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Abstract - This study used a predictive controller based on an empirical nonlinear model comprising a three-
layer feedforward neural network for temperature control of the suspension polymerization process. In 
addition to the offline training technique, an algorithm was also analyzed for online adaptation of its 
parameters. For the offline training, the network was statically trained and the genetic algorithm technique 
was used in combination with the least squares method. For online training, the network was trained on a 
recurring basis and only the technique of genetic algorithms was used. In this case, only the weights and bias 
of the output layer neuron were modified, starting from the parameters obtained from the offline training. 
From the experimental results obtained in a pilot plant, a good performance was observed for the proposed 
control system, with superior performance for the control algorithm with online adaptation of the model, 
particularly with respect to the presence of off-set for the case of the fixed parameters model. 
Keywords: Predictive control; Neural network; Genetic algorithm; Suspension polymerization. 

 
 
 

INTRODUCTION 
 

Control systems based on models have proven to 
be efficient in chemical processes, especially in cases 
with strong interactions between input and output, 
high dead time, and physical constraints on the varia-
bles (García et al., 1989). For the purpose of applica-
tion of control strategies, mathematical models of 
processes can be presented in different formats, pro-
vided they can be used to obtain useful, significant 
and reliable predictions of the process behavior.  

It is now well established that phenomenological 
models typically provide a more accurate description 
of the process, especially for extrapolation, and em-
pirical models are easier to obtain and manipulate 
during online applications in real time, especially 
when obtaining experimental data is facilitated (Vieira 
et al., 2003; Cubillos et al., 2007; Janakiraman et al., 
2013). For this reason, some applications require an 
optimization/adaptation of the model developed and 
eventually the use of hybrid structures, which take 
into account empirical knowledge plus phenomeno-
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logical knowledge, may be considered. In order to 
overcome difficulties in developing mechanistic 
models, empirical models based on neural networks 
are being used for the purpose of modeling and pro-
cess optimization, as well as for the construction of 
control strategies (Zhang, 2003; Ławryńczuk, 2013). 
Especially when the system treated has strong non-
linearities, neural networks have been widely applied 
for identification and modeling (Ng and Hussain, 
2004; Qiao and Han, 2012). 

Empirical modeling based on Artificial Neural 
Networks (ANNs) has been widely used in chemical 
processes, especially for identifying systems or using 
predictive control techniques. In this context, the 
models based on ANNs are presented as a powerful 
tool for modeling static and dynamic systems, with 
large nonlinearities and high dead-time, mainly due 
to two fundamental qualities: rapid adaptability and 
intrinsic approach (De Souza Jr et al., 1996; Krotha-
pally and Palanki, 1997; Yu and Yu, 2003; Zhang, 
2003; Ng and Hussain, 2004; Hosen et al., 2011). 

Polymer production has grown considerably, find-
ing applications in several areas, from the simple use 
in the manufacture of packaging and utensils to spe-
cific applications, such as engineering polymers, 
polymers with textile properties, and polymers with 
optical properties, among others. Depending on the 
application, the polymer needs to meet specific qual-
ity standards, among which is the molecular weight 
distribution, whose variation directly affects its char-
acteristics, such as mechanical, thermal and flow 
properties (Takamatsu et al., 1988; Crowley and Choi, 
1998). 

Considering that polymer properties such as mo-
lecular weight, polydispersity index, and morpho-
logical characteristics are not easy to be obtained 
online in a polymerization system, models for esti-
mation of these properties are required for the imple-
mentation of efficient control and monitoring sys-
tems (Prasad et al., 2002; Vieira et al., 2003; Bindlish 
and Rawlings, 2003; Santos et al., 2008). For poly-
merization chain reactions, temperature and initial 
initiator concentration has high influence on the re-
action kinetics and the polymer molecular weight 
distribution, with a direct effect on polymer proper-
ties (Sacks et al., 1973; Erdogan et al., 2002; Hosen 
and Hussain, 2012). 

Thus, considering that changes in the operating 
conditions of the polymerization system have a sig-
nificant influence on the polymer final properties, 
different control techniques have been developed for 
this application. Given the characteristics of these 
processes, usually conducted in batch systems, clas-
sic controllers for fixed parameters generally do not 

produce satisfactory results. For this reason, research 
is focused on the development of techniques based 
on linear and nonlinear predictive control, adaptive 
algorithms and, more recently, control algorithms 
using rule-based computer techniques or expert sys-
tems. Efficient controllers, together with optimiza-
tion algorithms, provide an important tool to deter-
mine the operating conditions necessary to produce 
the polymer with the desired characteristics, and to 
adjust them during the polymerization time (Alvarez 
and Odloak, 2012; Hosen and Hussain, 2012). 

Given the polymerization reactions characteristics 
(large nonlinearities, constraints on their operational 
variables, multiple stationary states for continuous 
systems and lack of a stationary state for batch sys-
tems), adaptive control techniques have been devel-
oped and applied mainly for predictive control where 
empirical models are used. Among these are models 
based on neural networks trained offline, because 
these networks are developed with experimental data 
obtained under certain operational conditions of the 
system, sometimes in open loop, which are rarely 
repeated during the closed loop control. Deviations 
that occur in the system, which are not predicted in 
the model, cause various control problems, such as 
high overshoot, offset, and others. In this case, adap-
tive techniques can be used to adjust the weights of 
the network and prevent such deviations from occur-
ring (Zeybec et al., 2003; Ng and Hussain; 2004; 
Marcolla et al., 2009, Hosen et al., 2011). 

The goal of this study was to develop an algo-
rithm for the temperature control of styrene suspen-
sion polymerization in a jacketed batch reactor. The 
control was performed by manipulating two varia-
bles, the steam flow, used for heating the reactor, and 
the water flow, for cooling. To this end, a predictive 
controller using an empirical model of the process 
has been developed. As an empirical model, a feed-
forward neural network was used with online adapta-
tion of the parameters (weights and bias) by means 
of an optimization system based on the genetic algo-
rithm technique. 
 
 

METHODOLOGY 
 
Experimental Unit 
 

The experiments were conducted in the Labora-
tory of Process Control at the Department of Chemi-
cal Engineering and Food Engineering at the Federal 
University of Santa Catarina (EQA/CTC/UFSC). 
The reaction pilot unit (Figure 1) consisted of a stain-
less steel jacketed reactor (Suprilab Ltda), with a 
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capacity of 5 liters and maximum pressure of 15 
kgf/cm2, equipped with a stirring system with a double 
turbine impeller, centered and which extends to the 
base of the reactor. The thermal exchanges necessary 
to the reactor are performed by a plate heat ex-
changer with cross currents, Alfa Laval brand, and 
two pneumatic valves of equal percentage of air-
open/fail-close, brand Badge Meter Inc. Also part of 
the system is an Ecil brand type J thermocouple in 
conjunction with an amplifier/transmitter, as well as 
a reservoir of nitrogen gas. Steam is supplied by a 
boiler with electric heating, SIMILI brand, type 
SIM-HE, with a steam production capacity of 100 
kg/h and pressure of 8.4 kg/cm2. 

The heat exchange system is started by activating 
the centrifugal pump (6), which changes the reactor 
jacket pressure to approximately 2 kgf.cm-2. Valve 8 
is responsible for controlling the steam flow in the 
plate heat exchanger (2), through which the hot cur-
rent for heating the reactor is generated (1). Valve 7 
is held closed and only the hot current flows in the 
reactor, receiving more energy at each passage 
through the heat exchanger, reaching in this way 
high temperatures in a relatively short time interval. 
Opening valve 7 the pressure reduces in the reactor 
jacket, as well as in the whole circulation line, and 
then the cold circulation starts. 
 
Chemical Reaction 
 

In every reaction, 1.2 L of monomer was used as 
the dispersed phase and 2.8 L was used as the continu-
ous medium (distilled water). Poly(vinylpyrrolidone), 
(PVP K-90, Graft Corp.) was used as a suspension 
agent at a concentration of 1.0 g.L-1 in relation to the 

continuous phase. As initiator, benzoyl peroxide - 
BPO (Sigma-Aldrich) was used, at concentrations in 
a range between 1.262x10-3gmolBPO.gmol-1

Styrene and 
1.893x10-3 gmolBPO.gmol-1

Styrene. The styrene (mono-
mer) was supplied by Termotécnica Ltda. All rea-
gents used in the experiments were used as received. 
The stirring frequency was kept constant during the 
reaction time, at 300 rpm. 
 
Process Empirical Model (FANN) 
 

For the batch styrene polymerization system 
representation/model, a Feedforward Artificial Neural 
Network (FANN) was used, fully interconnected with 
three layers whose mapping between the output and 
the inputs can be described by Equation (1), 
 

 
   
   1 1 2 2

, 1 ;
1

,
p

y k y k
y k f

U k d U k d

 
   

          
(1) 

 
where f denotes a nonlinear mapping considering all 
operations performed by the network in the input 
data. U1(k-d1) and U2(k-d2) are, respectively, entries 1 
and 2 of the process, with d1 and d2 representing the 
dead-time regarding each input variable. y(k) and 
y(k-1) are, respectively, the actual values of the out-
puts, measures of the process at instants k and k-1 
(Multiple Input / Single Output). yp(k+1) is the value 
predicted by the neural network at instant k+1. It is 
worth mentioning in Equation (1) the distinction 
between the predicted value, yp, for which the sub-
script p was used, and the measured values, without 
any identification in particular. 
 

 

1. Jacketed reactor,  
2. Plate heat exchanger,  
3. Agitation system (motor, frequency 

controller and digital tachometer),  
4. Computer equipped with AD/DA data 

acquisition board,  
5. Retention valve,  
6. Centrifugal pump,  
7. Pneumatic valve: reactor jacket 

circulation water outlet flow control,  
8. Pneumatic valve: steam flow control, 
9. Temperature sensor. 

 

Figure 1: Scheme of the polymerization pilot unit. 
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The neural network input variables were based 
on the usual methodology of identification systems 
used in process control. Thus, the input variables 
were chosen from identification tests by disturb-
ances in the cold water and steam introduced into 
the system without reaction. Variables y(k) and y(k-1) 
were chosen by experimental observations that the 
system has underdamped behavior. In this case, at 
least two delays are necessary for correct system 
identification: the dead time between temperature 
measurement and the changes caused by the cold 
water and vapor. 

In the polymerization system studied in this re-
search work, the output variable of interest is the 
reaction temperature, which is controlled by manipu-
lating the steam flow control valve (8-Figure 1), U1, 
and the jacket hot water discharge control and cold 
water supply (7-Figure 1) valves, U2. The system is 
subject to restrictions on the opening valves, with 1 
volt indicating that it is completely closed and 5 
volts indicating that is 100% open. Restrictions in 
temperature obey the physical limits of the system. 
Thus, the FANN used has 3 layers with 4 neurons in 
the input layer, 5 neurons in the intermediate layer 
and one neuron in the output layer, all fully intercon-
nected. It is noteworthy that the architecture was 
defined by evaluating the behavior of the objective 
function (quadratic average error) for a training and 
testing group. The network with fewer neurons in the 
middle layer was adopted, which allowed the best 
approach, both for training and for testing (offline 
evaluation of the FANN from a set of test data and 
online evaluation of the controller using the FANN 
obtained in training). The activation function used 
for the intermediate layer neurons is the hyperbolic 
tangent function, and for the output layer a linear 
function was used. Thus, the weights of the output 
layer can be estimated using the least squares method, 
as described in the next section. 

The results presented in the FANN Training Of-
fline section show that only one hidden layer was 
enough to identify the system, showing that there is 
no benefit to increasing the number of hidden layers 
due to the possibility of overfitting. Additionally, it is 
desirable to minimize the number of weights to be 
adapted in real time. 
 

FANN Offline Training 
 

For FANN training, a genetic algorithm (GA) 
with real coding was used in conjunction with the 
least squares method. Thus, the result is a hybrid 
algorithm between a stochastic and a deterministic 
method, respectively. Both are based originally on 
the functions available in the MatLab application 

Toolbox (Houck et al., 2003). In this case, the 
weights and bias of neurons in the hidden layer were 
determined using the GA, while the weights and bias 
of the output layer neurons were, in sequence, deter-
mined by the least squares method, in a serial con-
figuration. The advantage of this configuration is to 
decrease the size of the problem by weights with GA 
estimation, coupled with the fact that there is an opti-
mum solution in terms of minimizing the sum of the 
quadratic error obtained directly by the least squares 
method. This methodology provided better results 
than the isolated application of the genetic algorithm. 

The definition of the GA operators followed that 
presented by Claumann (1999) for training a FANN 
with similar architecture. Coding of FANN weights in 
the shape of a chromosome is shown in Figure 2. 
Therefore, the number of parameters to be determined 
by GA, which corresponds to the number of genes in 
the chromosome, is identical to the total weight plus 
the number of bias of the FANN intermediate layer. 
For training, 300 generations were used for a popula-
tion of 150 individuals and a search interval of the 
weights and bias of the intermediate layer of -6 to +6.  

To perform offline FANN training, a data set must 
initially be acquired. These were obtained with the 
open loop system and the reactor containing only 
water, without polymerization reaction, for a sam-
pling time of 10 s. The data are presented in Figure 
3. In the situation with no reaction it is possible to 
apply arbitrary disturbances to maximize the amount 
of information obtained in identification of the pro-
cess (Fernandes and Lona, 2005). However, during 
the reaction, the temperature profile should be fol-
lowed and therefore sharp changes of temperature, 
according to the variations of the control actions, are 
not allowed under penalty of the polymer produced 
not achieving the desired properties and, in the worst 
case, destabilization of the reaction. 

 
Figure 2: Coding of the weights of the FANN intermediate layer in the form of a chromosome. 

W1,1 W1,i W1,N We,1 We,i We,N WM,1 WM,i WM,N b1 bi bN

Weights Bias

... ... ... ... ... ... ... ...

N: Number of neurons in the hidden layer
M: Number of inputs

W1,1 W1,i W1,N We,1 We,i We,N WM,1 WM,i WM,N b1 bi bN

Weights Bias

... ... ... ... ... ... ... ...

N: Number of neurons in the hidden layer
M: Number of inputs
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Figure 3: Standards for FANN offline training. (a) Step disturbances applied to the control valves. (b) 
Response of the reactor temperature to the disturbances applied. 

 
 

Next, the collected data must be converted into 
patterns for network training. Table 1 shows the for-
mation of a pattern for the network inputs, consider-
ing the temporal displacement of the components to 
a dead time d1 of 4 sampling times and d2 of 3 sam-
pling time, for the prediction output variable (in this 
case the system temperature) at (k+1). The dead time 
was identified experimentally. 
 
Table 1: Formation of the network input patterns 
for training. 
 

Instant y(k+1) 
Target 

y(k) y(k-1) U1(k) U2(k) 

1 y(1) y(1) y(1) U1(1) U2(1) 
2 y(2) y(2) y(2) U1(2) U2(2) 
3 y(3) y(3) y(3) U1(3) U2(3) 
4 y(4) y(4) y(4) U1(4) U2(4) 
5 y(5) y(5) y(5) U1(5) U2(5) 
6 y(6) y(6) y(6) U1(6) U2(6) 

 
Figure 4a shows the comparison between the ac-

tual patterns used for network training and predicted 
values. The result for the application of this network 

to the test patterns group is presented in Figure 4b. It 
is noted that the methodology achieved excellent 
performance across the working range of the data 
used for training and testing, and represented well 
the system dynamics. 

Comparing the experimental patterns and those 
obtained by the network, after training, there was a 
quadratic average error of 2.8945x10-4 and a coeffi-
cient of determination of 0.99934. For the group of 
testing data, these values were 4.1815x10-4 and 
0.99916, respectively. The behavior of the results 
presented in Figure 4 also suggests that there was no 
overfitting. 
 
Online Adaptation of FANN Weights 
 

The data used as standards for FANN offline train-
ing, for experimental simplicity, were obtained for the 
system with no chemical reaction using only water as 
the fluid to fill the reactor volume. Logically, this 
model can present deviations if used to represent the 
system dynamics while conducting the polymerization. 

 

Figure 4: Comparison between actual and predicted values by the network after training. (a) Group of 
data used in training. (b) Group of test data. 
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The dynamic modification occurs mainly for three 
reasons: the reaction H (for the styrene polymeriza-
tion Hr = -70 kJ mol-1 (Chen, 2000; Billmeyer, 1984), 
that depends on the propagation rate), auto accelera-
tion of the reaction due to the gel effect (Huang and 
Lee, 1989), and the change in the heat capacity of the 
reaction medium since, instead of just water, there are 
polymer/monomer particles in suspension with varia-
tion of this ratio during the progress of the reaction. 

Considering the network used as a prediction 
model for the predictive controller, the performance 
will be better if trained on a recurring basis, since is 
how it is used in the algorithm control. For the online 
FANN training, GA with real coding was used, due 
to its applicability in nonlinear problems and ease of 
generalization. The use of GA parameter values must 
be such as to maintain the diversity of the population 
in each generation and to not result in a large compu-
tational effort (such as a very large population, for 
example), given the limitation of the sampling time 
used (10 seconds). Accordingly, the parameters 
should be adjusted so as to allow the adaptation of 
the model for each sampling time, without the sys-
tem becoming unstable. 

The formation of the chromosome follows the 
same pattern shown in Figure 2, in this case the 
weights and bias of the output layer neuron. Only 
these parameters will be modified by assuming that 
the deviations that occur in relation to the model 
obtained by offline training do not occur in such a 
pronounced manner at short time intervals. There-
fore, it is logical to conclude that there is no need to 
adapt all FANN weights, and that there are no sig-
nificant changes in relation to these two consecutive 
sampling times. In addition, the values obtained by 
the offline training can be used as a starting point for 
the beginning of the adaptation. Thus, there are a 
total of 6 parameters for optimization, a much lower 
number in relation to the total number of parameters 
of the network (31), and demanding less effort from 
computational processing. 

The network obtained by offline training is of the 
feedforward type, that is, corresponds to a predictor 
of a step-forward, as shown in Equation (1). In the 
online controller application, the FANN is trans-
formed into a RNN (Recurrent Neural Network) due 
to the feedback of the output value, i.e., the network 
is retrained in real time and used as a predictor of 
multiple steps ahead. It is noteworthy that the num-
ber of neurons and hidden layers remains the same 
when comparing the FANN with RNN. The change 
was made in terms of neural connections, wherein 
the recurring training process enabled feedback of 
the output variable. Therefore, the weights of the 
output FANN layer, obtained by offline training, are 

used as starting values (initial condition) of the 
weights in same layer of the RNN. The weights of 
the hidden layer are kept fixed (even while applying 
online) in the RNN. For a data window of size J, the 
actual measured values y(k-J) and y(k-1-J) are ap-
plied to the network. This generates a sequence of 
predicted values until instant k, but not using as input 
for the neural network any actual temperature be-
tween instants k and k+1-J, as shown in the sequence 
of Equations (2) to (5). 
 

 
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      (5) 

 
The actual measured values (y (k+1-J) to y(k)) are 

used as targets in Equation (2) to (5) compared to 
their respective predicted values (yp(k+1-J) to yp(k)). 

Figure 5 illustrates the representation of FANN 
and recurrent presentation of training standards, used 
for online adaptation of weights, where J is the size 
of the window of points (number of patterns) used 
for training, obtained from the history of the ongoing 
process. In the system studied, a window with 40 
patterns was used, i.e., considering the current in-
stant k, the (40 + max(d1, d2)) past points were stored 
for training. The network evaluation is obtained by the 
sum of the quadratic error, according to Equation (6). 
 

 2, ,
1

 
J

real i pred i
i

SEMQ y y          (6) 

 
where yreal is the real output of the process, ypred is the 
value predicted by the model and J is the size of the 
standard window. 
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Figure 5: FANN with the representation used in the 
recurrent training. 
 

One factor that should be taken into consideration 
when working with online optimization is the pro-
cessing time, since it must be less than the sampling 
time used, because there is still the demand of time 
for the determination and implementation of control 
actions. One way to reduce the time required for the 
optimization is by decreasing the search space of the 
weights (their variation range). In this study, the 
search space is given at each new interval, always 
starting from the parameters used in the past interval. 
The limits definition that will determine the variation 
range of the weights and bias of the FANN is given 
by Equation (7): 
 

,

,

 
  

Sup i i

Inf i i

L

L

 

 
              (7) 

 
where LSup,i and LInf,i denote the upper and lower 
limits of each parameter (weights and bias), respec-
tively, to define the search space for the optimization 
by GA. The variable i defines the values of each 
parameter i used in the past interval. The value of  
will define the size of the search space. In this study 
the value is  = 0.15. This procedure makes the adap-
tive process faster, so that the study does not start 
from random values from a wide range to proceed to 
optimization, but from values that are, somehow, 
close to optimal. 

The adjustment of FANN weights for each sam-
pling was chosen so that small variations of the pa-
rameters for each application of the algorithm would 
be needed. Leaving more interval time, the parame-
ters correction would be accentuated, especially dur-
ing the gel effect, which could destabilize the control. 

The GA encoding used was the same as for the of

fline training of the network. For the online applica-
tion, the algorithm used was coded in the Object 
Pascal language, programmed in the Borland Del-
phi compiler. A population of 100 individuals was 
used for the GA and, according to the capacity of the 
computer installed in the plant for data acquisition 
and control strategy implementation, 140 generations 
were used without affecting the processing of other 
activities of the controller in the time available. 

As it is not possible to ensure that the network 
obtained by adjusting parameters, in each new inter-
val for 140 generations, is always better than what 
was implemented in a past instant, or even that 
which was trained offline, the algorithm presented by 
Marcolla et al. (2009) was used in order to avoid, at 
any given moment, the use of parameters that may 
lead to a worse performance for the model. This 
could cause divergences in the solution, since the 
parameters are adapted from the values obtained in a 
previous sampling, making the control system unsta-
ble. The algorithm was developed by taking as a 
principle that, under no circumstances, a model with 
worse adjustment than that made by the offline train-
ing could be used.  

All analysis and considerations are based on the 
window of patterns used for training/adaptation. The 
criterion to decide which was the best amongst the 
three models was based on the quadratic average 
error sum, Equation (6), for the set of standards con-
sidered in the window. The model with the lowest 
sum of the quadratic average error was used in the 
control law as a prediction model. 
 
Predictive Controller Based on a Nonlinear Model 
 

A predictive controller that uses a feedforward 
neural network as an empirical model for a batch 
polymerization process was developed in this work. 
For the system studied (MISO), two variables must 
be determined, the opening of the steam flow control 
valve (U1) and the opening of the valve which allows 
the cooling water in (U2) as a function of a desired 
value for the temperature (set point). Another factor 
to be considered is the steam consumption. In any 
industrial process, the consumption of steam must be 
minimized because it results in large energy savings 
and does not require a larger generation device. 
Based on these premises, Equation (8) is proposed as 
an objective function for optimization/determination 
of control actions, which was proposed with refer-
ence to the study by Özan et al. (1998). 
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The signal sent to the valve control can change 

between 1 to 5 V, corresponding to the states of com-
pletely closed and completely open, respectively. As 
previously described, GA was used for real-time 
optimization of the objective function. In this case, 
the definition of the variable search range is required 
and was described by the following restrictions: 
U1,min ≤ U1 ≤ U1,max ; U2,min ≤ U2 ≤ U2,max, where 
U1,min=U2,min = 1 v and U1,max=U2,max = 5 v. 

The value w represents the reference trajectory 
for the process, determined by Equation (9), according 
to Camacho and Bordons (1998): 
 

       1 1
1

w t k w t k r t k
k N
       
 

 

     (9) 

 

where  is parameter with values between 0 and 1. 
Lower values of  result in a faster transition to the 
reference, r, whereas higher values cause the transi-
tion to slow down. 

The goal, when minimizing Equation (8), is to 
cause the future output )( jky   to follow the refer-

ence )( jkw   and, at the same time, minimize the 

control efforts  1 .iU k j    Observing Equation 

(8), it is clear that it has some degrees of freedom 
(N1, N2, Nu, 1, 2, and C) that can be modified to 
obtain the desired behavior of the controlled system. 
N1 and N2 indicate the time desired for the output to 
follow the reference. If N1 is set to a high value, it 
means that the errors in the first instants are not 
important.  

The coefficient C determines the importance that 
opening the valve monitored by action U1, in this 
case the steam flow control valve, has on minimizing 
the cost function. The higher the value of C, the 
more importance steam consumption will have for 
the objective function; in other words, high C values 
have a tendency to lower steam consumption. One 
should, however, assure that the term governing the 
consumption does not have a much greater im-
portance in relation to other terms in the equation, 
which would make the control inefficient. Coeffi-
cients 1 and 2 penalize sudden variations in the 
control actions. 

It should be noted that the coefficient C does not 
have financial cost units and therefore the values of J 

obtained from Equation (8) do not directly represent 
a financial value, but obviously the minimization of 
Equation (8) will result in a minimization of operat-
ing costs. 

The experiments for determining the parameters 
of the controller were conducted on the system in the 
absence of polymerization. In this case, the reactor 
was filled with water and controller performance was 
evaluated in terms of water temperature behavior 
against disturbances. After a sequence of tests, the 
following values were reached for the parameters: 
=0.6; 1=2=0.02 and C=0.01. The prediction 
horizon, N, used in all experiments was 10 for sam-
pling time, or 100 s for a control horizon, NU, of an 
interval.  

For the horizon prediction value obtained from 
the identification of the system without reaction, the 
reactor has a dynamics similar to a heating tank. In 
this case, a step disturbance was applied to the sys-
tem and the evolution of the temperature registered 
over time. Considering the system dynamics to be 
first order, the time constant was obtained. In this 
work, the prediction horizon was defined as numeri-
cally equal to the time constant determined. 

The values N1 and N2 were determined from 
Equations (10) and (11), respectively (Camacho and 
Bordons, 1998). Thus, the values used were 4 and 15 
intervals, respectively. 
 

 1 1 2min , 1 N d d           (10) 
 

 2 1 2max , 1  N d d N          (11) 
 

The simplified block diagram that shows the pre-
dictive control system used for the process of sus-
pension polymerization of styrene is presented in 
Figure 6. 
 
 

RESULTS AND DISCUSSION 
 

As the first step of the experiments, involving the 
analysis of the control system, the parameters of the 
objective function have to be obtained and the analy-
sis of their effects on the controller performance 
evaluated. Their values were determined from em-
pirical assessments of the behavior of the process 
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response to disturbances in the set point of the step 
and ramp type, with an analysis of the controller 
acting as a servo. Because for much of the reaction 
time the process temperature should be kept fixed at 
a given value, one should also evaluate the perfor-
mance of the controller acting as a regulator. 

 
 
Figure 6: Simplified block diagram of the predictive 
control system. 
 

In this work we sought to emphasize that, even 
when a nonlinear controller is used, there is a need 
for online adaptation of an empirical model that was 
adjusted from data obtained for a system where no 
variations occur in the dynamic function of time 
processing. In this case, the offline FANN was 
trained to the system containing only water. How-
ever, styrene polymerization in terms of energy is 
characterized by presenting a time variant behavior. 
Thus, it is expected that the FANN with offline train-
ing needs to adapt its weights so that the controller 
can achieve better performance. Other time-varying 
influences were presented in the section above on 
Online Adaptation of FANN weights. In addition, the 
FANN is transformed into a RNN (Recurrent Neural 
Network) due to the feedback of the output value, 
i.e., the network is retrained in real time and used as 
a predictor of multiple steps ahead (the prediction 
horizon). 

Figure 7 shows the results of the temperature be-
havior and control actions for testing the controller in 
the system without reaction, using the parameter 
values shown in the previous chapter. It is noted that 
these results were the best among the various tests. 
The tests were performed using the algorithm for the 
adaptation of the model, so the behavior of the non-
linear predictive controller was evaluated using a 
recurrent feedforward network as an empirical model 
of the process. 

Through an analysis of Figure 7, it can be seen 
that the control system performed well using the 
parameters determined, acting both as a servo and as 
a regulator. For both step and ramp disturbances in 
the set point, there are transitions in which the refer-
ence was followed with few deviations. 

The following two experiments were conducted 
in order to provide a performance comparison be-
tween the controller based on the static network 
trained offline and the controller using the network 
with recurrent online adaptation. In tests, the styrene 
polymerization reaction with an initiator concentra-
tion of 1.578x10-3 gmolBPO.gmol-1

Styrene was used. 
The other reaction conditions were presented in the 
previous sections. Figures 8 and 9 show the poly-
merization behavior for the control system using the 
fixed parameter model and recurrent parameter 
adaptation, respectively. 

By comparing Figures 8 and 9, we can see that 
the adapted model exhibited performance superior to 
the model without adaptation. In Figure 8 it can be 
seen that the controller had a good performance in 
the initial periods of the reaction, the first 2 hours, 
but was not satisfactory for the remainder of the 
batch. The occurrence of a high offset in some sec-
tions (3 to 4 °C), denounces unforeseen disturbances 
that occurred in the model for the reaction. Oscilla-
tions that occurred in the steam pressure supplied by 
the boiler were apparently lower than required for 

 

Figure 7: Performance test of the control system for the process without reaction. (a) Temperature 
behavior. (b) Control actions behavior. 
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Figure 8: Controller performance analysis for the system with the static network trained offline. (a) 
Temperature behavior. (b) Control actions behavior. 

Figure 9: Controller performance analysis for the system with the recurrent network adapted online. (a) 
Temperature behavior. (b) Control actions behavior. 

 
 
obtaining of standards to offline training. Because 
temperature has an influence on the polymerization 
kinetics and, therefore, on the final properties of the 
polymer, deviations such as these for long reaction 
periods are undesirable (Sacks et al., 1973; Erdogan 
et al., 2002; Hosen and Hussain, 2012). These devia-
tions are not observed in Figure 9, showing that pos-
sible changes in the dynamics of the process during 
the reaction were identified by online training. Fur-
thermore, from the behavior shown in Figure 9, it is 
clear that the control actions were not longer oscilla-
tory depending on model adaptation, that is, the con-
troller with the adaptive model did not lose robust-
ness with respect to the fixed parameters model and, 
additionally, managed to eliminate the offset. 

One can also evaluate the controller performance 
by relations based on integral error criteria (Table 2): 
the IAE (Integral of the absolute value off the error), 
ISE (Integral of the squared error) e ITAE (Integral 
of the time-weighted absolute error) (Seborg et al., 
1989). For the same time interval, the results show 
that the controller using a neural network trained 
online performed better, complementing the discus-
sions already presented. 

Table 2: Performance criteria for the models used 
by the controller. 
 

Model used by the controller
Control performance criteria

IAE ISE ITAE 
Network with offline training 
(Figure 8) 

12.819 103.753 49.716 

Network with online training 
(Figure 9) 

4.266 26.638 9.849 

 
The test shown in Figure 9 was also monitored 

for the time required for data acquisition, training the 
neural network and optimizing the controller objec-
tive function. It was verified that, on average, the 
time spent was 6 s (on a 500 MHz PC-Intel Pentium 
III) and never exceeded 8 s. Thus, on average, 60% 
of the IOS time available for sampling was used. 
Therefore, there was no problem regarding the time 
available for implementation of control actions. 

Figure 10 shows calculated values for the model 
parameters (a) and values of the objective function 
for the original and adapted network (b) throughout 
the reaction period shown in Figure 9. As presented, 
only the weights and bias of the neuron of the output 
layer of the network are adapted, and the others are 
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held fixed at the values determined by offline train-
ing. Values of wi represent the weights of the neuron 
of the output layer connected to each neuron in the 
middle layer. 

It is noted that, at certain moments, the parameter 
variation is higher, probably because the greatest 
deviations occurred between the model prediction 
and the actual process variable. These deviations are 
caused by disturbances that occur during the reaction 
period. In the case of Figure 10b, it is quite clear 
that, in all intervals and throughout the reaction pe-
riod, the value of the objective function (sum of 
quadratic error) is much lower than for the network 
with adapted parameters and that the values of the 
adapted network are very close to zero, the optimal 
value for the function. It is also important to note 
that the value of the objective function has less 
oscillation for the adapted network than for the 
network with fixed parameters. 

A comparison between values predicted from the 
network with adapted parameters and real values for 

the process temperature is showed in Figure 11. The 
comparison was always made for instant {k+min 
(d1,d2)}, considering k as the interval in which the 
calculated control actions are implemented. For the 
process studied, min(d1,d2)=3, and thus comparisons 
were made for (k+3). By analyzing Figure 9 it can be 
concluded that there was an excellent representation 
of the process by the empirical model with a devia-
tion not exceeding 0.2 °C during the reaction pe-
riod, an error of approximately 0.3% when consider-
ing the controller range. 

The last two tests were conducted in order to test 
the control strategy with online adaptation of net-
work weights in reactions, when the initiator concen-
tration was changed, the transitional form between 
set points occurred at the start of the reactor and even 
the inclusion of recovered material (GPPS - General 
Purpose Polystyrene) in the reaction mass. These test 
reactions used 10% GPPS in the reaction load. The 
other reaction conditions were the same as those 
presented in the previous section. 

 

Figure 10: (a) Calculated FANN parameters. (b) Comparison between the values of the objective function 
for the original and adapted network. 

 

 

Figure 11: Comparison between the real process values 
and those provided by the network with online adaption 
of its parameters, for the instant (k+min(d1,d2)). 
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Figure 12 shows the results for the reaction 
started with a BPO concentration of 2.260x10-3 
gmolBPO.gmol-1

Styrene. For this experiment, a transi-
tion ramp between 60 °C and 90 °C, with a rate of 
1.2 °C/min, was used. Figure 13 shows the results 
for the reaction started with a BPO concentration of 
2.713x10-3 gmolBPO.gmol-1

Styrene. For this experiment, 
a ramp transition between 60 °C and 90 °C, with a 
rate 0.45 °C/min, was used. 

It can be verified that the performance of the con-
troller was good, doing the ramp transition according 
to the desired reference and keeping the temperature 
at the set point during the polymerization period. 
This behavior is needed for the reaction to occur as 
planned and in accordance with the optimized oper-
ating conditions to obtain the desired molecular 
weight for the polystyrene produced. Reaction tem-
perature and temperature profile used in the course 
of the reaction have a high influence on the molecu-
lar weight distribution (MWD) of the polymer pro-
duced. Several studies have explored these variables 
in order to produce a polymer with the desired quality 
in terms of MWD (Wu et al., 1982; Özan et al., 
1998; Takamatsu et al., 1988; Kiparissides et al., 

2002, Sheibat-Othmana, 2011, Zhang and Zhang, 
2011). Thus, a controller that has the ability to main-
tain the temperature at the set point, in addition to 
allowing transitions between set points in different 
ways (step quickly and without the occurrence of 
overshoot and ramp with the desired variation range) 
ensures that the goal is reached. 

Regarding the strategy of penalizing the steam 
consumption by the inclusion of another term in 
the objective function of the control law, Equation 
(8), Figures 7, 8, 9, 12 and 13 demonstrate that it 
was successful. In the results for the reaction sys-
tem, it was observed that the valve used for cool-
ing remains fully closed virtually throughout the 
reaction time. Thus, the need for steam was kept to 
a minimum to maintain the temperature at the de-
sired set point (90 °C). If the split-range strategy 
were used, an intermediate value for opening the 
steam valve, U1, would correspond to a comple-
mentary value for opening the valve, which allows 
for a cooling water input, U2. Thus, to compensate 
for this action, a greater amount of steam would be 
required, increasing costs in terms of energy con-
sumption. 

 

Figure 12: Performance of the controller for the reaction initiated with a BPO concentration of 
2.260x10-3 gmolBPO.gmol-1

Styrene. (a) Temperature behavior. (b) Control actions behavior. 
 

Figure 13: Performance of the controller for the reaction initiated with a BPO concentration of 2.713x10-3 
gmolBPO.gmol-1

Styrene. (a) Temperature behavior. (b) Control actions behavior. 
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CONCLUSIONS 
 

In this study, a predictive controller using a feed-
forward neural network with online adaptation of the 
parameters was used in the temperature control of a 
batch process for the styrene suspension polymeriza-
tion reaction. The control algorithm with online 
adaptation of the empirical model showed good re-
sults in the control system studied. The results, espe-
cially in relation to the presence of off-set, were 
much better than those presented by the controller 
based on the fixed parameter model. The presence of 
random disturbances not identified by the patterns 
used in the offline training of the network could have 
been the main reason for this behavior. The online 
adaptation of the network weights allowed the pre-
diction of future states with relative accuracy, which 
contributed to the good performance of the predic-
tive controller.  

The controller implemented also showed a good 
performance in set-point changes, ensuring rapid 
transitions in step changes, with no occurrence of 
overshoot, in addition to maintaining the desired 
reference in the ramp transitions. Beyond the need to 
adjust the parameters, it was also observed that the 
recurrent network training output feedback per-
formed well. For this task, the genetic algorithm 
technique proved to be very efficient and possible 
implement in control systems in real time. The versa-
tility of the objective function of the predictive con-
troller successfully enabled the inclusion of a steam 
consumption penalty term for temperature control of 
the styrene polymerization reaction. Thus, it was 
possible to maintain the system at the desired tem-
perature with minimal steam consumption, which 
reduces the energy costs of the polymerization system. 
 
 

REFERENCES 
 
Alvarez, L. A. and Odloak, D., Optimization and 

control of a continuous polymerization reactor. 
Brazilian Journal of Chemical Engineering, 29(4), 
p. 807-820 (2012). 

Billmeyer, F. W., Textbook of Polymer Science. John 
Willey and Sons Inc., 3rd Ed., New York (1984). 

Bindlish, R. and Rawlings, J. B., Target linearization 
and model predictive control of polymerization 
processes. AIChE Journal, 49(11), p. 2885-2899 
(2003). 

Camacho, E. F. and Bordons, C., Model Predictive 
Control. Springer Publishers, London, (1998). 

Chen, C., Continuous production of solid polysty-
rene in back-mixed and linear-flow reactors. 

Polymer Engineering and Science, 40(2), p. 441-
464 (2000). 

Claumann, C. A., Modelagem dinâmica e controle de 
processos não lineares: Uma aplicação de algorit-
mos genéticos para treinamento de redes neurais 
recorrentes. Masters Dissertation, Federal Univer-
sity of Santa Catarina, Florianópolis (1999). (In 
Portuguese). 

Crowley, T. J. and Choi, K. Y., Experimental studies 
on optimal molecular weight distribution control 
in a batch-free radical polymerization process. 
Chemical Engineering Science, 53(15), p. 2769-
2790 (1998). 

Cubillos, F. A., Acuña, G., Lima, E. L., Real-time 
process optimization based on grey-box neural 
models. Brazilian Journal of Chemical Engineer-
ing, 24(3), p. 433-443 (2007). 

De Souza Jr., M. B., Pinto, J. C. and Lima, E. L., 
Control of a chaotic polymerization reactor: A 
neural network based model predictive approach. 
Polymer Engineering and Science, 36(4), p. 448-
457 (1996). 

Erdogan, S., Alpbaz, M. and Karagöz, A. R., The 
effect of operational conditions on the perfor-
mance of batch polymerization reactor control. 
Chemical Engineering Journal, 86, p. 259-268 
(2002). 

Fernandes, F. A. N. and Lona, L. M. F., Neural net-
work applications in polymerization processes. 
Brazilian Journal of Chemical Engineering, 22(3), 
p. 401-418 (2005). 

Hosen, M. A., Hussain, M. A. and Mjalli, F. S., Con-
trol of polystyrene batch reactors using neural net-
work based model predictive control (NNMPC): 
An experimental investigation. Control Engineer-
ing Practice, 19, p. 454-467 (2011). 

Hosen, M. A. and Hussain, M. A., Optimization and 
control of polystyrene batch reactor using hybrid 
based model. Computer Aided Chemical Engi-
neering, 31, p. 760-764 (2012). 

Houck, C. R., Joines, J. A. and Key, M. G., A genetic 
algorithm for function optimization: A Matlab im-
plementation. Available in: <http://citeseerx.ist. 
psu.edu/viewdoc/summary?doi=10.1.1.22.4413> 
(Accessed in September 2011). 

Huang, Y. J. and James, Lee, L., Optimization of 
diffusion-controlled free radical polymerizations 
in a distributed parameter system. Chemical Engi-
neering Science, 44(2), p. 363-376 (1989). 

Janakiraman, V. M., Nguyen, X. and Assanis, D., 
Nonlinear identification of a gasoline HCCI en-
gine using neural networks coupled with principal 
component analysis. Applied Soft Computing, 13, 
p. 2375-2389 (2013). 



 
 
 
 

190                 A. Cancelier, C. A. Clauman, A. Bolzan and R. A. F. Machado 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

Kiparissides, C., Seferlis, P., Mourikas, G. and Mor-
ris, A. J., On-line optimizing control of molecular 
weight properties in batch free-radical polymeri-
zation reactors. Industrial Engineering Chemistry 
Research, 41(24), p. 6120-6131 (2002). 

Krothapally, M. and Palanki, S., A neural network 
strategy for batch process optimization. Comput-
ers Chemical Engineering, 21, Suppl., p. S463-
S468 (1997). 

Ławryńczuk, M., Explicit nonlinear predictive con-
trol algorithms with neural approximation. Neu-
rocomputing: http://dx.doi.org/10.1016/j.neucom. 
2013.09. 002i (2013). 

Marcolla, R. F., Machado, R. A. F., Cancelier, A., 
Claumann, C. A. and Bolzan, A., Modeling tech-
niques and processes control application based on 
neural networks with on-line adjustment using 
genetic algorithms. Brazilian Journal of Chemical 
Engineering, 26(1), p. 113-126 (2009). 

Ng, C. W. and Hussain, M. A., Hybrid neural net-
work-prior knowledge model in temperature con-
trol of a semi-batch polymerization process. 
Chemical Engineering and Processing, 43, p. 559-
570 (2004). 

Özkan, G., Hapoglu, H. and Alpbaz, M., Generalized 
predictive control of optimal temperature profiles 
in a polystyrene polymerization reactor. Chemical 
Engineering and Processing, 37, p. 125-139 (1998). 

Prasad, V., Schley, M., Russo, L. P. and Bequette, B. 
W., Product property and production rate control 
of styrene polymerization. Journal of Process 
Control, 12, p. 353-372 (2002). 

Qiao, J. F. and Han, H. G., Identification and model-
ing of nonlinear dynamical systems using a novel 
self-organizing RBF-based approach. Automatica, 
48 p. 1729-1734 (2012). 

Sacks, M. E., Lee, Soo-II and Biesenberger, J. A., 
Effect of temperature variations on molecular 
weight distribution: Batch, chain addition polymer-
izations. Chemical Engineering Science, 28, p. 
241-257 (1973). 

Santos, J. C., Lopes, C. N., Reis, M. M., Giudici, R., 

Sayer, C., Machado, R. A. F. and Araújo, P. H. H., 
Comparison of techniques for the determination 
of conversion during suspension polymerization 
reactions. Brazilian Journal of Chemical Engi-
neering, 25(2), p. 399-407 (2008). 

Seborg, D. E., Edgar, T. F. and Mellichamp, D. A., 
Process Dynamics and Control. John Wiley & 
Sons, New York (1989). 

Sheibat-Othmana, N., Othmana, S., Boyronb, O. and 
Alamirc, M., Multivariable control of the polymer 
molecular weight in emulsion polymerization pro-
cesses. Journal of Process Control, 21, p. 861-873 
(2011). 

Takamatsu, T., Shioya, S. and Okada, Y., Molecular 
weight distribution control in a batch polymeriza-
tion reactor. Industrial Eng. Chemistry Research, 
27, p. 93-99 (1988). 

Vieira, R. A. M., Embiruçu, M., Sayer, C., Pinto, J. 
C. and Lima, E. L., Control strategies for complex 
chemical processes. Applications in Polymer-
ization Processes, Computers and Chemical 
Engineering, 27, p. 1307-1327 (2003). 

Wu, G. Z. A., Denton, L. A. and Laurence, R. L., 
Batch polimerization of styrene: Optimal tem-
perature histories. Polymer Engineering and Sci-
ence, 22(1), p. 1-8 (1982). 

Yu, D. W. and Yu, D. L., Neural network control of 
multivariable processes with a fast optimization 
algorithm. Neural Comput & Applic., 12, p. 185-
189 (2003). 

Zeybek, Z., Yüce, S., Hapoglu, H. and Alpbaz, M., 
Adaptive heuristic temperature control of a batch 
polymerization reactor. Chemical Engineering 
and Processing, 43, p. 911-920 (2003). 

Zhang, J. A., Reliable neural network model based 
optimal control strategy for a batch polymeriza-
tion reactor. American Chemical Society, p. A-I 
(2003). 

Zhang, Y. and Zhang, P., Optimization of nonlinear 
process based on sequential extreme learning ma-
chine. Chemical Engineering Science, 66, p. 4702-
4710 (2011). 

 


