIM, H.G. and LEE, D.H., 2017. Evaluating the potential of the extract of Perilla sp. as a natural insecticide for Bemisia tabaci (Hemiptera: Aleyrodidae) on sweet peppers. Entomological Research, vol. 47, no. 3, pp. 208-216. http://dx.doi.org/10.1111/1748-5967.12211
    » http://dx.doi.org/10.1111/1748-5967.12211
  • KREBS, C.J., 1989 [accessed 2 May 2018]. Bray-Curtis cluster analysis [online]. Available from: http://biodiversity-pro.software.informer.com
    » http://biodiversity-pro.software.informer.com
  • LANDIS, D., WRATTEN, S.D. and GURR, G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, vol. 45, no. 1, pp. 175-201. http://dx.doi.org/10.1146/annurev.ento.45.1.175 PMid:10761575.
    » http://dx.doi.org/10.1146/annurev.ento.45.1.175
  • LEITE, G.L.D., VELOSO, R.V.S., ZANUNCIO, J.C., ALMEIDA, C.I.M., FERREIRA, P.S.F., FERNANDES, G.W. and SOARES, M.A., 2012a. Habitat complexity and Caryocar brasiliense herbivores (Insecta; Arachnida; Araneae). The Florida Entomologist, vol. 95, no. 4, pp. 819-830. http://dx.doi.org/10.1653/024.095.0402
    » http://dx.doi.org/10.1653/024.095.0402
  • LEITE, G.L.D., VELOSO, R.V.S., ZANUNCIO, J.C., FERNANDES, G.W., ALMEIDA, C.I.M., FERREIRA, P.S.F., ALONSO, J. and SERRÃO, J.E., 2012b. Seasonal abundance of hemipterans on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Cerrado. The Florida Entomologist, vol. 95, no. 4, pp. 862-872. http://dx.doi.org/10.1653/024.095.0407
    » http://dx.doi.org/10.1653/024.095.0407
  • LEITE, G.L.D., VELOSO, R.V.S., ZANUNCIO, J.C., FERNANDES, G.W., ALMEIDA, C.I.M., FERREIRA, P.S.F., ALONSO, J. and SERRÃO, J.E., 2015. Cardinal distribution of sucking insects in Caryocar brasiliense (Caryocaraceae) in Cerrado (Brazil). Revista Colombiana de Entomologia, vol. 41, no. 1, pp. 105-111.
  • LEITE, G.L.D., VELOSO, R.V.S., ZANUNCIO, J.C., ALONSO, J., FERREIRA, P.S.F., ALMEIDA, C.I.M., FERNANDES, G.W. and SERRÃO, J.E., 2016. Diversity of Hemiptera (Arthropoda: Insecta) and their natural enemies on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Brazilian Cerrado. The Florida Entomologist, vol. 99, no. 2, pp. 239-247. http://dx.doi.org/10.1653/024.099.0213
    » http://dx.doi.org/10.1653/024.099.0213
  • LIMA, J.S., LEITE, G.L.D., GUANABENS, P.F.S., SOARES, M.A., SILVA, J.L., MOTA, M.V.S., LEMES, P.G. and ZANUNCIO, J.C., 2024. Insects and spiders on Acacia mangium (Fabaceae) saplings as bioindicators for the recovery of tropical degraded areas. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, pp. e252088. PMid:34755814.
  • LIN, S.J., LU, I.J. and LEWIS, C., 2007. Grey relation performance correlations among economics, energy use and carbon dioxide emission in Taiwan. Energy Policy, vol. 35, no. 3, pp. 1948-1955. http://dx.doi.org/10.1016/j.enpol.2006.06.012
    » http://dx.doi.org/10.1016/j.enpol.2006.06.012
  • LIU, Y., CHEN, Y. and TZENG, G.H., 2017. Identification of key factors in consumers’ adoption behavior of inteligente medical terminals based on a hybrid modified MADM model for product improvement. International Journal of Medical Informatics, vol. 105, pp. 68-82. http://dx.doi.org/10.1016/j.ijmedinf.2017.05.017 PMid:28750913.
    » http://dx.doi.org/10.1016/j.ijmedinf.2017.05.017
  • LONDE, V., SOUSA, H.C. and MESSIAS, M.C.T.B., 2020. Monitoring of forest components reveals that exotic tree species are not always invasive in areas under ecological restoration. Environmental Monitoring and Assessment, vol. 192, no. 10, pp. 618-628. http://dx.doi.org/10.1007/s10661-020-08583-w PMid:32880735.
    » http://dx.doi.org/10.1007/s10661-020-08583-w
  • MANSARAY, A. and SUNDUFU, A.J., 2009. Oviposition, development and survivorship of the sweetpotato whitefly Bemisia tabaci on soybean, Glycine max, and the garden bean, Phaseolus vulgaris. Journal of Insect Science, vol. 9, pp. 1. http://dx.doi.org/10.1673/031.009.0101 PMid:19611218.
    » http://dx.doi.org/10.1673/031.009.0101
  • MOTA, M.V.S., DEMOLIN-LEITE, G.L., GUANABENS, P.F.S., TEIXEIRA, G.L., SOARES, M.A., SILVA, J.L., SAMPAIO, R.A. and ZANUNCIO, J.C., 2023. Chewing insects, pollinators, and predators on Acacia auriculiformis A. Cunn. ex Beth (Fabales: Fabaceae) plants fertilized with dehydrated sewage sludge. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, pp. e248305. http://dx.doi.org/10.1590/1519-6984.248305 PMid:34669795.
    » http://dx.doi.org/10.1590/1519-6984.248305
  • NOVGORODOVA, T.A., 2015. Organization of honeydew collection by foragers of different species of ants (Hymenoptera: formicidae). European Journal of Entomology, vol. 112, no. 4, pp. 688-697. http://dx.doi.org/10.14411/eje.2015.077
    » http://dx.doi.org/10.14411/eje.2015.077
  • ÖBERG, S., MAYR, S. and DAUBER, J., 2008. Landscape effects on recolonisation patterns of spiders in arable fields. Agriculture, Ecosystems & Environment, vol. 23, no. 1-3, pp. 211-218. http://dx.doi.org/10.1016/j.agee.2007.06.005
    » http://dx.doi.org/10.1016/j.agee.2007.06.005
  • PETERSON, R.K., DAVIS, R.S., HIGLEY, L.G. and FERNANDES, O.A., 2009. Mortality risk in insects. Environmental Entomology, vol. 38, no. 1, pp. 2-10. http://dx.doi.org/10.1603/022.038.0102 PMid:19791592.
    » http://dx.doi.org/10.1603/022.038.0102
  • PIRES, E.M., SILVA, L.C., BATTIROLA, L.D., NOGUEIRA, R.M., BARRETO, M.R. and CORASSA, J. N., 2015. Triplaris americana L. (Polygonaceae), a new host plant for Aethalion reticulatum (Linnaeus, 1767) (Hemiptera: Aethalionidae). Brazilian Archives of Biology and Technology, vol. 58, no. 1, pp. 31-33. https://doi.org/10.1590/S1516-8913201400039
    » https://doi.org/10.1590/S1516-8913201400039
  • RAHMAN, M.M., RAHMAN, M.A., MIAH, M.G., SAHA, S.R., KARIM, M.A. and MOSTOFA, M.G., 2017. Mechanistic insight into salt tolerance of Acacia auriculiformis: the importance of ion selectivity, osmoprotection, tissue tolerance, and Na+ exclusion. Frontiers in Plant Science, vol. 8, pp. 155. http://dx.doi.org/10.3389/fpls.2017.00155 PMid:28421081.
    » http://dx.doi.org/10.3389/fpls.2017.00155
  • RANA, V. and MAITI, S.K., 2018. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). Environmental Science and Pollution Research International, vol. 25, no. 10, pp. 9745-9758. http://dx.doi.org/10.1007/s11356-018-1254-5 PMid:29368202.
    » http://dx.doi.org/10.1007/s11356-018-1254-5
  • RODRÍGUEZ, J., CORDERO-RIVERA, A. and GONZÁLEZ, L., 2020. Characterizing arthropod communities and trophic diversity in areas invaded by Australian acacias. Arthropod-Plant Interactions, vol. 14, no. 4, pp. 531-545. http://dx.doi.org/10.1007/s11829-020-09758-5
    » http://dx.doi.org/10.1007/s11829-020-09758-5
  • SAGATA, K. and GIBB, H., 2016. The effect of temperature increases on an ant-Hemiptera-plant interaction. PLoS One, vol. 11, pp. e0155131. https://doi.org/10.1371/journal.pone.0155131
    » https://doi.org/10.1371/journal.pone.0155131
  • SANCHEZ, A., 2015. Fidelity and promiscuity in an ant-plant mutualism: a case study of Triplaris and Pseudomyrmex. PLoS One, vol. 10, no. 12, pp. e0143535. http://dx.doi.org/10.1371/journal.pone.0143535 PMid:26630384.
    » http://dx.doi.org/10.1371/journal.pone.0143535
  • SANCHEZ, J.A., LÓPEZ‐GALLEGO, E. and LA‐SPINA, M., 2020. The impact of ant mutualistic and antagonistic interactions on the population dynamics of sap‐sucking hemipterans in pear orchards. Pest Management Science, vol. 76, no. 4, pp. 1422-1434. http://dx.doi.org/10.1002/ps.5655 PMid:31628776.
    » http://dx.doi.org/10.1002/ps.5655
  • SILVA, J.L., DEMOLIN LEITE, G.L., DE SOUZA TAVARES, W., SOUZA SILVA, F.W., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C.. 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196 PMid:32257306.
    » http://dx.doi.org/10.1098/rsos.191196
  • SISTEMA PARA ANÁLISES ESTATÍSTICAS E GENÉTICAS – SAEG, 2007 [accessed 30 June 2018]. Version 9.1 [online]. Available from: http://arquivo.ufv.br/saeg/
    » http://arquivo.ufv.br/saeg/
  • TONG, H., AO, Y., LI, Z., WANG, Y. and JIANG, M., 2019. Invasion biology of the cotton mealybug, Phenacoccus solenopsis Tinsley: current knowledge and future directions. Journal of Integrative Agriculture, vol. 18, no. 4, pp. 758-770. https://doi.org/10.1016/S2095-3119(18)61972-0
    » https://doi.org/10.1016/S2095-3119(18)61972-0
  • VENTURINO, E., ISAIA, M., BONA, F., CHATTERJEE, S. and BADINO, G., 2008. Biological controls of intensive agroecosystems: wanderer spiders in the Langa astigiana. Ecological Complexity, vol. 5, no. 2, pp. 157-164. http://dx.doi.org/10.1016/j.ecocom.2007.10.003
    » http://dx.doi.org/10.1016/j.ecocom.2007.10.003
  • WICKNESWARI, R. and NORWATI, M., 1993. Genetic diversity of natural-populations of Acacia auriculiformis. Australian Journal of Botany, vol. 41, no. 1, pp. 65-77. https://doi.org/10.1071/BT9930065
    » https://doi.org/10.1071/BT9930065
  • WONG, M.M., CANNON, C.H. and WICKNESWARI, R., 2011. Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing. BMC Genomics, vol. 12, pp. 342. http://dx.doi.org/10.1186/1471-2164-12-342 PMid:21729267.
    » http://dx.doi.org/10.1186/1471-2164-12-342
  • ZANUNCIO, A.J.V., SERRÃO, J.E., PEREIRA, A.I.A., SOARES, M.A., WILCKEN, C.F., LEITE, G.L.D. and ZANUNCIO, J.C., 2015. Aethalion reticulatum (Hemiptera: Aethalionidae) feeding on Erythrina speciosa (Fabales: Fabaceae): first record of its host plant and damage characteristics. The Florida Entomologist, vol. 98, no. 1, pp. 175-177. http://dx.doi.org/10.1653/024.098.0130
    » http://dx.doi.org/10.1653/024.098.0130
  • ZANUNCIO-JUNIOR, J.S., FORNAZIER, M.J., MARTINS, D.S., CHAMORRO-RENGIFO, J., QUEIRÓZ, R.B., LAZZARINI, A.L. and FERREIRA, P.S.F., 2017. Meroncidius intermedius (Orthoptera: Tettigoniidae): a threat to Brazilian banana. The Florida Entomologist, vol. 100, no. 3, pp. 669-671. http://dx.doi.org/10.1653/024.100.0329
    » http://dx.doi.org/10.1653/024.100.0329
  • ZHANG, W., MCAUSLANE, H.J. and SCHUSTER, D.J., 2004. Repellency of ginger oil to Bemisia argentifolii (Homoptera: Aleyrodidae) on tomato. Journal of Economic Entomology, vol. 97, no. 4, pp. 1310-1318. http://dx.doi.org/10.1093/jee/97.4.1310 PMid:15384342.
    » http://dx.doi.org/10.1093/jee/97.4.1310
  • ZOGRAFOU, K., ADAMIDIS, G.C., KOMNENOV, M., KATI, V., SOTIRAKOPOULOS, P., PITTA, E. and CHATZAKI, M., 2017. Diversity of spiders and orthopterans respond to intra-seasonal and spatial environmental changes. Journal of Insect Conservation, vol. 21, no. 3, pp. 531-543. http://dx.doi.org/10.1007/s10841-017-9993-z
    » http://dx.doi.org/10.1007/s10841-017-9993-z

Publication Dates

  • Publication in this collection
    05 Jan 2022
  • Date of issue
    2024

History

  • Received
    12 June 2021
  • Accepted
    08 Oct 2021
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br