
 
 
 
 
 
 
 
 
 

  ISSN 0104-6632                         
Printed in Brazil 

www.abeq.org.br/bjche 
 
 

Vol. 32,  No. 04,  pp. 903 - 917,  October - December,  2015 
dx.doi.org/10.1590/0104-6632.20150324s00003518 

 
*To whom correspondence should be addressed  
 
 
 
 

Brazilian Journal 
of Chemical 
Engineering 

 
 

PREDICTION OF STABILITY AND THERMAL 
CONDUCTIVITY OF SnO2 NANOFLUID VIA 

STATISTICAL METHOD AND AN ARTIFICIAL 
NEURAL NETWORK 

 

A. Kazemi-Beydokhti1, H. Azizi Namaghi2, M. A. Haj Asgarkhani2 and S. Zeinali Heris3*  
 

1Department of Chemical Engineering, School of Petroleum and Petrochemical Engineering,  
Hakim Sabzevari University, Sabzevar, Iran. 

2Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad,  
Mashhad, Iran. 

3Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran. 
E-mail: a.kazemi@hsu.ac.ir; ha_az399@stu-mail.um.ac.ir; mahak6741@gmail.com 

*E-mail: s.zeinali@tabrizu.ac.ir 

 
(Submitted: May 24, 2014 ; Revised: November 30, 2014 ; Accepted: January 9, 2015) 

 
Abstract - Central composite rotatable design (CCRD) and artificial neural networks (ANN) have been 
applied to optimize the performance of nanofluid systems. In this regard, the performance was evaluated by 
measuring the stability and thermal conductivity ratio based on the critical independent variables such as 
temperature, particle volume fraction and the pH of the solution. A total of 20 experiments were accomplished 
for the construction of second-order polynomial equations for both target outputs. All the influential 
factors, their mutual effects and their quadratic terms were statistically validated by analysis of variance 
(ANOVA). According to the results, the predicted values were in reasonable agreement with the experimental 
data as more than 96% and 95% of the variation could be predicted by the respective models for zeta potential 
and thermal conductivity ratio. Also, ANN proved to be a very promising method in comparison with CCD 
for the purpose of process simulation due to the complexity involved in generalization of the nanofluid 
system. 
Keywords: Nanofluid; Central composite design; Artificial neural network; Statistical; Stability; Thermal 
conductivity. 

 
 
 

INTRODUCTION 
 

Nowadays, ultrahigh-performance of heating and 
cooling systems is one of the most vital needs of 
many industrial technologies, including power sta-
tions, production processes, transportation, and elec-
tronics. Many solutions such as heat surface addition 
(fins), vibration of the heated surface, injection or 
suction of fluid, applying electric or magnetic fields, 
and suspending nanoparticles with average sizes be-

low 100 nm in fluids have emerged as solutions to 
support future heat exchanging systems across the 
globe. Among the various techniques that have been 
introduced to improve the thermal performance, 
nanofluids in which nano-sized metallic or nonmetal-
lic particles are suspended uniformly in base fluids 
such as water, ethylene glycol, etc. are particularly 
promising. The nanofluids are expected to have bet-
ter thermophysical properties compared to conven-
tional heat transfer fluids (Zeinali Heris et al., 2007; 
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Das et al., 2008; Kazemi-Beydokhti et al., 2013). 
Long-term stability and thermal conductivity of 
nanofluids are important factors that have been 
widely investigated by many researchers for copper, 
aluminum, and titania nanoparticles with their oxides 
and carbon nanotubes (Murshed et al., 2005; Eastman, 
2001; Hwang, 2006; Das et al., 2003a; Jiang and 
Wang, 2010; Lee et al., 1999; Salehi et al., 2011; 
Wang and Mujumdar, 2008(a,b); Molana and Ba-
nooni, 2013).  

Factors such as temperature, particle volume 
fraction, average primary particle size (APPS), pH of 
the nanofluid, elapsed time, ultrasonication (power 
and time), additive, base fluid and nanoparticle mate-
rials affect the performance of nanofluid systems 
with different degrees of sensitivities. Kazemi-
Beydokhti et al. (2013) applied a full foldover frac-

tional factorial design (FFD) ( 7 42III
 ) in order to deter-

mine which of the factors temperature, particle 
volume fraction, APPS, pH of the nanofluid, elapsed 
time, sonication time and density of the nanoparticles 
and their binary interactions have the greatest influ-
ence on the results. The analysis of variance revealed 
that three factors, including the temperature, particle 
volume fraction and pH of the nanofluid, have the 
most significant effect on the response variable. 
Among the various types of nanoparticles, tin di-
oxide, which has excellent chemical and physical 
stability, is not widely used, although it is a cheap 
and commercially available mineral product. In addi-
tion, our previous work (Habibzadeh et al., 2010) on 
tin dioxide nanofluid confirms that these three fac-
tors have a significant effect on stability and the ther-
mal conductivity ratio. 

The traditional methods of optimization such as 
one-factor-at-a-time (OFAT) experimental technique 
for multivariable systems can be used. However it is 
well accepted that this is time-consuming, excessive 
in cost, complicated and might provide the re-
searcher with wrong conclusions. Also, factorial de-
sign is weak in estimating quadratic terms and intro-
ducing enough curvature into the response surface 
(Montgomery and Runger, 2003; Gheshlaghi, 2007; 
Gheshlaghi et al., 2008). To overcome such difficul-
ties, a neural network and a multi-step statistical op-
timization strategy involving factorial design and 
response surface methodology (RSM) have been de-
veloped to analyze the effects of the process parame-
ters on stability and the thermal conductivity of the 
nanofluid system. On the other hand, these tech-
niques are good mathematical tools to build models, 
optimize the experimental results and obtain the opti-
mal values of the output and input variables.  

To the best of our knowledge, these techniques 
have not been applied for optimization of the main 
factor levels of stability and the thermal conductivity 
ratio of nanofluids. Therefore, the main objective of 
this study was to find the optimum conditions for 
maximizing the stability and thermal conductivity 
ratio of a tin dioxide nanofluid. In this regard, three 
independent variables, including temperature, parti-
cle volume fraction and solution pH, were selected 
for modeling and optimization. 
 
 

THEORETICAL 
 
Response Surface Methodology (RSM) 
 

Designing experiments is a statistically basic 
technique to obtain the most information in order to 
improve the performance of a manufacturing process 
from the fewest experimental runs. Among the vari-
ous methods of designing experiments, response sur-
face methodology is a combination of mathematical 
and statistical techniques that are useful for modeling 
and analyzing the influence of several design varia-
bles on the response and the objective is to optimize 
this response (Montgomery and Runger, 2003; 
Gheshlaghi, 2007). The quadratic coefficients in the 
second-order model may be evaluated by applying 3 
levels (at least) for each independent factor. As the 
number of independent factors increases in 3n facto-
rial design, the number of required runs rapidly in-
creases. Obviously, this may be unacceptable and 
lead to overkill if the experiments are time-consum-
ing and costly. The central composite design (CCD) 
is a sequential design strategy which reduces the num-
ber of experiments to get close to the 2-level full fac-
torial design. Thus, 2n points of the full factorial two-
level design may be combined with some center 
point repetition of nominal design and 2n axial runs 
to yield a CCD (Gheshlaghi, 2007; Gheshlaghi et al., 
2008). 

In this regard, in the present study, RSM based on 
the CCD has been applied for the modeling of the 
nanofluid system with the aid of Design Expert ver-
sion 8.0.7.1 statistical software (Stat-Ease Inc.). 
Three independent design variables, namely tem-
perature (X1), particle volume fraction (X2) and solu-
tion pH (X3), were investigated with the actual and 
coded values shown in Table 1.  

The levels of other factors such as particle size 
and sonication time were selected as 5 nm and 2 
hours, respectively. Also, the measurements of zeta 
potential and thermal conductivity were done imme-
diately after the preparation step. 
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Table 1: Actual design variables with real and 
coded values for the CCD. 
 

Independent 
variables 

Symbol Coded and actual variable level 
Star-low Low Center High Star-high

-1.68 -1 0 1 1.68 
Temperature  
(C) 

X1 28 35 45 55 62 

Particle 
volume 
fraction 
(%vol) 

X2 1.3 2 3 4 4.7 

Solution pH X3 4.6 6 8 10 11.4 

 
For the three factors, CCRD with a quadratic 

model is composed of the full 23 factors with its 8 
cubic points, augmented with six replications of the 
center points and the six axial (star) points. Central 
composite designs with different properties can be 
developed by taking different  values. To make the 
design rotatable, the axial distance  was assigned a 
value of 1.68. Rotatable design makes the variance 
of prediction depend only on the scaled distance of 
the center of the design (Akhtar, 2001; Proust 2010). 
The CCD for the three independent factors is 
represented in Figure 1. 
 

 
 

Figure 1: CCRD for the three significant factors. 
 

To evaluate the efficiency of the statistical design 
of the experiment based on RSM, a multilayer feed-
forward ANN was calculated. 
 
Artificial Neural Networks (ANNs) 
 

In recent years, the application of ANN has been 
developed as a powerful and flexible mathematical 
tool for modeling nonlinear and intricate systems. 
Also, an ANN can be considered as a massively par-

allel distributed processor, which transfers the 
knowledge and rules existing beyond the experi-
mental data into the network structure for further 
applications (Rahmanian et al., 2011; Shanbedi et 
al., 2013; Salehi et al., 2013; Shanbedi et al., 2014). 
In this study, a multilayer feed-forward neural 
network has been used to design the complex non-
linear relationships between input and output layers. 
Each layer has a specific number of neurons that 
play a significant role in the modeling of the system. 
The neurons in the input layer receive the data and 
then distribute them. The hidden layer processes and 
organizes the data received from the input layer and 
delivers them to the output layer (Yousefi et al., 
2012). The output layer is the product of all the 
incoming signals. Finally the network was trained by 
using the Levenberg–Marquardt (LM) algorithm. 
The structure of this network is shown in Figure 2 
schematically. 
 

 
Figure 2: Schematic representation of the ANN for 
three input variables. 
 
 

EXPERIMENTAL 
 
Preparation of SnO2 Nanoparticles 
 

In this study, the SnO2 nanoparticles were synthe-
sized through a novel technique named chloride so-
lution combustion synthesis (CSCS) and its associ-
ated nanofluids were prepared by using the two-step 
method described elsewhere (Zeinali Heris et al., 
2007; Habibzadeh et al., 2010). In addition, micro-
waves were used for fast and homogeneous heating 
of the combustion synthesis solutions in the synthe-
sis of SnO2 nanoparticles. The vibration ran for two 
hours using an ultrasonic processor (Bandelin Sono-
plus model HD3200, power density-200 watts, fre-
quency-20  kHz). Afterwards, the crystalline struc-
tures and approximate sizes of the SnO2 nanoparti-
cles were determined by X-ray powder diffraction 
(XRD) with a Philips-X’pert diffractometer using Cu 
K radiation (= 1.54056 Å). The crystal size of the 
SnO2 powders was determined by applying the 
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Scherrer formula on the (1 1 0) diffraction peak. The 
BET surface area measurement was also carried out by 
nitrogen adsorption after degassing of the samples at 
300 C for 2 hours, using a Quantachrome CHEMBET-
3000 apparatus. All other information was mentioned 
in our previous work (Habibzadeh et al., 2010). 

Sodium dodecyl sulfate, as an anionic surfactant, 
with the concentration of 0.1 mM, was selected and 
added in the preparation of nanofluids for better dis-
persion of nanoparticles. Long term stability was not 
necessary for the measurement of thermal conduc-
tivity of nanofluids by the Transient Hot Wire (THW) 
method because the measurements were made only a 
few seconds after preparation. Generally, the nano-
fluids used in this study did not settle for at least 4 
hours. Fluids with settling times less than three hours 
were excluded from the experiments.  
 
Measurement of the Stability and Thermal Con-
ductivity of the Nanofluid 
 

Investigations show that clustering and aggrega-
tion are main features in the stability and extraordi-
nary enhancement of the thermal conductivity of 
nanofluids (Evans et al., 2008; Tucknott and Yaliraki, 
2002). Hence, if we can prepare a more highly ho-
mogenized nanofluid, the stability and thermal con-

ductivity of the nanofluid should be better. A stable 
suspension requires a good dispersion of the small 
particle in the liquid medium and a higher absolute 
value of the zeta potential of the particles (Tucknott 
and Yaliraki, 2002). Then, zeta potential was meas-
ured by a Malvern Nano-ZS (Malvern Instrument 
Inc., London, UK). The pH was controlled by using 
hydrochloric acid (HCl) and sodium hydroxide 
(NaOH) of analytical grade. Thermal conductivity 
measurements were performed by a THW technique, 
which is known to be an accurate method for deter-
mining the thermal conductivity of fluids. The details 
are elaborated elsewhere (Habibzadeh et al., 2010). 
 
 

RESULTS AND DISCUSSION 
 
Design of the Experiments and Response Surface 
Modeling 
 

With respect to the previous sections, 20 different 
combination treatments were carried out in random 
order according to a CCD configuration and the re-
sults of two responses, zeta potential (mV) and the 
thermal conductivity ratio were determined experi-
mentally and predicted by the model according to the 
design. The results are summarized in Table 2. 

 
 

Table 2: Design layout and experimental points of the CCRD. 
 

  Coded input variable Response variable 

Std. Run A B C 
 Zeta potential (mV) Thermal conductivity ratio

Experimental Predicted Experimental Predicted
1 3 -1 -1 -1 Factorial design -19 -21.27 1.07 1.070 
2 7 1 -1 -1  -27 -29.15 1.15 1.150 
3 16 -1 1 -1  -25 -24.65 1.11 1.110 
4 18 1 1 -1  -31 -32.53 1.19 1.190 
5 9 -1 -1 1  -23 -25.43 1.09 1.094 
6 14 1 -1 1  -34 -33.31 1.16 1.174 
7 5 -1 1 1  -29 -28.81 1.13 1.134 
8 15 1 1 1  -36 -36.69 1.23 1.214 
9 11 -1.68 0 0 Axial points -27 -27.59 1.08 1.070 

10 19 1.68 0 0  -40 -40.83 1.21 1.205 
11 20 0 -1.68 0  -30 -27.98 1.17 1.146 
12 10 0 1.68 0  -33 -33.66 1.22 1.214 
13 17 0 0 -1.68 -21 -19.34 1.10 1.095
14 12 0 0 1.68  -26 -26.33 1.14 1.135 
15 6 0 0 0 Center points -35 -34.21 1.18 1.180 
16 8 0 0 0  -34 -34.21 1.16 1.180 
17 2 0 0 0  -35 -34.21 1.20 1.180 
18 1 0 0 0  -32 -34.21 1.17 1.180 
19 4 0 0 0  -35 -34.21 1.19 1.180 
20 13 0 0 0  -34 -34.21 1.18 1.180 
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A second-order polynomial equation was used to 
find the mathematical relationship between the de-
pendent variables (zeta potential and thermal con-
ductivity ratio) and the set of independent variables. 
For three factors, the obtained model was expressed 
as follows: 
 

2
0

1 1  

     
n n n

i i ii ii ij i j
i i i j j

y b b x b x b x x        (1) 

 
where y represents the predicted responses, xi and xj 
are the coded values of the independent variables, b0 
is the regression term at the center point, bi are the 
linear coefficients (main effect), bii are the quadratic 
coefficients and bij are the two-factor interaction co-
efficients. Also, for statistical calculation based on 
CCD, the relation between the dimensionless coded 
values of the independent variables (xi) and the ac-
tual values of them (Xi) are defined as: 
 

, ,

, ,

( ) / 2

( ) / 2

 



i i high i low

i
i high i low

X X X
x

X X
         (2) 

 

where Xi,high and Xi,low are the real values of the inde-
pendent variables at high and low levels, respectively. 
 
Analysis of Variance (ANOVA) 
 

The ANOVA values for the quadratic regression 
model obtained from CCRD were employed in the 

optimization of stability and thermal conductivity; 
which are respectively tabulated in Tables 3 and 4. 
With respect to these tables, the F-values of 28.78 
and 25.63 implied that the models were statistically 
significant. There is only a 0.01% chance that model 
F-values this large could occur due to noise. Also, p-
values less than 0.0500 indicate significant model 
terms. In the case of the responses in this study, the 
ranking of the significant model terms for zeta 
potential and the thermal conductivity ratio were 

2 2
3 1 3 2 2X X X X X     and 2 2

1 3 2 1 3   X X X X X , 

respectively. P-values, which are greater than 0.1, 
indicate insignificant model terms. The lack-of-fit F-
values of 2.17 and 0.75 showed that the lack of fit of 
the models was not statistically important relative to 
the pure error. The insignificant lack of fit values are 
good and revealed that the quadratic models are 
statistically significant for the responses. Conse-
quently, the following second order polynomial 
regression modeling was performed for the zeta 
potential (y1) and thermal conductivity ratio (y2) of 
the nanofluid with coded variables: 
 

 
1 1 2

2 2
3 2 3

34.21 3.94 1.69

2.08 1.2 4.03

   

  

y x x

x x x
          (3) 

 

 
2 1 2 3

2 2
1 3

1.18 0.04 0.02 0.012

0.015 0.023

   

 

y x x x

x x
       (4)  

 
 

Table 3: ANOVA for the quadratic regression model (response: zeta potential (mV)). 
 

Source of variation Sum of square df Mean square F value P-value  
Model 560.56 9 62.28 28.78 <0.0001 Significant 

X1 212.44 1 212.44 98.17 <0.0001  
X2 38.89 1 38.89 17.97 0.0017  
X3 59.10 1 59.10 27.31 0.0004  
X1X2 4.50 1 4.50 2.08 0.1799  
X1X3 2.00 1 2.00 0.92 0.3590  
X2X3 0.50 1 0.50 0.23 0.6411  

2
1X  3.50 1 3.50 1.62 0.2325  
2
2X  20.74 1 20.74 9.58 0.0113  
2
3X  233.82 1 233.82 108.06 <0.0001  

Residual 21.64 10 2.16    
Lack of fit 14.81 5 2.96 2.17 0.2081 Not significant 
Pure error 6.83 5 1.37    

Total 582.20 19     
Std. Dev. 1.47 R2 0.9628 
Mean -30.30 Adjusted R2 0.9294 
C.V.% 4.85 Predicted R2 0.7890 
PRESS 122.86 Adequate precision 19.354 
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Table 4: ANOVA for the quadratic regression model (response: thermal conductivity ratio). 
 
Source of variation Sum of square df Mean square F value P-value  
Model 0.040 9 4.479E-003 25.63 <0.0001 Significant 

X1 0.022 1 0.022 126.11 <0.0001  
X2 5.501E-003 1 5.501E-003 31.48 0.0002 
X3 1.811E-003 1 1.811E-003 10.36 0.0092  
X1X2 1.125E-004 1 1.125E-004 0.64 0.4410  
X1X3 1.250E-005 1 1.250E-005 0.072 0.7946  
X2X3 1.125E-004 1 1.125E-004 0.64 0.4410  

2
1X  3.065E-003 1 3.065E-003 17.54 0.0019  
2
2X  1.380E-004 1 1.380E-004 0.79 0.3950  
2
3X  7.906E-003 1 7.906E-003 45.24 <0.0001  

Residual 1.748E-003 10 1.748E-004    
Lack of fit 7.477E-004 5 1.495E-004 0.75 0.6213 Not significant 
Pure error 1.000E-003 5 2.000E-004    

Total 0.042 19     
Std. Dev. 0.013 R2 0.9584 
Mean 1.16 Adjusted R2 0.9210 
C.V.% 1.14 Predicted R2 0.8269 

PRESS 7.278E-003 
Adequate 
precision 

16.518 

 
 

The coefficient of determination (R2) expresses 
the quality of the fit of the polynomial model. The 
value of this statistical parameter for the zeta poten-
tial (R2 = 0.9628) emphasizes that 96.28% of the 
variability in the response could be explained by the 
model and only 3.72% of the total variation was not 
explained by the model. The same interpretation 
applies to the other response variable. However, a 
concern with this statistic parameter is that it does 
not take the numbers of degree of freedom into ac-
count for model determination. In other words, it 
always increases when new variables are added to 
the model, regardless of whether the additional vari-
able is statistically significant or not. In order to 
negate this drawback, the adjusted coefficient of 
determination, R2-Adj, was used to adjust the varying 
numbers of degrees of freedom in the models. Tables 
3 and 4 show that R2 and adjusted-R2 values for the 
models did not differ, obviously indicating that non-
significant terms had not been included in the 
models. 

The Predicted-R2 values of the stability and ther-
mal conductivity ratio are 0.7890 and 0.8269, which 
are in reasonable agreement with the adjusted-R2 of 
0.9294 and 0.9210, respectively. A rule of thumb is 
that the adjusted and predicted R-squared values 
should be within 0.2 of each other. Otherwise there 
may be a problem with either the data or the model.  

Adequate precision compares the range of pre-
dicted values at the design points to the average 

prediction error. A ratio greater than 4 is desirable 
to indicate adequate model discrimination. For our 
quadratic models, the ratios are 19.354 and 16.518 
for the responses, indicating that the models give 
reasonable performance in predictions. 

Statistical plots such as the normal probability 
plot and the studentized residuals versus different 
independent variables play significant roles in con-
firming the normal error distribution, evaluating the 
final model adequacy and independently distributing 
the observations in a completely randomized design. 
In this regard, the normal percentage probability 
plots of the studentized residuals are shown in Figure 
3. Regarding this figure, the residual points show 
that the error distribution was normal and no re-
sponse transformation was required.  

The constant variance assumption for each treat-
ment or factor level and the independence of the er-
rors were checked by plotting the residuals against 
the different independent variables such as time or 
run order, factors, and predicted values obtained 
from the model. As shown in Figure 4, there is no 
structure such as sequences of positive and negative 
residuals or megaphone shape. Consequently, the 
models are correct, the assumptions are satisfying 
and there was no evidence pointing to possible outli-
ers for both responses. The plots of residuals versus 
other independent variables were checked (not 
shown). All figures showed an approximately con-
stant variance over the variable ranges and there was 
no reason to reject the conclusions. 
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Figure 3: Normal probability plot of residuals for zeta potential (a) and the thermal conductivity ratio (b) 
of the tin dioxide nanofluid system. 
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Figure 4: Plot of studentized residuals versus predicted responses for the zeta potential (a) and thermal 
conductivity ratio (b) in the tin dioxide nanofluid system. 

 
 
Effect of Selected Factors on the Zeta Potential of 
the Nanofluid 
 

The major challenge in nanofluid systems is the 
rapid settling of the nanoparticles in fluids. The zeta 
potential decline is caused by several factors such as 
nanoparticle clustering, agglomeration and close 
packing of the dispersed phase. Thus, in order to ob-
tain a better understanding of the results, the three-

dimensional (3D) response surface plots and contour 
lines map of the predicted models for zeta potential of 
the nanofluid are presented in Figures 5-7. The mutual 
effect of temperature and particle volume fraction at 
constant solution pH of 7 on stability (zeta potential) 
of tin dioxide nanofluid is shown in Figure 5. The 
minimum zeta potential (maximum stability) for tin 
dioxide nanoparticles is observed at high levels of 
both selected factors. This minimum is equal to -37.36. 
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It was observed that the zeta potential decreases 
(stability increased) upon increasing temperature and 
particle volume fraction. These facts should take into 
account that the temperature directly regulates parti-
cle kinetic energies, Brownian motion of nanoparti-
cles and finally the coagulation efficiency. Therefore, 
if the kinetic energy of the particles is lower than 
their interaction potential, coagulation of two parti-
cles occurs after collision. Also, the formation proba-
bility of bigger agglomerates increases at low tem-
peratures (Fiedler et al., 2007; Ghosh et al., 2011; 
Chang et al., 2005). This can also be explained by the 
significant positive quadratic term ( 2

2x ) and negative 

linear term (x2) in Eq. (3). According to this equation, 
the zeta potential (y1) decreased based on a negative 
linear term and increased based on a positive quad-
ratic term.  

It is clear from Figure 5 that the stability in-
creases upon increasing SnO2 concentration. This 
behavior could be explained by two effects. First of 
all, the viscosity of a nanofluid is higher than that of 
its base fluid and increases with an increase in the 
particle volume concentration (Goharshadi et al., 
2013). Secondly, due to the high surface area and 
surface activity, nanoparticles have the tendency to 
aggregate. The use of efficient surfactant is another 
key method to enhance the stability of nanoparticles 
in the base fluid (Yu et al., 2012). Surfactants play a 
very crucial role in nanofluid systems. The concen-
tration of the surfactant has a positive effect on the 
dynamic viscosity of nanofluids and prevents the 
nanoparticle agglomeration due to the increase of 

electrostatic repulsion between the suspended parti-
cles. Consequently, adding surfactant significantly 
minimizes particle aggregation and enhances the dis-
persion behavior (Goharshadi et al., 2013; Hwang et 
al., 2007; Hwang et al., 2008). Although the increase 
in nanoparticle concentration improves stability, the 
agglomeration is more obvious at concentrations 
over 5% (Pirahmadian and Ebrahimi, 2012). This 
can also be explained by the significant quadratic 

term 2
2x  in Eq. (3). 

Figure 6 shows the effect of solution pH versus 
temperature at a constant nanoparticle concentration 
of 3% by volume. The maximum response zone of 
stability is observed at pH values of 7 to 8.25 at each 
temperature level. This illustrates that increasing the 
pH up to 7-8 will enhance stability. This behavior is 
due to the fact that the stability of a nanofluid is re-
lated to its electrokinetic properties. At the isoelectric 
point (IEP), the repulsive forces between SnO2 nano-
particles tend towards zero and nanoparticles will 
coagulate together at this pH value. 

The hydration forces between nanoparticles 
increase as the pH of the solution departs from the 
IEP, which results in the enhanced mobility of 
nanoparticles in the suspension and the colloidal 
particles become more stable (Habibzadeh et al., 
2010; Goharshadi et al., 2013). At high and low 
levels of solution pH, stability has a tendency to 
decrease. Theoretically, this may be attributed to the 
decrease of the surface charge. As a result, a weakly 
repulsive double layer force is generated 
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Figure 5: Response surface and contour plots showing the mutual effect of temperature and particle 
volume fraction on zeta potential while the other factor was kept constant at the center point (X3=7). 
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Figure 6: Response surface and contour plots showing the mutual effect of temperature and pH on zeta 
potential while the other factor was kept constant at the center point (X2=3% by volume). 

 
 
The interaction effect of particle volume fraction 

and solution pH at a constant temperature of 45 C 
on zeta potential is depicted in Figure 7. As shown in 
this figure, there is an enough curvature in this plot 
and the response surface is moderately nonlinear. In 
order to capture the curvature of the response in the 

design space, significant quadratic terms such as 2
2x  

and 2
3x  were taken into account in Eq. (3). The same 

interpretation is applied for pH and the concentration 
of nanoparticles on the stability of the nanofluid. The 
contour plot shows that the process is more sensitive 
to a change in pH than in particle volume fraction. 
The optimum is close to the pH of 8 and a particle 
volume fraction of 3.5% by volume. 
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Figure 7: Response surface and contour plots showing the mutual effect of particle volume fraction and 
pH on zeta potential while the other factor was kept constant at the center point (X1=45 C). 
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Effect of Selected Factors on the Thermal Con-
ductivity Ratio 
 

Previous experimental studies showed that the 
thermal conductivity enhancement of nanofluids de-
pends on several mechanisms such as Brownian mo-
tion of the nanoparticles, clustering of the nanoparti-
cles and liquid layering around the nanoparticles (Pi-
rahmadian and Ebrahimi, 2012; Ghadimi et al., 
2011). These phenomena can also be described by 
several significant factors such as temperature, parti-
cle volume fraction, pH of the nanofluid, etc. In this 
regard, the 3D response surface plots and contour 
line map of the predicted models for the thermal con-
ductivity ratio of nanofluid are presented in Figures 
8-10. 

Figure 8 demonstrates the variations in the ther-
mal conductivity ratio in terms of the temperature 
and particle volume fraction variables while the solu-
tion pH was kept constant at the center point. By con-
sidering this figure, increasing the temperature from 
35 to 55 C increases the thermal conductivity to 
7.47% and 6.44% at the high level and the low level 
of the particle volume fraction, respectively. These 
enhancements in thermal conductivity can be ade-
quately explained by kinetic theory; Brownian move-
ment (stochastic motion of molecules and nanoparti-
cles) increases with the increase of the nanofluid's 
bulk temperature. Consequently, these particles are 
able to transfer more energy from one place to an-
other per time unit. On the other hand, these en-
hancements are due to a reduction in the clustering 

effect which is intensified by an increase in tempera-
ture (Das et al., 2003b).  

Most experimental observations of nanofluid sys-
tems show that the thermal conductivity ratio in-
creases remarkably with the increase of particle vol-
ume fraction. This behavior is also evident in Figures 
8 and 10. This phenomenon is attributed to the fact 
that the collision of nanoparticles with each other is 
increased by increasing the nanoparticle concentra-
tion. Although the probability of nanoparticle agglom-
eration increases with increasing particle volume 
fraction, dispersing agents such as SDS reduce the van 
der Waals forces and improve nanoparticle dispersion. 

It was also observed that the rate of change of the 
thermal conductivity with temperature and particle 
volume fraction was dependent on the pH value, as 
shown in Figures 9 and 10, respectively. This is due 
to the fact that the pH value strongly influences the 
electrostatic charge of the particle surface. The ther-
mal conductivity ratio increases with pH, reaches a 
maximum close to the isoelectric point and decreases 
as the pH increases further. 

At the optimum value of the pH (approximately 
between 8 and 9) for maximum thermal conductivity 
enhancement, the surface charge of nanoparticles 
increases, which creates a high electrostatic repul-
sion between nanoparticles. Consequently, the mo-
bility of tin dioxide nanoparticles is enhanced and 
severe clustering and agglomeration of the nanoparti-
cles are prevented (Shanbedi et al., 2014; Goharshadi 
et al., 2013; Ranakoti Irtisha et al., 2012; Xian-Ju and 
Xin-Fang, 2009). 
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Figure 8: Response surface and contour plots showing the mutual effect of temperature and particle volume 
fraction on the thermal conductivity ratio while the third factor was kept constant at the center point (X3=7). 
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Figure 9: Response surface and contour plots showing the mutual effect of temperature and pH on the 
thermal conductivity ratio while the third factor was kept constant at the center point (X2=3% volume). 
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Figure 10: Response surface and contour plots showing the mutual effect of particle volume fraction and 
pH on the thermal conductivity ratio while the third factor was kept constant at the center point (X1=45 C). 

 
 
Optimization of the Operational Conditions 
 

The final optimum experimental results based on 
RSM strategy were calculated by the software to de-
termine the optimum settings for the factors. The 
optimal experimental conditions based on the coded 
factors and the responses were carried out by mini-
mizing the zeta potential and maximizing thermal 
conductivity ratio and are reported in Table 5. With 
respect to this table, all three factors were limited to 

their lower and upper coded values. The default is 
for both responses to be equally important in a set-
ting of 3 pluses (+++). The optimal process condi-
tions determined by the CCRD method based on the 
actual values of the factors are as follows: X1 = 55 C, 
X2 = 3.36% by volume and X3 = 8.62; in these condi-
tions, a zeta potential of -38.22 mV was obtained in 
result 1. The value of 1.23 was obtained for the 
maximum thermal conductivity ratio at X1 = 54.4 C, 
X2 = 3.98% by volume and X3 = 8.84 in result 2. 
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Under the optimal experimental conditions for 
both responses, a zeta potential of -37.98 mV and 
thermal conductivity ratio of 1.23 were determined at 
X1 = 55 C, X2 = 3.81% by volume and X3 = 8.6 in 
result 3. 

 
Table 5: Optimum values of the design criteria for 
the zeta potential and thermal conductivity ratio 
for the tin dioxide nanofluid. 
 
Optimum 

result 
Coded factors Zeta 

potential 
(mV) 

Thermal 
conductivity 

ratio 

Desirability
x1 x2 x3 

1 1 0.36 0.31 -38.22 ---- 0.915 

2 0.94 0.98 0.42 ---- 1.23 1 

3 1 0.81 0.3 -37.98 1.23 0.951 

 

Artificial Neural Networks Modeling 
 

Figure 11 shows the regression plots for the 
output with respect to training, validation, and test 
data. With respect to this figure, the output tracks the 
targets quite well and the R-value is over 0.995. 
Consequently, neural networks are able to predict the 
present nanofluid system. 

The ability of the ANN model and its accuracy 
for this system are shown by the comparison 
between the values predicted by the ANN model and 
experimental data that were not used in training of 
the ANN, as presented in Figure 12. The proximity 
of the points to the diagonal line in Figure 12 
indicates that the ANN provides results very close to 
the experimental measurements and confirms the 
accuracy of the ANN model. 

 
Figure 11: Network model with training, validation, test and the 
full prediction set. 

 

 
Figure 12: Correlation between experimental and predicted values 
of (a) zeta potential and (b) thermal conductivity ratio. 
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To show the accuracy of the model, the absolute average relative error (AARE) and standard deviation (Std. 
Dev.) for N data were calculated as follow (Gheshlaghi, 2007):  
 

1% 100

 
 
 
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                   (5) 

 
2

1

1
% . . 100

1


           


N experimental calculation
i i

experimental
ii

X X
Std Dev AARE

N X
             (6) 

 
 

Table 6 lists the %AARE and %Std. Dev. values 
for the zeta potential and thermal conductivity ratio. 
Because the AARE values for both parameters are 
very small and close to zero, we can conclude that 
the ANN model is suitable for the prediction of this 
nanofluid system and that the prediction values are 
reliable (Rahmanian et al., 2011). 
 
Table 6: AARE and Std. Dev. for zeta potential and 
thermal conductivity ratio which modeled by ANN. 
 

Parameter Method %AARE %Std. Dev.

Zeta potential ANN 0.872 1.121 

Thermal conductivity 
ratio 

ANN 0.376 0.268 

 
 

CONCLUSION 
 

The performance of the nanofluid system was 
modeled and expressed in terms of the stability and 
thermal conductivity content of the nanoparticles. In 
this regard, the effect of varying temperature, parti-
cle volume fraction and the pH of solution were in-
vestigated using RSM and ANN methods. The re-
sults clearly show that CCRD and the ANN model 
can be used for the modeling of the SnO2 nanofluid 
system. ANOVA analysis indicated that there is sig-
nificant curvature in the design space. Consequently, 
the quadratic models were statistically fitted to cap-
ture the curvature using CCRD. A multilayer neural 
network was also used, which is effective for finding 
complex non-linear relationships. This mathematical 
model was found to be a reliable predictive tool with 
an excellent accuracy, with AARE of ±0.872% and 
±0.376% in comparison with experimental values for 
the zeta potential and thermal conductivity ratio, re-
spectively. Finally, the optimization demonstrated 
that a temperature of 55 C, particle volume fraction 

of 3.81% volume and pH=8.6, provided the maximum 
stability and thermal conductivity enhancement. 
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NOMENCLATURE 
 
n Number of main factor 
Xi Actual value of independent design variable
A or X1 Temperature (°C) 
B or X2 Particle volume fraction (% volume) 
C or X3 Solution pH 
b0 Regression term at the center point 
bi The linear coefficients (main effect) 
bii The quadratic coefficients  
bij The two-factor interaction coefficients 

xi and xj
The coded values of independent design 
variables 

Xi,high 
Real value of the independent variable at 
the high level

Xi,low 
Real value of the independent variable at 
the low level 

y Predicted response with coded variables 

y1 
Zeta potential of nanofluid with coded 
variables (mV) 

y2 
Thermal conductivity ratio of nanofluid 
with coded variables 

R2 Coefficient of determination 
R2-Adj Adjusted coefficient of determination 
df Degree of freedom 
C.V. Coefficient of variation 
Std. Dev. Standard deviation 
N Number of experiment 
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Greek Symbols 
 

α 
Distance of each axial point (also called 
star point) from the center 
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