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Abstract - A second-law analysis of a gravity-driven film of non-Newtonian fluid along an inclined heated plate is 
investigated. The flow is assumed to be steady, laminar and fully-developed. The upper surface of the liquid film is 
considered to be free and adiabatic. The effect of heat generation by viscous dissipation is included. Velocity, 
temperature and entropy generation profiles are presented. The effects of the flow behaviour index, the Brinkman 
number and the group parameter on velocity, temperature and entropy generation number are discussed. The results 
show that velocity profile depends largely on the flow behaviour index. They are flat near the free surface for 
pseudoplastic fluids and linear for dilatant fluids. Temperature profiles are higher for higher flow behaviour index 
and Brinkman number. The entropy generation number increases with Brinkman number and the group parameter 
because of the heat generated by the viscous dissipation effect. For pseudoplastic fluids, the irreversibility is 
dominated by heat transfer, whereas, for dilatant fluids, irreversibility due to fluid friction is more dominant.      
 Keywords: Entropy generation; Non-Newtonian; Power-law fluids; Second-law; Viscous dissipation. 

 
 
 

INTRODUCTION 
   

Fluid flow and heat transfer characteristics in 
falling liquid films along inclined plates at different 
boundary conditions are one of the fundamental 
researches in engineering. Studies of simpler systems 
are useful to understand some important features of 
complex combinations forming processes in many 
fields of science and technology. These basic 
geometries are common in many engineering 
applications as sole units or as a global entity.     

Entropy generation is closely associated with 
thermodynamic irreversibility, which is encountered 
in all heat transfer processes. Different sources are 
responsible for the generation of entropy, such as 

heat transfer across finite temperature gradient, 
characteristic of convective heat transfer, viscous 
effect, etc. Bejan (1982; 1996) focused on the 
different reasons behind entropy generation in 
applied thermal engineering. Bejan (1979) presented 
a simplified analytical expression for the entropy 
generation rate in a circular duct with imposed heat 
flux at the wall. This analysis is then extended by 
calculating the optimum Reynolds number as a 
function of the Prandtl number and the duty 
parameter. Sahin (1998) introduced the second-law 
analysis to a viscous fluid in a circular duct with 
isothermal boundary conditions. In another paper, 
Sahin (1999) presented the effect of variable 
viscosity on the entropy generation rate for a heated 
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circular duct. A comparative study of the entropy 
generation rate inside ducts of different shapes 
(circular, triangular, square etc.) and the 
determination of the optimum duct shape subject to 
isothermal boundary condition for laminar flow were 
carried out by Sahin (1998). Narusawa (1998) gave 
an analytical and numerical analysis of the second-
law for flow and heat transfer inside a rectangular 
duct. In a more recent paper, Mahmud and Fraser 
(2003) applied the second-law analysis to 
fundamental convective heat transfer problems. They 
analysed the second-law characteristics of heat 
transfer and fluid flow due to forced convection of 
steady-laminar flow of incompressible fluid inside a 
channel with circular cross-section and channel made 
of two parallel plates. Different problems are 
discussed with their entropy generation profiles and 
heat transfer irreversibility characteristics. In each 
case, analytical expressions for entropy generation 
number and Bejan number are derived in 
dimensionless form using velocity and temperature 
profiles. In another paper, Mahmud and Fraser 
(2002) investigated analytically the first and second 
law characteristics of fluid flow and heat transfer 
inside a channel having two parallel plates with finite 
gap between them. Fully developed forced 
convection is considered. Fluid is assumed to be 
non-Newtonian and follow the power law model. 
Analytical expressions for dimensionless entropy 
generation number, irreversibility distribution ratio 
and Bejan number are determined as a function of 
dimensionless distance, Peclet number, Eckert 
number, Prandtl number, dimensionless temperature 
difference and fluid behaviour index. Spatial 
distribution of entropy generation number, 
irreversibility ratio and Bejan number are presented 
graphically. The same authors (Mahmud and Fraser, 
2002) reported, in terms of local and average entropy 
generation, the inherent irreversibility of fluid flow

and heat transfer for non-Newtonian fluids in a pipe 
and a channel made of two parallel plates. They 
assumed the flow to be fully developed with a 
uniform heat flux at the duct wall. They applied the 
first and the second laws of thermodynamics to 
develop expressions for dimensionless entropy 
generation number, irreversibility ratio and Bejan 
number as function of geometric, fluid and flow 
parameters.      

However, in these analyses concerning non-
Newtonian fluids, the influence of viscous 
dissipation is omitted. The present paper aims at 
analysing the mechanism of entropy generation in a 
gravity-driven laminar film of a non-Newtonian fluid 
along an inclined heated plate, taking care of the 
presence of viscous dissipation effect. 
 
 

ANALYSIS 
 
The physical configuration is illustrated 

schematically in Fig. 1. The falling liquid, driven by 
gravity, flows a down flat heated plate inclined at an 
angle θ  to the horizontal. It is assumed that the flow 
is laminar and fully developed. The liquid surface is 
waveless, free and adiabatic. 

The non-Newtonian fluid used in this study is the 
power-law model (Ostwald-de Waele fluid). Such 
fluids are characterized by the following rheological 
law:      
 

( ) nu y
K

y
∂⎛ ⎞

τ = ⎜ ⎟∂⎝ ⎠
                                      (1) 

 
where n  is the flow behaviour index and K  is the 
consistency of the fluid. A fluid is pseudoplastic 
when n 1≺ , Newtonian when n 1= , and dilatant 
when n 1; .    
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Figure 1: Schematic diagram of the problem under consideration. 
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Neglecting the inertia terms in the momentum 
equation compared with the body force term, the 
momentum equation reduces to the following form: 
 

( ) nu y
K gsin 0

y y
∂⎛ ⎞∂

+ρ θ =⎜ ⎟∂ ∂⎝ ⎠
                      (2) 

 
The associated boundary conditions are: 
 
No-slip condition  
 

( )u 0 0=                                 (3a) 
 
Free surface condition 
 

( )u
0

y
∂ δ

=
∂

                    (3b) 

 
The velocity distribution is obtained by 

integrating Eq. (2) and using the boundary conditions 
given by Eqs. (3a) and (3b). It may be written: 
 

( )
n 1
n

m
yu y u 1 1

+⎡ ⎤
⎛ ⎞⎢ ⎥= − −⎜ ⎟⎢ ⎥δ⎝ ⎠

⎢ ⎥⎣ ⎦

                             (4) 

 
where mu is the velocity at the free surface: 
 

1 n 1
n n

m
n gsinu

n 1 K

+
ρ θ⎛ ⎞= δ⎜ ⎟+ ⎝ ⎠

                          (5) 

 
The mass flow rate of the liquid is: 
 

( )
0

Q u y dy
δ

= ρ∫                                         (6) 

 
from which the liquid film thickness may be 
computed: 
 

m

2n 1 Q
n 1 u
+

δ =
+ ρ

                              (7) 

 
Combining Eqs. (5) and (7), we obtain an 

expression for the liquid film thickness: 
 

( ){ } ( ){ } ( )n 2n 11 nn 12n 1 n Q gsin K
+

+⎧ ⎫δ = + ρ θ⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭
 (8) 

 
The governing energy equation is: 
 

( ) ( ) ( ) n 12

2
P

T x,y T x,y K u(y)u y a
x C yy

+∂ ∂ ⎛ ⎞∂
= ⎜ ⎟∂ ρ ∂∂ ⎝ ⎠

       (9) 

 

subject to the following boundary conditions: 
 
Inlet condition 
 

( ) 0T 0,y T=                   (10a) 
 
Wall heat flux 
 

( )T x,0
q

y
∂

−λ =
∂

                             (10b) 

 
Adiabatic surface 
 

( )T x,
0

y
∂ δ

=
∂

                                (10c) 

 
The equation of energy can be transformed into a 

dimensionless form by introducing the following 
dimensionless variables: 
 

2
m

axX
u

=
δ

,  yY =
δ

, TΔ = qδ λ                    (11) 

 

( ) ( )
m

u y
U Y

u
= , ( ) ( ) 0T x,y T

X,Y
T
−

Θ =
Δ

     (12) 

 
The transformation yields: 
 

( ) ( ) n 12

2
X,Y X,Y U(Y)U(Y) Br
X YY

+∂Θ ∂ Θ ∂⎛ ⎞= + ⎜ ⎟∂ ∂∂ ⎝ ⎠
    (13) 

 

Br =
n 1 n 1

n 1 2n 1
2n 1 KQ
n 1 q

+ +

+ +
+⎛ ⎞

⎜ ⎟+ ρ δ⎝ ⎠
  

 
is the Brinkman number. 
 
The transformed boundary conditions are: 
 

( )0,Y 0Θ =                           (14a) 
 

( )X,0
1

Y
∂Θ

= −
∂

                                  (14b) 

 
( )X,1

0
Y

∂Θ
=

∂
                              (14c) 

 
To get a solution of Eq. (13), a separation of 
variables solution is assumed in the following form 
(Arpaci and Larsen, 1984): 
 
( ) ( ) ( ) ( ) ( )1 2 1 2X,Y X Y X YΘ = Θ Θ +Θ +Θ       (15) 
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The first term on the right-hand side of Eq. (15) is 
significant for decaying initial transition and 
entrance effects, the second term is significant for 
axial temperature rise due to accumulated wall heat 
flux and the third term is significant for transverse 
temperature variation due to wall heat flux into fluid. 
Neglecting the entrance effect and assuming that the 
system already passed the decaying initial transition, 
then the first term at the right-hand side of Eq. (15) 
will disappear (Mahmud and Fraser 2002; 2003). 
Combination of Eq. (15) and Eq. (13) leaves two 
separate ordinary equations connected by a scalar 
constant α : 
 

( )1 X
X

∂Θ
= α

∂
                            (16) 

 
( ) ( )

( )

2 n 1
2 n2

n 1 n 1
n

Y
1 1 Y

Y

n 1 Br 1 Y
n

+

+ +

∂ Θ ⎡ ⎤
= α − −⎢ ⎥∂ ⎣ ⎦

+⎛ ⎞− −⎜ ⎟
⎝ ⎠

                (17) 

 
Integrating Eqs. (16) and (17) and applying 

boundary conditions described in Eq. (14), the 
expression for the dimensionless temperature is 
obtained in the following form: 
 

( )

( )( ) ( )

( )( ) ( )

2

2 3n 1
n

n 1
2

3n 1
n 1

X,Y X Y
2

n 1 Y
2n 1 3n 1

n 1n Br
n 1 Y C Y C

2n 1 3n 1

+

+

+

α
Θ = α +

α
− −

+ +

+⎛ ⎞
⎜ ⎟
⎝ ⎠− − + +
+ +

    (18)   

 
where α  and 1C  are:        
 

n 1n 12n n Br 1
n
n 1

++⎛ ⎞+ +⎜ ⎟
⎝ ⎠α =

+
 ,  1C = −α        (19)  

 
To obtain the constant of integration C , we use the 
mean bulk temperature, defined as: 
 

( ) ( ) ( )
1

b
A 0

1X X,Y dA X,Y dY
A

Θ = Θ = Θ∫ ∫        (20) 

Since Eq. (14a) requires ( )b 0 0Θ = , the constant of  
integration is: 
 

( )( )( )

( )( )( )

3

n 1
3

nC
2n 1 3n 1 4n 1

n 1n Br
n

2n 1 3n 1 4n 1 3

+

α
= +

+ + +

+⎛ ⎞
⎜ ⎟ α⎝ ⎠ +

+ + +

          (21) 

 
 

ENTROPY GENERATION RATE 
 

The entropy generation rate according to 
Mahmud and Fraser (2002) is:  
 

( ) ( )

( )

2 2

G 2
0

n 1

0

T x,y T x,y
S

x yT

u yK
T y

+

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞λ ⎢ ⎥= +⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∂⎛ ⎞
+ ⎜ ⎟∂⎝ ⎠

        (22) 

 
The entropy generation number may be defined as:  
 

2
0

S G2
TN S
q
λ

=                (23) 

 
Using the definitions of dimensionless velocity and 
temperature, the following expression is obtained for 
the entropy generation number: 
 

( ) ( )

( )

2 2

S 2

n 1

C Y F

X,Y X,Y1N
X YPe

U YBr N N N
Y

+

∂Θ ∂Θ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂⎛ ⎞
+ = + +⎜ ⎟Ω ∂⎝ ⎠

        (24) 

 

In the above equation, Pe =
P

2n 1 QC
n 1
+⎛ ⎞ λ⎜ ⎟+⎝ ⎠

 is the 

Peclet number, which determines the relative 
importance between convection and diffusion, Br  is 
the Brinkman number, which determines the relative 
importance between viscous dissipation effects and 
fluid conduction, Ω = 0T TΔ is the dimensionless 
temperature difference. On the right-hand side of Eq. 
(24), the first term represents the entropy generation 
by heat transfer due to axial conduction, the second 
term accounts for entropy generation due to the 
transverse direction and the third is the part of the 
entropy generation due to the fluid friction.  
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RESULTS AND DISCUSSION 
 

Dimensionless axial velocity profiles are plotted 
as a function of dimensionless transverse distance in 
Fig. 2 for five different values of the flow behaviour 
index. For pseudoplastic fluids ( n 1≺ ), velocity 
profiles remain flat near the free surface and this 
flatness decreases with the increase of the low 
behaviour index. For Newtonian fluids ( n 1= ), the 
dimensionless axial velocity shows the usual semi-
parabolic shape. For dilatant fluids ( n 1; ), velocity 
profiles approach a linear shape as the flow 
behaviour index increases.  

Dimensionless temperature profiles are plotted in 
Fig. 3 for the same range of the flow behaviour index. 
For the present boundary condition, temperature is 
maximum at the wall where a heat flux is imposed and 
minimum at the free surface whatever the value of the 
flow behaviour index is. For a particular transverse 
distance, the temperature is higher for a higher flow 

behaviour index. This means that dilatant fluids heat 
more easily than pseudoplastic fluids. 

The axial variations of the dimensionless 
temperature profiles are plotted in Figs. 4 and 5 for 
pseudoplastic fluids ( n 0.2= ) and dilatant fluids 
( n 5.0= ). In all cases, the temperature increases in 
the axial direction because of the continuous heating 
of the wall.  

The effect of the Brinkman number on the 
temperature is illustrated in Figs. 6 and 7 for 
pseudoplastic fluids ( n 0.2= ) and for dilatant fluids 
( n 5.0= ). The temperature increases as the 
Brinkman number increases either for pseudoplastic 
fluids or dilatant fluids. As the Brinkman number, 
which determines the relative importance between 
viscous dissipation effects and fluid conduction, 
increases, more heat is generated by the viscous 
dissipation effect in the fluid. This generated heat by 
viscous dissipation effect results in higher 
temperature profiles. 
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In Figs. 8 and 9, the entropy generation number is 
plotted as a function of the dimensionless transverse 
distance for different values of the Brinkman number 
for pseudoplastic fluids ( n 0.2= ) and dilatant fluids 
( n 5.0= ). In all cases, no entropy is generated at the 
free surface where both velocity and temperature are 
maximum (or minimum), which cause zero velocity 
and temperature gradients, leaving no contribution to 
the entropy generation number (second and third 
term of Eq. (24)).  

For a particular transverse distance, the 
magnitude of the entropy generation number is 
higher for higher Brinkman numbers because of the 
heat generated by the viscous dissipation effect. In 
the case of pseudoplastic fluids ( n 0.2= ), the 
entropy generation number decreases along the 
transverse distance to reach zero at the free surface. 
This can be explained by the fact that, for 
pseudoplastic fluids, the velocity profile is flat near 
the free surface leaving no contribution of fluid 
friction on entropy generation. Therefore, the 
irreversibility is mainly dominated by heat transfer. 
For dilatant fluids ( n 5.0= ), for a particular 
transverse distance, the entropy generation number 
shows a maximum near the wall as the Brinkman 
number increases. According to Fig. 2, the velocity 
profile is nearly linear (high velocity gradient);, this 
means that the contribution of fluid friction to 

entropy generation number increases. Thus, for 
dilatant fluids, the irreversibility is dominated by 
fluid friction.    

Figs. 10 and 11 show the distribution of the 
entropy generation number as function of the 
transverse distance at different values of group 
parameter ranging from 0.2 to 1. No entropy 
generates at the free surface where both velocity and 
temperature are maximum (or minimum) which 
cause zero velocity and temperature gradients, 
leaving no contribution to the entropy generation 
number (second and third term of Eq. (24)) for all 
values of group parameter. For a particular 
transverse distance, the entropy generation number is 
higher for higher group parameter. For pseudoplastic 
fluids ( n 0.2= ), the entropy generation number 
decreases with the transverse distance and does not 
show maxima except for the case where 
( 1Br 0.2−Ω = ). This means that the irreversibility is 
dominated by heat transfer and the wall acts as a 
strong concentrator of irreversibility. For dilatant 
fluids ( n 5.0= ), the contribution of fluid friction on 
entropy generation number is dominant, the entropy 
generation number shows maxima near the wall. 
Comparing the magnitude of entropy generation 
number for pseudoplastic and dilatant fluids, the 
results show that irreversibility is more pronounced 
for pseudoplastic fluids.     
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Figure 8: Entropy generation number.    Figure 9: Entropy generation number. 
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CONCLUSION 
 

The second-law analysis is applied to a gravity-
driven, laminar, non-Newtonian liquid film with free 
and adiabatic surface. The heat generation by viscous 
dissipation is included in the analysis. Analytical 
expressions for velocity and temperature within the 
film are provided as a function of the flow behaviour 
index and the Brinkman number. The effects of the 
flow behaviour index, the Brinkman number and the 
group parameter on entropy generation number are 
discussed. From the results the following 
conclusions could be drawn: 
a) Velocity profile depends largely on the flow 
behaviour index. They are flat near the free surface 
for pseudoplastic fluids and linear for dilatant fluids. 
b) Temperature profiles shift to higher temperatures 
with an increasing flow behaviour index.   
c) For pseudoplastic fluids and dilatant fluids, 
temperature profiles increase with the axial distance 
because of the continuous heating of the wall. 
d) As the Brinkman number increases, the 
temperature profile increases because of the heat 
generated by the viscous dissipation effect. 
e) The entropy generation number increases with the 
Brinkman number and the group parameter.  This is 
due to the heat generated by the viscous dissipation 
effect.  
f) For pseudoplastic fluids, the irreversibility is 
dominated by heat transfer, whereas for dilatant fluids, 
irreversibility due to fluid friction is more dominant.  

Nevertheless, it is necessary to carry out further 
analyses and calculations for different geometries 
and non-Newtonian fluids other than those obeying 
the power-law model.  
 
 

NOMENCLATURE  
 
a  thermal diffusivity m2/s
A  area m2

Br  Brinkman number (-)
C  constant of integration (-)

1C  constant of integration (-)

PC  specific heat J/kg.K
g  gravitational acceleration m/s2

K  consistency of the fluid Pa.sn

n  flow behaviour index (-)

CN  entropy generation, axial 
conduction 

(-)

FN  entropy generation, fluid 
friction 

(-)

SN  entropy generation number, (-)

total 

YN  entropy generation number, 
transverse conduction 

(-)

Pe  Peclet number (-)
q  wall heat flux  W/m2

Q  liquid mass flow rate  kg/m.s

GS  entropy generation rate W/m3.K

T  temperature K
u  axial velocity m/s
U  dimensionless axial velocity (-)
x  axial distance m
X  dimensionless axial distance (-)
y  transverse distance m
Y  dimensionless 

transversetance 
(-)

 
Greek Symbols 
 
α  scalar constant (-)
δ  thickness of the liquid film m

TΔ  reference temperature 
difference 

K 

λ  thermal conductivity W/m.K
θ  inclination angle rad
Θ  dimensionless temperature (-) 
Ω  dimensionless temperature 

difference 
(-)

ρ  density of the fluid kg/m3

τ  shear stress  Pa
 
Subscripts  
 
b  bulk value  
m  maximum value  
0  inlet value, reference value  
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